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Abstract

In [11], three of the authors obtained a characterization of certain types of reproducing

systems. In this work, we apply these results and methods to various affine–like, wave

packets and Gabor systems to determine their frame properties. In particular, we study

how oversampled systems inherit properties (like the frame bounds) of the original systems.

Moreover, our approach allows us to study the phenomenon of oversampling in much greater

generality than is found in the literature.
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1 Preliminaries

In order to describe the types of reproducing systems that we will consider in this study, we

introduce the following concepts and notation.

A countable family {eα : α ∈ A} of elements in a separable Hilbert space H is a frame

if there exist constants 0 < A ≤ B < ∞ satisfying

A ‖v‖2 ≤
∑

α∈A
|〈v, eα〉|2 ≤ B ‖v‖2

for all v ∈ H. If only the right hand side inequality holds, we say that {eα : α ∈ A} is a

Bessel system with constant B. A frame is a tight frame if A and B can be chosen so

that A = B, and is a Parseval frame (PF) if A = B = 1. Thus, if {eα : α ∈ A} is a PF in

H, then

‖v‖2 =
∑

α∈A
|〈v, eα〉|2 (1.1)

for each v ∈ H. This is equivalent to the reproducing formula

v =
∑

α∈A
〈v, eα〉 eα (1.2)

for all v ∈ H, where the series in (1.2) converges in the norm of H. We refer the reader to [12,

Ch. 8] for the basic properties of frames that we shall use.

Let P be a countable collection of indices, {gp : p ∈ P} a family of functions in L2(Rn)

and {Cp : p ∈ P} a corresponding collection of matrices in GLn(R). For y ∈ Rn, let Ty be

the translation (by y) operator defined by Ty f = f(· − y). In [11] we study families of the

form

Φ{gp}
{Cp} =

{
TCpk gp : k ∈ Zn, p ∈ P}

, (1.3)

and we characterize those {gp : p ∈ P} such that Φ{gp}
{Cp} is a PF (Parseval frame) for L2(Rn).

In order to state the main result of [11], we need to introduce the following notation:

Λ =
⋃

p∈P
CI

p Zn, (1.4)

where CI
p = (CT

p )−1 (= the inverse of the transpose of Cp), and for α ∈ Λ,

Pα = {p ∈ P : α ∈ CI
p Zn}. (1.5)

If α = 0 ∈ Λ, then P0 = P; otherwise the best we can say is that Pα ⊂ P. We note, in

passing, that L∗ = CI
p Zn is the dual of the translation lattice L = Cp Zn, in the sense that

ξ ∈ L∗ iff x · ξ ∈ Z, for each x ∈ L. Let

D = DE =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact in Rn \E

}
, (1.6)
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where E is a subspace of Rn of dimension smaller than n to be specified later in the various

applications. We then have the following characterization result from [11, Thm.2.1]:

Theorem 1.1. Let P be a countable set, {gp}p∈P a collection of functions in L2(Rn) and

{Cp}p∈P ⊂ GLn(R). Assume the local integrability condition (L.I.C.):

L(f) =
∑

p∈P

∑

m∈Zn

∫

supp f̂
|f̂(ξ + CI

pm)|2 1
| detCp| |ĝp(ξ)|2 dξ < ∞ (1.7)

for all f ∈ D. Then the system Φ{gp}
{Cp}, given by (1.3), is a Parseval frame for L2(Rn) if and

only if ∑

p∈Pα

1
|det Cp| ĝp(ξ) ĝp(ξ + α) = δα,0 for a.e. ξ ∈ Rn, (1.8)

for each α ∈ Λ, where δ is the Kronecker delta for Rn.

The following result from the same paper will also be useful (cf. [11, Prop.4.1]).

Proposition 1.2. Let P be a countable set, {gp}p∈P a collection of functions in L2(Rn) and

{Cp}p∈P ⊂ GLn(R). If the system Φ{gp}
{Cp}, given by (1.3), is Bessel with constant β > 0, then

∑

p∈P

1
| detCp| |ĝp(ξ)|2 ≤ β for a.e. ξ ∈ Rn. (1.9)

We learned from personal communication that A. Ron and Z. Shen have developed, in-

dependently and by different methods, an approach to study families generated by countable

unions of shift-invariant systems. Their results have many features that are similar to ours.

In many cases, we will consider applications of Theorem 1.1 to various variants of the

affine systems. These systems involve the dilation operator DA, A ∈ GLn(R), defined by

(DA f)(x) = | detA|1/2f(Ax), f ∈ L2(Rn).

Then the affine systems generated by a family Ψ = {ψ1, . . . ψL} ⊂ L2(Rn) and by the

integral powers of the dilations DA, A ∈ GLn(R), are the collections of the form

FA(Ψ) = {Dj
A Tk ψ` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L}. (1.10)

The collection Ψ ⊂ L2(Rn) such that the affine system FA(Ψ) is a PF for L2(Rn) is called

a multi-wavelet or a wavelet if Ψ = {ψ} ∈ L2(Rn) is a single function. Observe that,

in the literature, this terminology sometimes refers to a function which generates an affine

orthonormal basis.
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It is easy to see that the affine systems FA(Ψ) are special cases of the systems given by

(1.3). Indeed, by a simple calculation one obtains that Dj
A Tk ψ` = TA−jk Dj

A ψ`, which shows

that the affine systems are obtained from (1.3), by choosing

P =
{
(j, `) : j ∈ Z, ` = 1, 2, . . . , L

}
,

gp = g(j,`) = Dj
A ψ` and Cp = C(j,`) = A−j , for all ` = 1, . . . , L and j ∈ Z.

The various variants of the affine systems FA that will be discussed in this paper include

the “quasi affine” and “oversampled” affine systems studied by a number of authors (cf.

[4], [20], [17], [19], [15]). One of the novel feature of this paper is that all these systems

can be represented in the form (1.3), which enables us to gain a better understanding of

them. This approach allows us to include dilations that are more general than those found

in the literature. In addition, several other systems (including Gabor systems, more general

shift–invariant systems and wave packet systems) can be written in terms of collections of

the form (1.3) and Theorem 1.1 can be applied to them. Moreover, we will discuss how the

ideas used in the proof of this theorem can be applied to general frames (not just PF’s).

Section 2 will be devoted to the oversampling of the affine systems. The other applications,

including oversampling of shift–invariant systems, dilation oversampling and wave packets,

will be treated in the Sections 3, 4 and 5, respectively.

Before embarking in the applications of Theorem 1.1 to the oversampling of the affine

systems, let us be more explicit about the dilation matrices we shall use. A matrix M ∈
GLn(R) is called expanding provided each of its eigenvalues λ satisfy |λ| > 1. As shown

in [11, Sec.5], this is equivalent to the existence of constants k and γ, satisfying 0 < k ≤ 1 <

γ < ∞, such that

|M j x| ≥ k γj |x| (1.11)

when x ∈ Rn, j ∈ Z, j ≥ 0. The more general class of dilations that will be considered will

be produced by those M ∈ GLn(R) that are expanding on a subspace F ⊂ Rn according

to the following definition.

Definition 1.3. Given M ∈ GLn(R) and a non-zero subspace F of Rn, M is expanding

on F if there exists a complementary (not necessarily orthogonal) subspace E of Rn with the

following properties:

(i) Rn = F + E and F ∩ E = {0};

(ii) M(F ) = F and M(E) = E, that is, F and E are invariant under M ;

(iii) condition (1.11) holds for all x ∈ F ;
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(iv) given r ∈ N, there exists C = C(M, r) such that, for all j ∈ Z, the set

Zj
r (E) = {m ∈ E ∩ Zn : |M j m| < r}

has less than C elements.

The characterization of those Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) for which FA(Ψ) is a PF for

L2(Rn) when B = AT is expanding on a subspace F ⊂ Rn is the following:

Theorem 1.4 ([11]). Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the

matrix B = AT is expanding on a subspace F of Rn. Then the system FA(Ψ), given by

(1.10), is a Parseval frame for L2(Rn) if and only if

L∑

`=1

∑

j∈Pm

ψ̂`(B−jξ) ψ̂`(B−j(ξ + m)) = δm,0 for a.e. ξ ∈ Rn, (1.12)

and all m ∈ Zn, where Pm = {j ∈ Z : m ∈ Bj Zn}.

In order to illustrate the property of being expanding on a subspace, let us consider the

case where B ∈ GL2(R). If both eigenvalues of B, say λ1, λ2, satisfy |λ1|, |λ2| > 1, then

B is expanding, and, thus, is expanding on the subspace F = R2. In this case it is known

that orthonormal wavelets (i.e., functions ψ such that FA(ψ) is an orthonormal basis) always

exist (as shown in [7]). If |λ1| = 1 and |λ2| > 1, then B is expanding on F , where F is

the eigenspace corresponding to λ2, and the complementary subspace E is the eigenspace

corresponding to λ1. For example, the matrix

M =

(
2 0

0 1

)

is expanding on the eigenspace associated with the eigenvalue λ = 2. In [11, Example 5.15])

we explicitly construct a wavelet in L2(R2) with dilation matrix M . Furthermore, if |λ1| <

1 < |λ2| and E, the eigenspace corresponding to λ1, satisfies Z2
⋂

E = ∅, then B is expanding

on F , where F is the eigenspace corresponding to λ2 (notice that item (iv) in Definition 1.3

is satisfied). In a very recent study, D. Speegle [22] has shown that there are examples of

matrices in this class for which orthonormal wavelets exist, and others for which they do not

exit. The following example illustrates this situation further.

Example 1.5. Consider

M1 =

(
2 0

a 2/3

)
, M2 =

(
2 a

0 2/3

)
,
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where a ∈ R is irrational. In either case, the only invariant proper subspaces are F , the

eigenspace corresponding to λ = 2, and E, the eigenspace corresponding to λ = 2/3. For

M1, condition (iv) in Definition 1.3 is not satisfied, and thus the matrix cannot be expanding

on F (the only expanding invariant subspace). On the other hand, M2 is expanding on a

subspace F : in fact, since E = {u(3a/4, 1) : u ∈ R} with a irrational, then E∩Z2 = {0} and,

thus, condition (iv) in Definition 1.3 is satisfied. However,

M−1
1 =

(
1/2 0

−3a/4 3/2

)
,

turns out to be expanding on a subspace F (F is the eigenspace associated with the eigenvalue

λ = 3/2). In fact E = {u(1, 3a/4) : u ∈ R} (the eigenspace associated with the eigenvalue

λ = 1/2) satisfies E ∩ Zn = {0} and, thus, condition (iv) in Definition 1.3 is satisfied.

It is clear that if B = M2, then Theorem 1.4 applies to this case. Furthermore, in view of

the observation that we made after announcing Theorem 1.4, when B = M1 then Theorem 1.4

also applies, since M−1
1 is expanding on a subspace.

In dimensions larger than 2 the situation is more complicated. For example, there are

matrices B with eigenvalues |λi| ≥ 1, for all i, and | detB| > 1 that are not expanding on a

subspace (personal communication by A. Jaikin).

Another comment involves the local integrability condition (L.I.C.), given by (1.7). Ob-

serve that this condition is not mentioned in Theorem 1.4. In the proof of this theorem in

[11], it is shown that the property that B = AT is expanding on F ⊂ Rn implies that if

FA(Ψ) is a Parseval frame for L2(Rn), then the L.I.C. is true for all f ∈ DE , where E ∈ Rn

is the subspace complementary to F . Furthermore, it is shown that if the functions Ψ satisfy

the condition (1.12), then the L.I.C. also holds. Thus, we do not need to state the L.I.C. for

FA(Ψ) in Theorem 1.4. These examples also illustrate why DE , defined by (1.6), is chosen

to be dependent on E.

We now examine Theorem 1.4 in the case that B = AT is an integral matrix. Let

I(B) =
⋂

i∈Z Bi(Zn). We consider the three cases: m = 0, m ∈ I(B)\{0} and m ∈ Zn\I(B).

Since B Zn ⊆ Zn, then {Bi Zn : i ∈ Z} is a decreasing sequence of sets and, obviously,

{0} ⊆ I(B). One may have some m 6= 0 in this set. For example, let B =

(
1 0

0 λ

)
, with

λ ∈ Z, λ > 1; then Bk =

(
1 0

0 λk

)
, and

(
m1

0

)
∈ I(B) for each m1 ∈ Z. If B is expanding,

however, then only m = 0 is in I(B).

When m ∈ I(B), then Pm = Z, since Pm = {j ∈ Z : m ∈ Bj Zn}. On the other hand, if

m ∈ Zn \ I(B), then there are j0 ∈ Z and r ∈ Zn \ B Z such that m = Bj0 r. In this case,
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after an appropriate change of variables, similar to the one we made above, equation (1.12)

can be rewritten in the form

L∑

`=1

∑

j≥0

ψ̂`(Bjη) ψ̂`(Bj(η + r)) = 0 for a.e. η ∈ Rn.

We thus obtain the following refinement of Theorem 1.4 when B Zn ⊆ Zn.

Theorem 1.6. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and let A ∈ GLn(R) be an integral matrix

such that B = AT is expanding on a subspace of Rn. Then the affine system FA(Ψ) is a

Parseval frame for L2(Rn) if and only if the following conditions hold:

L∑

`=1

∑

j∈Z
|ψ̂`(B−jξ)|2 = 1 for a. e. ξ ∈ Rn, (1.13)

L∑

`=1

∑

j∈Z
ψ̂`(B−jξ) ψ̂`(B−j(ξ + m)) = 0 for a. e. ξ ∈ Rn, (1.14)

for all m ∈ I(B) =
⋂

i∈Z Bi(Zn), m 6= 0, and

L∑

`=1

∑

j≥0

ψ̂`(Bjξ) ψ̂`(Bj(ξ + r)) = 0 for a.e. ξ ∈ Rn, (1.15)

and all r ∈ Zn \B(Zn) (observe that r /∈ I(B)).

As is usually the case, almost all the results that we will discuss remain valid for dual

reproducing systems, where one system is used for analyzing functions and another system

for reconstructing functions. Since essentially no new ideas are involved in this extension,

and, also, to limit the length of this paper, we will not present this material here.

2 Oversampling of the affine systems

The notion of oversampling in the context of affine systems was introduced by Chui and Shi

in [4] in the following manner. Given the dyadic affine system in L2(R),

F2(ψ) = {Dj
2 Tk ψ : j, k ∈ Z},

the corresponding oversampled affine system is obtained by using a larger collection of

translations. More precisely, it is defined as

Fm
2 (ψ) = {m−1/2 Dj

2 T k
m

ψ : j, k ∈ Z},
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where m is an odd number. It is shown in [4] that if the original affine system F2(ψ) is a

frame for L2(R), then the oversampled affine system Fm
2 (ψ) is also a frame for L2(R) with

the same frame bounds. This result is known as the Second Oversampling Theorem.

This notion of oversampling has been extended to higher dimensions and investigated by

a number of authors (cf. [20], [3], [19], [15]). We will show that our methods, involving the

use of Theorem 1.1 and other results from [11], can be applied to obtain all these results,

as well as others. Not only will we consider higher dimensions, but we shall also consider

an arbitrary change in the lattice of translations at each “scale” (or “resolution”) associated

with the dilations Aj .

The quasi affine systems, introduced by Ron and Shen [21], provide an important example

of “scale-dependent” oversampling. Recall that the quasi affine F̃2(ψ), associated with

F2(ψ), is defined by F̃2(ψ) = {ψ̃j,k : j, k ∈ Z}, where

ψ̃j,k =





2j/2 Dj
2 T2jk ψ, j < 0

Dj
2 Tk ψ, j ≥ 0.

The same definition applies if the dilation 2 is replaced by any integer a > 1. It has been

observed by many authors that the quasi affine systems enjoy many features that make the

study of their properties easier than the corresponding affine systems. For example, they

form shift-invariant systems, which is not the case for the affine system Fa(ψ). It is also

important to realize that these systems are equivalent to the affine systems, in the sense

that exactly the same ψ generates a PF for both systems (cf. [21]). This fails to be the

case if a /∈ N. If a ∈ Q, however, M.Bownik [2] observed that one can extend the definition

of quasi affine systems, so that the good properties still hold. This can be done using the

notion of “scale-dependent” oversampling. We will show that our unified approach can be

applied to obtain all these features. For simplicity, let us begin by showing an application of

Theorem 1.1 to the quasi affine systems with dilation a ∈ Q.

2.1 Example: one-dimensional rational quasi affine systems

Let a = p
q , p, q ∈ Z, p > q ≥ 2, (p, q) = 1. Given the affine system Fa(ψ) = {Dj

a Tk ψ : j, k ∈
Z}, the corresponding quasi affine systems F̃a(ψ) is defined by F̃a(ψ) = {ψ̃j,k : j, k ∈ Z},
where

ψ̃j,k =





pj/2 Dj
a Tpjk ψ, j < 0

q−j/2 Dj
a Tq−jk ψ, j ≥ 0.

=





pj/2 Tqjk Dj
a ψ, j < 0

q−j/2 Tp−jk Dj
a ψ, j ≥ 0.

(2.1)

This definition also makes sense when q = 1, p ≥ 2, in which case it gives us the “classical”

quasi affine system F̃p(ψ). It is easy to show, in general, that the systems F̃a(ψ) are shift-
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invariant. In fact, given any m ∈ Zn, from (2.1), we have that, if j < 0,

Tm ψ̃j,k = pj/2 Tm Tqjk Dj
a ψ = pj/2 Tqjk+m Dj

a ψ = pj/2 Tqj(k+q−jm) Dj
a ψ = ψ̃j,k+q−jm,

and, similarly, if j ≥ 0,

Tm ψ̃`
j,k = q−j/2 Tm Tp−jk Dj

a ψ = q−j/2 Tp−jk+m Dj
a ψ = q−j/2 Tp−j(k+pjm) Dj

a ψ = ψ̃j,k+pjm.

We will now apply Theorem 1.1 to characterize those ψ ∈ L2(R) for which F̃a(ψ) is a PF.

The reader can verify that the L.I.C., given by (1.7), is satisfied in this case (the proof for

the higher dimensional case will be discussed in Theorem 2.4). Let P = Z, and

gj =





pj/2Dj
aψ, if j < 0,

q−j/2Dj
aψ, if j ≥ 0,

, Cj =





qj , if j < 0,

p−j , if j ≥ 0.

Under these assumptions, F̃a(ψ) is of the form (1.3) and Theorem 1.1 can be applied. We

have:

Λ = (
⋃

j<0

(q−j Z) ∪ (
⋃

j≥0

(pj Z) = Z.

Therefore, for α = m ∈ Λ, we obtain

Pm = {j < 0 : qj m ∈ Z} ∪ {j ≥ 0 : p−j m ∈ Z}.

If m = 0, then P0 = Z. On the other hand, for any m ∈ Z \ {0}, we can write m = pj0 qj1 r,

where j0, j1 ≥ 0 and r ∈ Z \ (pZ ∪ qZ). Hence:

Pm = {j < 0 : pj0 qj+j1 r ∈ Z} ∪ {j ≥ 0 : qj1 p−j+j0 r ∈ Z} = {j ∈ Z : −j1 ≤ j ≤ j0}.

From (1.8), expressed in terms of the gj we just defined, we obtain that F̃a(ψ) is a PF for

L2(R) iff ∑

j∈P0

|ψ̂(a−jξ)|2 =
∑

j∈Z
|ψ̂(a−jξ)|2 = 1, for a.e. ξ ∈ R (2.2)

and, for r ∈ Z \ (pZ ∪ qZ),
∑

j∈Pm

ψ̂(a−jξ) ψ̂(a−j(ξ + m)) =
∑

−j1≤j≤j0

ψ̂(a−jξ) ψ̂(a−j(ξ + pj0 qj1 r)) = 0 (2.3)

for a.e. ξ ∈ R. Let us compare now these characterization equations with the corresponding

characterization equations for the affine system Fa(ψ). We apply Theorem 1.4. If m = 0,

then P0 = Z. On the other hand, for any m ∈ Z \ {0}, we can write m = pj0 qj1 r, where

j0, j1 ≥ 0 and r ∈ Z \ (pZ ∪ qZ). Hence:

Pm = {j ∈ Z : (p/q)−j m ∈ Z} = {j ∈ Z : pj0−j qj+j1 r ∈ Z} = {j ∈ Z : −j1 ≤ j ≤ j0}.
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Thus, using equation (1.12), we have that Fa(ψ) is a PF for L2(R) iff

∑

j∈P0

|ψ̂(a−jξ)|2 =
∑

j∈Z
|ψ̂(a−jξ)|2 = 1, for a.e. ξ ∈ R (2.4)

and, for r ∈ Z \ (pZ ∪ qZ),

∑

j∈Pm

ψ̂(a−jξ) ψ̂(a−j(ξ + m)) =
∑

−j1≤j≤j0

ψ̂(a−jξ) ψ̂(a−j(ξ + pj0 qj1 r)) = 0 (2.5)

for a.e. ξ ∈ R. The comparison of equations (2.2) and (2.3) with equations (2.4) and (2.5)

shows that exactly the same ψ generates a PF for both F̃a(ψ) and Fa(ψ). Later on, in

Section 2.3.3, we will consider the n-dimensional version of this example.

2.2 Characterization of oversampled affine systems

One of the features of the quasi affine systems described in the example above is that they

are obtained from the affine system Fa(ψ) by changing the lattice of translation at each scale

j. More generally, corresponding to the affine system FA(Ψ), given by (1.10), we define the

(scale-dependent) oversampled affine systems generated by Ψ relative to the sequence of

non-singular matrices {Rj}j∈Z ⊂ GLn(R) as the collections of the form

F{Rj}
A (Ψ) = {ψ`

j,k = | detRj |−1/2 Dj
A TR−1

j k ψ` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L}, (2.6)

where Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn). We will use the notation B = AT , Sj = RT
j , j ∈ Z,

and the matrices {Rj}j∈Z will be called oversampling matrices for the system F{Rj}
A (Ψ).

It is clear that when Rj = R ∈ GLn(R), for each j ∈ Z, then one obtains the notion of

oversampling that is usually found in the literature.

We want to find conditions on the oversampling matrices {Rj}n
j=1 such that the oversam-

pled affine system F{Rj}
A (Ψ) is a PF whenever this is the case for the corresponding affine

system FA(Ψ). Later we will also consider the corresponding question about frames.

We start with the following simple observation, which shows that in order for the system

F{Rj}
A (Ψ), given by (2.6), to be a frame (or even a Bessel system), there are some restrictions

on the choice of the oversampling matrices {Rj}n
j=1.

Proposition 2.1. If the oversampled system F{Rj}
A (Ψ), given by (2.6), is a Bessel system

with constant β, then, for each ` = 1, · · · , L,

| detRj | ≥ 1
β
‖ψ`‖2, for each j ∈ Z.
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Proof. Since F{Rj}
A (Ψ) is a Bessel system with constant β, then

L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈f, ψ`
j,k〉|2 ≤ β ‖f‖2 (2.7)

for all f ∈ L2(Rn), where ψ`
j,k = | det Rj |−1/2 Dj

A TR−1
j k ψ`. Equation (2.7) implies that, for

any j0 ∈ Z, k0 ∈ Zn, 1 ≤ `0 ≤ L:

|〈ψ`0
j0,k0

, ψ`0
j0,k0

〉|2 ≤ β ‖ψ`0
j0,k0

‖2. (2.8)

Since ‖ψ`0
j0,k0

‖2 = | detRj0 |−1 ‖ψ`0‖2, from (2.8) we deduce:

|det Rj0 |−2 ‖ψ`0‖4 ≤ β |det Rj0 |−1 ‖ψ`0‖2,

and, thus, | detRj0 | ≥ β−1 ‖ψ`0‖2, for all j0 ∈ Z, 1 ≤ `0 ≤ L. 2

The following proposition shows how Theorem 1.1 can be applied to obtain a general

characterization of the oversampled systems F{Rj}
A (Ψ), given by (2.6).

Proposition 2.2. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), A ∈ GLn(R) and {Rj}j∈Z ⊂ GLn(R).

Assume the local integrability condition (L.I.C.):

L(f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj Sj m)|2 |ψ̂`(B−jξ)|2 dξ < ∞ (2.9)

for all f in D, where D is given by (1.6) and Sj = RT
j , for each j ∈ Z. Then the system

FRj

A (Ψ), given by (2.6), is a Parseval frame for L2(Rn) if and only if

L∑

`=1

∑

j∈Pα

ψ̂`(B−jξ) ψ̂`(B−j(ξ + α)) = δα,0 for a.e. ξ ∈ Rn, (2.10)

and all α ∈ Λ =
⋃

j∈ZBj Sj(Zn), where, for α ∈ Λ, Pα = {j ∈ Z : S−1
j B−jα ∈ Zn}.

Remark. At first sight it is not clear what is the dependence on the oversampling

matrices {Rj}j∈Z in the characterization equation (2.10). We point out, however, that the

dependence on the matrices {Rj}j∈Z is actually “hidden” in the set Pα, which is defined in

terms of the matrices {Sj}j∈Z.

Proof of Proposition 2.2. Let P, {gp}p∈P and {Cp}p∈P be defined by

P =
{
(j, `) : j ∈ Z, and ` = 1, . . . , L

}
,

gp(x) = g(j,`)(x) = | detRj |−1/2 Dj
A ψ`(x), Cp = C(j,`) = A−j R−1

j . (2.11)
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With these assumptions, it follows that

TCp k gp = | detRj |−1/2 TA−j R−1
j k Dj

A ψ` = | detRj |−1/2 Dj
A TR−1

j k ψ`,

and so the collection {TCp k gp : k ∈ Zn, p ∈ P} is the scale-dependent oversampled affine

system FRj

A (Ψ). We can now apply Theorem 1.1.

Under these assumptions for P, gp and Cp, the L.I.C. (1.7) gives (2.9),

Λ =
⋃

p∈P
CI

p Zn =
⋃

j∈Z
Bj Sj Zn,

and, for α ∈ Λ, Pα = {p ∈ P : CT
p α ∈ Zn} = {j ∈ Z : S−1

j B−j α ∈ Zn}. By direct

computation, from (1.8), we obtain:

∑

p∈Pα

1
| detCp| ĝp(ξ) ĝp(ξ + α) =

=
L∑

`=1

∑

j∈Pα

| detA|j | detRj | | detRj |−1 |det A|−j ψ̂(B−jξ) ψ̂(B−j(ξ + α))

=
L∑

`=1

∑

j∈Pα

ψ̂(B−jξ) ψ̂(B−j(ξ + α)).

which gives (2.10). 2

While the “integrability” condition (2.9) is not guaranteed to hold in general, there are

some important special choices of the oversampling matrices {Rj}j∈Z, which we will discuss

in the following, for which we can show that (2.9) is satisfied. In all these cases, under the

assumption that the dilation matrix A is such that B = AT is expanding on a subspace, we

will be able to remove condition (2.9) from the hypothesis of Proposition 2.2. Before stating

this result, we need to recall the following fact from [11, Prop. 5.6].

Proposition 2.3. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the matrix

B = AT is expanding on a subspace F of Rn. If

L∑

`=1

∑

j∈Z
|ψ̂`(B−jξ)|2 ≤ β for a.e. ξ ∈ Rn, (2.12)

where β > 0, then

L(f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj m)|2 |ψ̂`(B−jξ)|2 dξ < ∞ (2.13)

for all f ∈ DE, where DE is given by (1.6) and E is the complementary subspace to F .
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Remark. Inequality (2.13) is exactly the L.I.C., given by (1.7), corresponding to the

affine systems FA(Ψ). Thus, Proposition 2.3 shows that (2.12) implies the L.I.C. for FA(Ψ),

when B = AT is expanding on a subspace.

We thus obtain the following:

Theorem 2.4. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the matrix

B = AT is expanding on a subspace F of Rn. Let {Rj}j∈Z ∈ GLn(R) be in one of the

following three classes:

(I) Rj = R ∈ GLn(Z) for each j ∈ Z (observe: GLn(Z) denotes the subset of GLn(R) of

matrices with integer entries).

(II) Rj satisfies Rj Aj ∈ GLn(Z) for each j ∈ Z.

(III) Rj =





R A−j+j0 j < j0

R, j ≥ j0,
where j0 ∈ Z is fixed and R ∈ GLn(Z).

Then the system F{Rj}
A (Ψ), given by (2.6), is a Parseval frame for L2(Rn) if and only if

L∑

`=1

∑

j∈Pα

ψ̂`(B−jξ) ψ̂`(B−j(ξ + α)) = δα,0 for a.e. ξ ∈ Rn, (2.14)

and all α ∈ Λ =
⋃

j∈ZBj Sj Zn, where Sj = RT
j , and, for α ∈ Λ, Pα = {j ∈ Z : α ∈

Bj Sj Zn}.

Proof. In order to prove the Theorem, we only have to show that condition (2.9) is

satisfied under the assumption that the matrices {Rj}j∈Z are in one of the three classes

described above. Then the proof follows immediately from Proposition 2.2. In the following,

let D = DE , where D is given by (1.6) and E ⊂ Rn is the subspace complementary to F .

Class (I). Let Rj = R, for each j ∈ Z. If FR
A (Ψ) is a PF, then, in particular, FR

A (Ψ) is a

Bessel family with Bessel constant β = 1. By applying Proposition 1.2 to the system FR
A (Ψ)

(the elements P, gp and Cp are given by equation (2.11), with Rj = R for each j ∈ Z),

we deduce inequality (2.12). This inequality also holds if we assume (2.14) (take α = 0).

Therefore, we can apply Proposition 2.3, which gives inequality (2.13). As a consequence, we

have

L(f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj S m)|2 |ψ̂`(B−jξ)|2 dξ

≤
L∑

`=1

∑

j∈Z

∑

k∈Zn

∫

supp f̂
|f̂(ξ + Bj k)|2 |ψ̂`(B−jξ)|2 dξ < ∞,
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for all f ∈ D, since S = RT ∈ GLn(Z). This shows that condition (2.9) is satisfied in this

case.

Class (II). Since Rj Aj Zn ⊆ Zn, for each j ∈ Z, then (by transposing) Bj Sj Zn ⊆ Zn for

each j ∈ Z. Thus, we have

L(f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj Sj m)|2 |ψ̂`(B−jξ)|2 dξ

≤
L∑

`=1

∑

j∈Z

∑

k∈Zn

∫

supp f̂
|f̂(ξ + k)|2 |ψ̂`(B−jξ)|2 dξ (2.15)

for all f ∈ D. If F{Rj}
A (Ψ) is a PF, then, applying Proposition 1.2 to the system F{Rj}

A (Ψ) as

was done for class (I), we obtain inequality (2.12) with β = 1. This inequality also holds if

we assume (2.14) (take α = 0). Furthermore, since f̂ is compactly supported, there are only

finitely many k ∈ Zn (say, M of then) such that f̂(ξ + k) is contained in supp f̂ . Using this

fact and (2.12), from (2.15) we obtain:

L(f) ≤
∑

k∈Zn

∫

supp f̂
|f̂(ξ + k)|2 dξ ≤ M |supp f̂ | ‖f̂‖2

∞ < ∞

for all f ∈ D, which shows that condition (2.9) is satisfied also in this case.

Class (III). Let S = RT . For every f ∈ D, we have

L(f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj Sj m)|2 |ψ̂`(B−jξ)|2 dξ

=
L∑

`=1

∑

j<j0

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj0 S m)|2 |ψ̂`(B−jξ)|2 dξ+

+
L∑

`=1

∑

j≥j0

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj S m)|2 |ψ̂`(B−jξ)|2 dξ

= L1(f) + L2(f),

where L1(f) and L2(f) denote the sums over j < j0 and over j ≥ j0, respectively. If F{Rj}
A (Ψ)

is a PF, then, applying Proposition 1.2 to the system F{Rj}
A (Ψ) as was done for class (I),

we obtain inequality (2.12) with β = 1. This inequality also holds if we assume (2.14) (take

α = 0), and so Proposition 2.3 applies. Consider first L1(f). Since f ∈ D, there exists an

R > 0 such that supp f̂ is contained in {ξ ∈ Rn : |ξ| < R}. In order to have L1(f) 6= 0, we

must have |ξ| < R and |ξ + Bj0 S m| < R. Therefore we must have |Bj0 S m| < 2R, which

implies |m| < 2 ‖(Bj0S)−1‖R. This shows that the sum with respect to m must be finite,
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where the number of m ∈ Zn is at most M = 2n ‖(Bj0S)−1‖n Rn. Thus, using (2.12) we have

L1(f) ≤
L∑

`=1

∑

j≥Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj0 S m)|2 |ψ̂`(B−jξ)|2 dξ ≤ M |supp f̂ | ‖f̂‖2

∞.

Finally consider L2(f). Since S ∈ GLn(Z), then SZn ⊆ Zn and so

L2(f) ≤
L∑

`=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj m)|2 |ψ̂`(B−jξ)|2 dξ,

which is finite by Proposition 2.3. Thus, L(f) is finite and condition (2.9) is satisfied. 2

The following application of Theorem 2.4 shows that if the matrices {Rj}j∈Z are in the

class (I), then the characterization equations of the oversampled affine systems FR
A (Ψ) can

be written in a simpler form, involving only the lattice points m ∈ Zn, instead of all the

elements α ∈ Λ.

Theorem 2.5. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), R ∈ GLn(Z) and A ∈ GLn(R) be such that

the matrix B = AT is expanding on a subspace F of Rn. Then the system

FR
A (Ψ) = {|det R|−1/2 Dj

A TR−1k ψ` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L}. (2.16)

is a Parseval frame for L2(Rn) if and only if

L∑

`=1

∑

j∈PSm

ψ̂`(B−jξ) ψ̂`(B−j(ξ + Sm)) = δm,0 for a.e. ξ ∈ Rn, (2.17)

and all m ∈ Zn, where PSm = {j ∈ Z : S m ∈ Bj S Zn}.

Proof. We apply Theorem 2.4 and adopt the same notation (observe that we need the

assumption R ∈ GLn(Z) in order to apply this theorem). For any α ∈ Λ =
⋃

j∈ZBj S(Zn),

we can write α = Bj0 S m0 for some j0 ∈ Z and some m0 ∈ Zn. By making the change of

variables ξ = Bj0η in the left hand side of (2.14), we obtain
∑

j∈Pα

ψ̂`(B−jξ) ψ̂`(B−j(ξ + α)) =
∑

j∈P
Bj0Sm0

ψ̂`(B−j+j0η) ψ̂`(B−j+j0(η + S m0)) = δm,0,

(2.18)

for a.e. ξ ∈ Rn. Let k = j − j0. Since B−(k+j0)(Bj0 S m0) = B−k S m0, it follows that

j = k + j0 ∈ PBj0Sm0
if and only if k ∈ PSm0 . Using the change of indices j = k + j0

in (2.18), we obtain:
∑

j∈Pα

ψ̂`(B−jξ) ψ̂`(B−j(ξ + α)) =
∑

k∈PSm0

ψ̂`(B−kη) ψ̂`(B−k(η + S m0)), (2.19)

where PSm0 = {k ∈ Z : S−1 B−k S m0 ∈ Zn}. We thus obtain equation (2.17). 2
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2.3 Oversampling theorems for frames

In the previous section, we have obtained the characterization equations of the oversampled

affine systems F{Rj}
A (Ψ) which form Parseval frames. By comparing these equations with

the characterization equations of the corresponding affine systems FA(Ψ), one can deduce

conditions on the matrices {Rj}j∈Z such that if FA(Ψ) is a PF than also F{Rj}
A (Ψ) is a PF.

In this section we show that, using techniques from the unified characterization approach

that we have described in the previous section, it is possible to consider not only Parseval

frames but even more general frames. In order to illustrate the method that we shall use in

dimension one, let ψj,k = Dj
a Tk ψ, and ψ

rj

j,k = r
−1/2
j Dj

a Tr−1
j k ψ, where ψ ∈ L2(R), a, rj ∈ R,

j, k ∈ Z, and define the functionals

N2(f) =
∑

j,k∈Z
|〈f, ψj,k〉|2, N2

{rj}(f) =
∑

j,k∈Z
|〈f, ψ

rj

j,k〉|2.

Our method consists in expressing the functional N2
{rj}(f) (corresponding to the oversampled

affine system) as an average of N2(Tv f) (corresponding to the affine system) over a countable

set of translates v ∈ V (V depends on the oversampling sequence {rj}). This idea extends

and generalizes similar ideas that appeared in [21], [5] and [19].

We will consider oversampling matrices in the three classes defined in Theorem 2.4, and

show that, under certain conditions on the oversampling matrices {Rj}j∈Z, if the affine system

FA(Ψ) is a frame, then the corresponding oversampled system F{Rj}
A (Ψ) is also a frame with

the same frame bounds.

2.3.1 Class (I).

The first case we examine involves the matrices {Rj} in the class (I), given by Theorem 2.4.

This gives us the classical notion of oversampling which has been extensively studied in the

literature (cf. [4], [20], [3], [19], [15]). The main result that we obtain is the following

generalization of the so-called “Second Oversampling” theorem, which holds for dilation

matrices that are not only expanding, but expanding on a subspace.

Theorem 2.6. Let S = RT ∈ GLn(Z) and S−1 B S ∈ GLn(Z), where the nonsingular matrix

B = AT ∈ GLn(Z) is expanding on a subspace F of Rn. Assume that B Zn ∩S Zn = B S Zn.

If the affine system FA(Ψ) = {Dj
A Tk ψ` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L} is a frame, then the

system FR
A (Ψ), given by (2.16), is also a frame with the same frame bounds.

Remark. (1) This theorem extends similar results in Chui-Shi [4], Ron-Shen [21], Chui-

Czaja-Maggioni-Weiss [3], Laugesen [19] and Johnson [15], where only expanding matrices

are considered. The proof that we will present uses several ideas from a theorem in [19].
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(2) In dimension n = 1, with A = B = a ∈ Z and R = S = r ∈ Z, the hypothesis

B Zn ∩ S Zn = B S Zn gives the condition ma + nr = 1 for m,n ∈ Z; that is, a and r

are relatively prime. Regarding this hypothesis, notice that we only need the assumption

B Zn ∩ S Zn ⊆ B S Zn in Theorem 2.6 since the converse inclusion is trivial. Also observe

that, under the assumption that S, S−1 B S ∈ GLn(Z), this hypothesis can be replaced by

A−1 Zn
⋂

R−1Zn ⊆ Zn (see [15, Sec. 5] for this and more comments about the notion of

relative primality).

(3) In dimension n = 1, Theorem 2.6 requires A = a ∈ Z. This assumption is not

necessary in order to have oversampling that is preserving the frame bounds. We will later

show (Theorem 2.12) a result similar to Theorem 2.6 for dilations a ∈ Q and more general

matrices in GLn(Q).

In order to prove Theorem 2.6, some constructions are needed. Some of these ideas will

also be used in the analysis of oversampling matrices in the classes (II) and (III) which will be

discussed in Sections 2.3.2 and 2.3.3. We will use is the following result from [11, Prop. 2.4]:

Proposition 2.7. Let P be a countable indexing set, {gp}p∈P a collection of functions in

L2(Rn), {Cp}p∈P ⊂ GLn(R), and let CI
p = (CT

p )−1. Assume that the L.I.C. given by (1.7)

holds for all f ∈ D, where D is given by (1.6). Then, for each f ∈ D, the function

w(x) =
∑

p∈P

∑

k∈Zn

|〈Txf, TCpk gp〉|2

is a continuous function that coincides pointwise with the absolutely convergent series
∑

p∈P

∑

m∈Zn

ŵp(m) e2πiCI
pm·x ,

where,

ŵp(m) =
1

| detCp|
∫

Rn

f̂(ξ) f̂(ξ + CI
pm) ĝp(ξ) ĝp(ξ + CI

pm) dξ, (2.20)

and the integral in (2.20) converges absolutely.

The application of Proposition 2.7 to the affine systems FA(Ψ) gives the following result:

Proposition 2.8. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the matrix

B = AT is expanding on a subspace F of Rn. If the system FA(Ψ), given by (1.10), is a

Bessel system for L2(Rn) then, for each f ∈ D = DE, where DE is given by (1.6) and E is

the complementary subspace to F , the function

w(x) = N2(Tx f) =
L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈Txf,Dj
A Tk ψ`〉|2 (2.21)
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is a continuous function that coincides pointwise with the absolutely convergent series
L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(m) e2πiBjm·x ,

where the function ŵj,` is defined, for any µ ∈ Rn, by

ŵj,`(µ) =
∫

Rn

f̂(ξ) f̂(ξ + Bjµ) ψ̂`(B−jξ) ψ̂`(B−j(ξ + Bjµ)) dξ, (2.22)

and the integral in (2.22) converges absolutely.

Proof. By choosing P =
{
(j, `) : j ∈ Z, ` = 1, 2, . . . , L

}
, gp = g(j,`) = Dj

A ψ`, and

Cp = C(j,`) = A−j , for all ` = 1, . . . , L, then the collection {TCp k gp}p∈P is the affine system

FA(Ψ). We will now apply Proposition 2.7. Under the assumptions that we made for P,

gp and Cp, equation (2.20) gives (2.22), provided (1.7) is satisfied. Therefore, in order to

complete the proof, we only have to show that the L.I.C. (1.7) holds. Arguing as in the proof

of Theorem 2.4, we observe that, since FA(Ψ) is a Bessel system, then, by Proposition 1.2,

we have inequality (2.12). We can now apply Proposition 2.3 which gives (2.13). As observed

in the Remark following Proposition 2.3, (2.13) is exactly inequality (1.7), for this choice of

P, gp and Cp. 2

Remark. Proposition 2.8 can be easily generalized to the case where the sum over

j ∈ Z, in (2.21), is replaced by a sum over a smaller set j ∈ J ⊆ Z. We will also use this

generalization of Proposition 2.8 in the following.

The application of Proposition 2.7 to the oversampled affine system FRj

A (Ψ), with over-

sampling matrices in the classes given by Theorem 2.4, gives the following result.

Proposition 2.9. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), A ∈ GLn(R) be such that the matrix

B = AT is expanding on a subspace F of Rn, and suppose that
L∑

`=1

∑

j∈Z
|ψ̂`(B−jξ)|2 ≤ β for a.e. ξ ∈ Rn, (2.23)

where β > 0. If {Rj}j∈Z is in one of the three classes given in Theorem 2.4, then, for each

f ∈ D = DE, where DE is given by (1.6) and E is the complementary space to F , the function

w(x) = N2
{Rj}(Tx f) =

L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈Txf, | detRj |−1/2 Dj
A TR−1

j k ψ`〉|2 (2.24)

is continuous and coincides pointwise with the absolutely convergent series
L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(Sjm) e2πiBjSjm·x ,

where Sj = RT
j and ŵj,` is given by (2.22).
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Proof. If we choose P, gp and Cp as in (2.11), then the collection {TCp k gp}p∈P is the

system FRj

A (Ψ), and, thus, we can apply Proposition 2.7. Under the assumptions that we

made for P, gp and Cp, equation (2.20) gives the coefficients ŵj,`(Sjm), where ŵj,` is given

by (2.22), provided (1.7) holds. Hence, in order to complete the proof, we only have to show

that:

L(f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj Sj m)|2 |ψ̂`(B−jξ)|2 dξ (2.25)

is finite for each f ∈ D (in fact, this is exactly condition (1.7) in this particular case). Observe

that, since (2.23) holds and B is expanding on a subspace, we can apply Proposition 2.3 which

gives (2.13). We can now examine the expression (2.25) corresponding to the different classes

of matrices {Rj}j∈Z.
Class (I). Since Sj = S ∈ GLn(Z), for each j ∈ Z, arguing as in the proof of Theorem 2.4,

for all f ∈ D we have:

L(f) ≤
L∑

`=1

∑

j∈Z

∑

k∈Zn

∫

supp f̂
|f̂(ξ + Bj k)|2 |ψ̂`(B−jξ)|2 dξ < ∞.

Class (II). Since Rj Aj Zn ⊆ Zn, then BjSj Zn ⊆ Zn for each j ∈ Z. Using this observation

and the fact that f̂ is compactly supported, then arguing as in proof of Theorem 2.4, we have:

L(f) ≤
L∑

`=1

∑

j∈Z

∑

k∈Zn

∫

supp f̂
|f̂(ξ + k)|2 |ψ̂`(B−jξ)|2 dξ

≤ β
∑

k∈Zn

∫

supp f̂
|f̂(ξ + k)|2 dξ ≤ β M |supp f̂ | ‖f̂‖2

∞ < ∞,

for some K > 0 and for all f ∈ D.

Class (III). In this case we have

L(f) =
L∑

`=1

∑

j<j0

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj0 S m)|2 |ψ̂`(B−jξ)|2 dξ+

+
L∑

`=1

∑

j≥j0

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj S m)|2 |ψ̂`(B−jξ)|2 dξ.

Also in this case, using the argument in the proof of Theorem 2.4, we have that the two sums

are finite for all f ∈ D. 2

The following proposition extends a result of R. Laugesen [19] to the case of dilation

matrices B = AT that are expanding on a subspace.
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Proposition 2.10. Let S = RT ∈ GLn(Z) and S−1 B S ∈ GLn(Z), where B = AT ∈ GLn(Z)

is expanding on a subspace F of Rn. Assume that B Zn∩S Zn = B S Zn. Let V be a complete

set of distinct representatives of R−1Zn/Zn. If FA(Ψ) is a Bessel system, then, for each

f ∈ DE, where DE is given by (1.6) and E is the complementary space to F , we have

N2
R(f) =

L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈f, | detR|−1/2 Dj
A TR−1 k ψ`〉|2 = lim

J→∞
1

|det R|
∑

v∈V

N2(TAJv f),

where J ∈ Z and N2(TAJv f) is given by (2.21), with x = AJv.

Proof. Since FA(Ψ) is a Bessel system, we can apply Proposition 2.8. Thus, for each

f ∈ DE and any v ∈ V we have

N2(TAJv f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(m) e2πiBj+Jm·v,

where ŵj,`(m) is given by (2.22), with absolute convergence of the sum.

Recall the following property of finite groups (cf. [13, Lemma 23.19]):

Lemma 2.11. Let M ∈ GLn(Z) and q = |det M |. Choose a complete set {dr}q−1
r=0 of distinct

representatives of the quotient group M−1 Zn/Zn, that is, M−1Zn =
⋃q−1

r=0(dr + Zn). Then

1
q

q−1∑

r=0

e2πik·dr =





1 if k ∈ MTZn

0 if k ∈ Zn \MTZn.

Using Lemma 2.11 (with M = R) we are now going to show that if j + J ≥ 0 then:

1
| detR|

∑

v∈V

e2πiBj+Jm·v =





1 if m ∈ S Zn

0 if m ∈ Zn \ S Zn.
(2.26)

In fact, if m ∈ SZn, then k = Bj+Jm = Bj+JSl, for some l ∈ Zn. Thus S−1k =

(S−1BS)j+J l ∈ Zn (since S−1BS ∈ GLn(Z) and j +J ≥ 0). On the other hand, if m /∈ SZn,

then Bm /∈ SZn (since B Zn ∩ S Zn ⊂ B S Zn) and, thus, by induction, k = Bj+Jm /∈ SZn.

This proves (2.26). Using (2.26), for each f ∈ DE we have:

1
|det R|

∑

v∈V

N2(TAJv f) =

=
1

|det R|
∑

v∈V

L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(m) e2πiBj+Jm·v

=
L∑

`=1

∑

j≥−J

∑

m∈Zn

ŵj,`(m)
1

|det R|
∑

v∈V

e2πiBj+Jm·v +
1

| det R|
∑

v∈V

L∑

`=1

∑

j<−J

∑

m∈Zn

ŵj,`(m) e2πiBj+Jm·v
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=
L∑

`=1

∑

j≥−J

∑

m∈Zn

ŵj,`(Sm) +
1

| detR|
∑

v∈V

L∑

`=1

∑

j<−J

∑

m∈Zn

ŵj,`(m) e2πiBj+Jm·v. (2.27)

Observe that, by Proposition 1.2, equation (2.23) is satisfied and, thus, we can apply Propo-

sition 2.9, with {Rj} in class (I), which gives:

N2
R(f) =

L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(Sm), (2.28)

with absolute convergence of the series. Since
∑L

`=1

∑
j∈Z

∑
m∈Zn |ŵj,`(m)| < ∞, then the

second sum in (2.27) goes to zero as J →∞ and thus, using (2.28), for each f ∈ DE , we have

lim
J→∞

1
| det R|

∑

v∈V

N2(TAJv f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(Sm) = N2
R(f). 2

Proof of Theorem 2.6. It suffices to prove the theorem for f ∈ DE , where E is the

complementary space to F , since DE is dense in L2(Rn).

Since FA(Ψ) is a frame, there are 0 < α ≤ β < ∞ such that

α ‖f‖2 ≤
L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈f,Dj
A Tk ψ`〉|2 = N2(f) ≤ β ‖f‖2,

for all f ∈ L2(Rn), and thus, since ‖Txf‖ = ‖f‖ for each x ∈ Rn, this implies that

α ‖f‖2 ≤
L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈TAJv f,Dj
A Tk ψ`〉|2 = N2(TAJv f) ≤ β ‖f‖2, (2.29)

for all J ∈ Z, v ∈ Rn. Let v ∈ V , where V is a complete set of distinct representative of the

quotient group R−1Zn/Zn, and apply the averaging operator limJ→∞ 1
| det R|

∑
v∈V to (2.29).

Thus, using Proposition 2.10, for each f ∈ DE we obtain:

α ‖f‖2 ≤ N2
R(f) ≤ β ‖f‖2.

These inequalities extend to all f ∈ L2(Rn) by a standard density argument. 2

As we mentioned in the Remarks following Theorem 2.6, we can deduce a result similar

to Theorem 2.6 for some matrices that do not satisfy the condition S−1BS ∈ GLn(Z). The

following result, which is not a consequence of Theorem 2.6, allows us to use dilation matrices

A ∈ GLn(Q). For example, in the one-dimensional case, we can consider dilations a ∈ Q (this

case was not allowed in Theorem 2.6, where a had to be integer-valued). As in Theorem 2.6,

also in this case the idea of the proof consists in expressing N2
{Rj}(f) as an appropriate

average over N2(Tv f), where v ranges over a finite set.
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Theorem 2.12. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), R = ST ∈ GLn(Z) and assume that

A = P Q−1 ∈ GLn(Q), where P and Q are commuting matrices in GLn(Z), and B = AT is

expanding on a subspace F ⊆ Rn. For M = P or M = Q, assume that R M R−1 ∈ GLn(Z)

and MT Zn
⋂

S Zn = MT S Zn. If the affine system FA(Ψ), given by (1.10), is a frame for

L2(Rn), then the system FR
A (Ψ), given by (2.16), is also a frame for L2(Rn), and the frame

bounds are the same.

Proof. It suffices to prove the theorem for f in a dense subspace of L2(R). By Proposi-

tion 2.8, for each f ∈ D, where D is given by by (1.6) with E = {0}, and for any x ∈ R we

have

N2(Tx f) =
L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈Tx f, Dj
A Tk ψ`〉 =

L∑

`=1

∑

j∈Z

∑

m∈Z
ŵj,`(m) e2πiBjm·x, (2.30)

where ŵj,`(m) is given by (2.22), and the sum converges absolutely.

Let V be a complete set of distinct representatives of the quotient group R−1Z/Z (the

cardinality of V is | detR|). Using Lemma 2.11 with M = R, we have

1
| detR|

∑

v∈V

e2πik·v =





1 if k ∈ S Zn

0 if k ∈ Zn \ S Zn.
(2.31)

Suppose j1, j2 ∈ Z, j1, j2 ≥ 0. We claim that (2.31) implies the following relation:

1
| detR|

∑

v∈V

e2πi(P T )j1 (QT )j2m·v =





1 if m ∈ S Zn

0 if m ∈ Zn \ S Zn.
(2.32)

In order to prove the claim, observe first that the hypothesis MT Zn
⋂

S Zn = MT S Zn is

equivalent to

Zn
⋂

(MT )−1 S Zn = S Zn, (2.33)

and, under the assumption that S, M ∈ GLn(Z), we will show that (2.33) implies (and, thus,

is equivalent to)

Zn
⋂

(MT )−j S Zn = S Zn, for each j ≥ 0. (2.34)

In fact, if (2.33) holds, then, for any µ ∈ Zn, we have that µ ∈ S Zn iff MT µ ∈ S Zn. This is

equivalent to saying that, for any µ ∈ Zn, we have µ ∈ S Zn iff (MT )2 µ ∈ MT S Zn ∈ S Zn.

And, similarly, by induction, this is equivalent to saying that, for any µ ∈ Zn and any j ≥ 0,

we have µ ∈ S Zn iff (MT )j µ ∈ (MT )j S Zn ⊂ S Zn. The last statement is equivalent to the

relation Zn
⋂

(MT )−j S Zn = S Zn, for any j ≥ 0, and, thus, (2.33) implies (2.34).

For m ∈ Zn, write l = (QT )j2m and k = (P T )j1 l. It is clear that k, l ∈ Zn. We have

that k = (P T )j1 l ∈ S Zn iff l = (P T )−j1k ∈ (P T )−j1S Zn. Thus, l ∈ Zn
⋂

(P T )−j1S Zn, and,
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using (2.34) with M = P , this is equivalent to l ∈ S Zn. Next, observe that m = (QT )−j2 l ∈
(QT )−j2 S Zn

⋂
Zn. Thus, using (2.34) with M = Q, this is equivalent to m ∈ S Zn. This

completes the proof of the claim.

Fix J ∈ Z, J > 0. For any j ∈ Z such that |j| ≤ J , let j1 = J + j, j2 = J − j (observe

that j1, j2 ≥ 0). Since P T and QT commute, then (P T QT )JBj = (P T )j1(QT )j2 . Applying

this observation and equation (2.32) into (2.30), we deduce that, for any f ∈ D,

1
| detR|

∑

v∈V

N2(T(P Q)Jv f) =
1

|det R|
∑

v∈V

L∑

`=1

∑

j∈Z

∑

m∈Z
ŵj,`(m) e2πiBjm·(P Q)Jv

=
1

|det R|
∑

v∈V

L∑

`=1

∑

j∈Z

∑

m∈Z
ŵj,`(m) e2πi(P T )j1 (QT )j2m·v

=
1

|det R|
∑

v∈V

L∑

`=1

∑

|j|≤J

∑

m∈Z
ŵj,`(m) e2πi(P T )j1(QT )j2m·v

+
1

| det R|
∑

v∈V

L∑

`=1

∑

|j|>J

∑

m∈Z
ŵj,`(m) e2πi(P T )j1 (QT )j2m·v

=
L∑

`=1

∑

|j|≤J

∑

m∈Z
ŵj,`(S m)

+
1

| det R|
∑

v∈V

L∑

`=1

∑

|j|>J

∑

m∈Z
ŵj,`(m) e2πi(P T )j1 (QT )j2m·v. (2.35)

Since the series (2.30) converges absolutely, then the sum in (2.35) corresponding to |j| > J

goes to zero when J →∞. Thus,

lim
J→∞

1
|det R|

∑

v∈V

N2(T(P Q)Jv f) =
L∑

`=1

∑

j∈Z

∑

m∈Z
ŵj,`(S m). (2.36)

Finally, since FA(Ψ) is a Bessel system, by Proposition 1.2, equation (2.23) is satisfied and,

thus, we can apply Proposition 2.9, which gives:

N2
R(f) =

L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈f, | detR|−1/2 Dj
A TR−1 k ψ`〉|2 =

L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(S m), (2.37)

where the sum converges absolutely. Comparing (2.36) and (2.37), we obtain

lim
J→∞

1
|det R|

∑

v∈V

N2(T(P Q)Jv f) = N2
R(f). (2.38)

The proof now follows from (2.38) as in the last step of the proof of Theorem 2.6. 2
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2.3.2 Class (III).

We will now examine the case of oversampling matrices {Rj} in the class (III), defined in

Theorem 2.4. We obtain the following result.

Theorem 2.13. Let A, S and W = S−1 B S be in GLn(Z), where S = RT and the matrix

B = AT is expanding on a subspace F of Rn. Assume that B Zn ∩ S Zn = B S Zn. If the

affine systems FA(Ψ), given by (1.10), is a frame, then the system F{Rj}
A (Ψ), given by (2.6),

is also a frame with the same frame bounds, where j0 ∈ Z and

Rj =





R A−j+j0 j < j0

R, j ≥ j0.
(2.39)

Remark. In the special case where R = I in (2.39), the oversampled affine systems

F{Rj}
A (Ψ) are the n-dimensional extensions of the quasi affine systems that we have described

at the beginning of Section 2. In this case, the systems FA(Ψ) and F{Rj}
A (Ψ) are equivalent

in the sense that one is a frame if and only if the other is a frame, and the frame bounds are

the same. This situation will be examined later in Theorem 2.16.

The main tool to prove this theorem is the following result. As in Theorem 2.6, we will

write the functional N2
{Rj}(f) as an appropriate average over N2(Tv f), where v ranges over

a finite set.

Proposition 2.14. Let B = AT ∈ GLn(Z), VK be a complete set of distinct representatives

of the quotient group Zn/AKZn, K ≥ 0, and the oversampling matrices {R̃j} be given by

R̃j =





A−j j < 0

I, j ≥ 0.
(2.40)

If FA(Ψ), given by (1.10), is a Bessel system and B is expanding on a subspace F ⊆ Rn,

then, for each f ∈ DE, we have:

N2
{R̃j}(f) = lim

K→∞
1

| det A|K
∑

v∈VK

N2(Tv f), (2.41)

where N2
{R̃j}(f) is given by (2.24), N2(f) is given by (2.21), DE is given by (1.6) and E is

the complementary space to F .

Proof. Since FA(Ψ) is a Bessel system, we can apply Proposition 2.8, which gives that,

for each f ∈ DE and any x ∈ Rn:

N2(Tx f) =
L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(m) e2πiBjm·x, (2.42)
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where ŵj,`(m) is given by (2.22) and the sum converges absolutely. For K > 0, write

1
|det A|K

∑

v∈VK

N2(Tv f) =
1

| det A|K
∑

v∈VK

L∑

`=1

∑

m∈Zn

∑

j<−K

ŵj,`(m) e2πiBjm·v

+
1

| detA|K
∑

v∈VK

L∑

`=1

∑

m∈Zn

∑

−K≤j<0

ŵj,`(m) e2πiBjm·v

+
1

| detA|K
∑

v∈VK

L∑

`=1

∑

m∈Zn

∑

j≥0

ŵj,`(m) e2πiBjm·v

= I1(f ;K) + I2(f ; K) + I3(f), (2.43)

where I1 is the sum for j < −K, I2 is the sum for −K ≤ j < 0, and I3 is the sum for j ≥ 0.

If j ≥ 0, then Bjm·v ∈ Zn whenever m ∈ Zn and v ∈ VK . Thus, under these assumptions,

e2πiBjm·v = 1 and, consequently, since VK has cardinality | detA|K , we have

I3(f) =
L∑

`=1

∑

m∈Zn

∑

j≥0

ŵj,`(m). (2.44)

For j < 0, let Vj be a complete set of distinct representatives of the group Zn/A−jZn (Vj

has cardinality |det A|−j). We will need the following variant of Lemma 2.11 (which is easily

obtained by setting δr = Mdr in Lemma 2.11):

Lemma 2.15. Let M ∈ GLn(Z) and q = | detM |. Choose a complete set {δr}q−1
r=0 of distinct

representatives of the quotient group Zn/MZn, that is, Zn =
⋃q−1

r=0(δr + M Zn). Then

1
q

q−1∑

r=0

e2πiu·δr =





1 if u ∈ Zn

0 if u ∈ (MT )−1Zn \ Zn.

Using Lemma 2.15, with M = A−j and u = Bj m, we have

1
| detA|−j

∑

v∈Vj

e2πiBjm·v =





1 if m ∈ B−j Zn

0 if m ∈ Zn \B−j Zn.
(2.45)

We claim that for each −K ≤ j < 0 we have:

1
| det A|K

∑

v∈VK

e2πiBjm·v =





1 if m ∈ B−jZn

0 if m ∈ Zn \B−jZn.
(2.46)

Indeed, by the Third Homomorphism Theorem (cf., for example, [10]), for any −K ≤ j < 0,

the quotient group (Zn/AKZn)/(A−jZn/AKZn) is isomorphic to Zn/A−jZn. This implies
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that Zn/AKZn =
⋃

v(j)∈Vj

(
v(j) + A−jZn/AKZn

)
, and, thus, each v(K) ∈ VK is of the

form v(K) = v(j) + A−j v(K + j), where v(K) ∈ VK and v(K + j) ∈ VK+j (notice that

A−jZn/AKZn ' A−j Zn/AK+jZn). Since VK+j has cardinality | detA|K+j , then VK is made

up of as many copies of Vj , and, thus, (2.46) follows from (2.45).

Using (2.46) into the expression for I2, we can write:

I2(f ; K) =
L∑

`=1

∑

m∈Zn

∑

−K≤j<0

ŵj,`(B−jm). (2.47)

Since the sum in (2.42) is absolutely convergent, then

lim
K→∞

I1(f ;K) = 0. (2.48)

Thus, using (2.44), (2.47) and (2.48) into (2.43), we deduce

lim
K→∞

1
| detA|K

∑

v∈VK

N2(Tv f) =
L∑

`=1

∑

m∈Zn

∑

j<0

ŵj,`(B−jm) +
L∑

`=1

∑

m∈Zn

∑

j≥0

ŵj,`(m). (2.49)

Finally, since FA(Ψ) is a Bessel system, by Proposition 1.2, equation (2.23) is satisfied

and we can apply Proposition 2.9, which gives us

N2
{R̃j}(f) =

L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(S̃j m), (2.50)

with absolute convergence of the sum, where

S̃j = R̃T
j =





B−j j < 0

I, j ≥ 0.

The proof is completed by combining (2.49) and (2.50). 2

We can now prove the theorem.

Proof of Theorem 2.13. To prove the theorem, it suffices to consider the case j0 = 0

in (2.39). In fact, consider the system F{Rj}
A (ψ), where {Rj} is given by

Rj =





R A−j j < 0

R, j ≥ 0.
(2.51)

Applying the dilation operator Dj0
A to each element of F{Rj}

A (ψ) and making the change of

variables j′ = j + j0, we obtain:

Dj0
AF

{Rj}
A (ψ) = {|det R|−1/2 | detA|j/2 Dj+j0

A TAjR−1k ψ : j < 0, k ∈ Zn}
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⋃
{|det R|−1/2 Dj+j0

A TR−1k ψ : j ≥ 0, k ∈ Zn}
= {|det R|−1/2 | detA|(j′−j0)/2 Dj′

A TAj′−j0R−1k ψ : j′ < j0, k ∈ Zn}
⋃
{|det R|−1/2 Dj′

A TR−1k ψ : j′ ≥ j0, k ∈ Zn}

= F{R
0
j}

A (ψ), (2.52)

where the oversampling matrices {R0
j} are given by

R0
j =





R A−j+j0 j < j0

R, j ≥ j0.

Since the dilation Dj0
A is a unitary operator, F{Rj}

A (ψ) is a frame if and only F{R
0
j}

A (ψ) is a

frame, and the frame bounds are preserved. Therefore, in the following, we will write Rj as

in (2.51) and R̃j as in (2.40), so that Rj = R R̃j for each j ∈ Z.

Since FA(Ψ) is a Bessel system, by Proposition 1.2, equation (2.23) is satisfied and, thus,

using Proposition 2.9 we obtain that, for each f ∈ DE ,

N2
{R̃j}(Tx f) =

L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(S̃j m) e2πiBj S̃j ·x (2.53)

and

N2
{Rj}(f) =

L∑

`=1

∑

j∈Z

∑

m∈Zn

ŵj,`(Sj m), (2.54)

where N2
{Rj}(Tx f) is given by (2.24), ŵj,`(m) is given by (2.22), Sj = RT

j = R̃T
j RT = S̃j S,

DE is given by (1.6), E is the space complementary to F , and the sums converge absolutely.

We will now use an argument similar to the one in the proof of Proposition 2.10. Let U

be a complete collection of distinct representatives of the quotient group R−1Zn/Zn; U has

cardinality | detR|. Given J ≥ 0, for any f ∈ DE , we write:

1
|det R|

∑

u∈U

N2
{R̃j}(TAJuf) =

1
| detR|

∑

u∈U

L∑

`=1

∑

j<−J

∑

m∈Zn

ŵj,`(S̃j m) e2πiBj+J S̃jm·u

+
1

| detR|
∑

u∈U

L∑

`=1

∑

j≥−J

∑

m∈Zn

ŵj,`(S̃j m) e2πiBj+J S̃jm·u

= I1(J) + I2(J), (2.55)

where I1(J) is the sum when j < −J , I2(J) is the sum when j ≥ −J , and the sums

converge absolutely. Since the sum (2.55) converges absolutely, then limJ→∞ I1(J) = 0.
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Next, using (2.26) for the expression for I2(J) (notice that (2.26) holds due to the hypotheses

that S, S−1BS ∈ GLn(Z) and B Zn ∩ S Zn = B S Zn), we obtain that, for any J ≥ 0,

I2(J) =
L∑

`=1

∑

j≥−J

∑

m∈Zn

ŵj,`(S̃jS m) =
L∑

`=1

∑

j≥−J

∑

m∈Zn

ŵj,`(Sj m). (2.56)

Taking the limit when J →∞ in (2.55) and using (2.54) and (2.56) we have:

lim
J→∞

1
| detR|

∑

u∈U

N2
{R̃j}(TAJu f) = N2

{Rj}(f). (2.57)

Using (2.41) from Proposition 2.14, we finally obtain

N2
{Rj}(f) = lim

J→∞
1

| det R|
∑

u∈U

lim
K→∞

1
| detA|K

∑

v∈VK

N2(Tv+AJu f),

where VK is a complete collection of distinct representatives of the quotient group Zn/AK Zn.

The proof now follows as in the (last step of the) proof of Theorem 2.6. 2

As we mentioned before, if R = I in (2.39), then F{Rj}
A (Ψ) is the quasi affine system

corresponding to FA(Ψ). We will now prove that the affine system is a frame if and only if

the corresponding quasi-affine system is a frame, and the frame bounds are the same. This

equivalence was originally discovered by Ron and Shen [21] for A ∈ GLn(Z) and expanding,

under a decay assumption on ψ that was later removed by Chui, Shi and Stöckler in [5].

Our proof, which is adapted from Laugesen [19, Thm. 7.1], generalizes this result to matrices

which are expanding on a subspace of Rn.

Theorem 2.16. Let A ∈ GLn(Z), where B = AT is expanding on a subspace F of Rn. The

affine systems FA(Ψ) = {Dj
A Tk ψ` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L} is a frame if and only if

F{Rj}
A (Ψ), given by (refoo), is also a frame with the same frame bounds, where j0 ∈ Z and

Rj =





A−j+j0 j < j0

I, j ≥ j0.
(2.58)

Proof. As in the proof of Theorem 2.13, it suffices to prove the case j0 = 0. Also, it

suffices to prove the theorem for f in a dense subspace for L2(Rn); then the extension to

f ∈ L2(Rn) follows from a standard density argument.

By Theorem 2.13, if FA(Ψ) is a frame, then F{Rj}
A (Ψ) is also a frame with the same frame

bounds.

Conversely, assume that F{Rj}
A (Ψ) a frame, let J ∈ Z, J ≥ 0, and, for j < 0, let Vj be

a complete set of distinct representatives of the quotient group AjZn/Zn. Then, using the
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change of indices j → j − J , we have:

L∑

`=1

∑

j<0

∑

k∈Zn

|〈f, | detA|j/2 Dj−J
A TAjk ψ`〉|2 =

=
L∑

`=1

∑

j<0

| detA|j
∑

v∈Vj

∑

k∈Zn

|〈f,Dj−J
A Tv+k ψ`〉|2

=
L∑

`=1

∑

j<0

| detA|j
∑

v∈Vj

∑

k∈Zn

|〈TAJ−jvf, Dj−J
A Tk ψ`〉|2

=
L∑

`=1

∑

j<−J

| detA|j+J
∑

v∈Vj+J

∑

k∈Zn

|〈TA−jvf, Dj
A Tk ψ`〉|2. (2.59)

Since F{Rj}
A (Ψ) is a Bessel system, by Proposition 1.2, equation (2.23) is satisfied and we can

apply Proposition 2.8 (see the Remark following its proof), which gives us, for each f ∈ DE

and any x ∈ Rn:

L∑

`=1

∑

j<−J

∑

k∈Zn

|〈Txf, Dj
A Tk ψ`〉|2 =

L∑

`=1

∑

j<−J

∑

m∈Zn

ŵj,`(m) e2πiBjm·x, (2.60)

with absolute convergence of the sum, where ŵj,`(m) is given by (2.22), DE is given by (1.6)

and E is the complementary space to F . Thus, from (2.59) and (2.60) with x = A−jv we

obtain that, for any f ∈ DE ,

L∑

`=1

∑

j<0

∑

k∈Zn

|〈f, | detA|j/2 Dj−J
A TAjk ψ`〉|2 =

L∑

`=1

∑

j<−J

∑

m∈Zn

ŵj,`(m) |det A|j+J
∑

v∈Vj+J

e2πim·v.

(2.61)

Since the cardinality of Vj+J is exactly |det A|j+J and
∑

m∈Zn ŵj,`(m) converges absolutely,

then the expression (2.61) converges to zero when J approaches infinity. Using (2.61) and

letting N2
{Rj}(f) be the functional given by (2.24), we obtain that, for any f ∈ DE ,

lim
J→∞

N2
{Rj}(D

J
Af) = lim

J→∞

L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈DJ
Af, | detRj |−1/2 Dj

A TR−1
j kψ

`〉|2

= lim
J→∞

( L∑

`=1

∑

j<0

∑

k∈Zn

|〈f, |det A|j/2 Dj−J
A TAjk ψ`〉|2+

+
L∑

`=1

∑

j≥0

∑

k∈Zn

|〈f,Dj−J
A Tk ψ`〉|2

)

= lim
J→∞

L∑

`=1

∑

j≥0

∑

k∈Zn

|〈f, Dj−J
A Tk ψ`〉|2.
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Thus, comparing this quantity with the functional

N2(f) = lim
J→∞

L∑

`=1

∑

j≥−J

∑

k∈Zn

|〈f, Dj
A Tk ψ`〉|2 = lim

J→∞

L∑

`=1

∑

j≥0

∑

k∈Zn

|〈f, Dj−J
A Tk ψ`〉|2,

we have that, for any f ∈ DE ,

N2(f) = lim
J→∞

N2
{Rj}(D

J
Af). (2.62)

Since the ‖DJ
Af‖ = ‖f‖ and F{Rj}

A (Ψ) is a frame, then there are constants 0 < α ≤ β < ∞
such that

α ‖f‖2 ≤ N2
{Rj}(D

J
Af) ≤ β ‖f‖2,

for any f ∈ DE . By (2.62), the same inequalities hold for N2(f). 2

2.3.3 Class (II).

We will now examine the case of oversampling matrices {Rj} in the class (II), defined in

Theorem 2.4. Given a dilation matrix A = BT ∈ GLn(Q), we will consider the matrices

Rj = ST
j satisfying

Sj Zn = B−j Zn
⋂
Zn, j ∈ Z. (2.63)

From (2.63), it is clear that Sj Zn ⊆ B−j Zn, which implies that Rj Aj Zn ⊆ Zn, and, thus,

the matrices Rj given by (2.63) are in class (II). For example, in the one-dimensional case,

with A = a = p
q , p, q ∈ Z, p > q ≥ 2, (p, q) = 1, equation (2.63) becomes Rj Z = Sj Z =

(p
q )−jZ

⋂
Z, and, thus, we have

Rj =





αj p−j , j < 0

βj qj , j ≥ 0,

where αj = ±1 and βj = ±1. Under these assumptions on Rj , the oversampled affine systems

F{Rj}
a (ψ), given by (2.6), are the quasi affine systems discussed in Section 2.1. In higher

dimensions, the oversampled systems F{Rj}
A (Ψ), given by (2.6) with Rj given by (2.63), are

the n-dimensional quasi affine systems for rational dilation matrices introduced by Bownik

[2]. The following theorem shows that, in this case, F{Rj}
A (Ψ) is a PF for L2(Rn) if and only if

the corresponding affine system FA(Ψ) has the same property. This result is a generalization

of a similar result in [2, Thm.3.4], where the dilation matrices are simply expanding and not

expanding on a subspace.
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Theorem 2.17. Let B = AT ∈ GLn(Q) be expanding on a subspace F ⊆ Rn. For every

j ∈ Z, let Rj = ST
j be defined by (2.63). Then the affine system FA(Ψ), given by (1.10),

is a Parseval frame for L2(Rn), if and only if the corresponding oversampled affine system

F{Rj}
A (Ψ), given by (2.6), is a Parseval frame for L2(Rn).

Proof. It is clear that Sj ∈ GLn(Z) for each j ∈ Z. Fix j ∈ Z and let Pj = Bj Sj . Since

Sj Zn = B−j Zn
⋂
Zn,

it follows that

Pj Zn = Zn
⋂

Bj Zn,

which shows that Pj ∈ GLn(Z), for each j ∈ Z, and that P0Zn = Zn. We can apply

Theorem 2.4. With the assumptions that we made for {Sj}, we have

Λ =
⋃

j∈Z
Bj Sj Zn =

⋃

j∈Z
Pj Zn = Zn

(using the observation that Pj Zn ⊆ Zn and P0Zn = Zn). For any m ∈ Λ = Zn we have

P ′m = {j ∈ Z : S−1
j B−j m ∈ Zn} = {j ∈ Z : P−1

j m ∈ Zn}. (2.64)

Thus, from Theorem 2.4 it follows that the system F{Rj}
A (Ψ) is a Parseval frame if and only

if
L∑

`=1

∑

j∈P ′m
ψ̂`(B−jξ) ψ̂`(B−j(ξ + m)) = δm,0 for a.e. ξ ∈ Rn, m ∈ Zn.

In order to complete the proof we need to show that the corresponding affine system FA(Ψ)

has the same characterization equation. To do this, it suffices to show that the set

Pm = {j ∈ Z : B−j m ∈ Zn} = {j ∈ Z : Sj P−1
j m ∈ Zn}, (2.65)

which appears in Theorem 1.4 (in the characterization equation of FA(Ψ)) is equal to P ′m.

Fix m ∈ Zn. Since Sj ∈ GLn(Z), then P−1
j m ∈ Zn implies Sj P−1

j m ∈ Zn, and so P ′m ⊆ Pm.

For the other direction, let N = Sj P−1
j m ∈ Zn. Since

Sj Zn = B−j Zn
⋂
Zn = Sj P−1

j Zn
⋂
Zn,

then N ∈ SjZn, and so P−1
j m = S−1

j N ∈ Zn. This shows that Pm ⊆ P ′m, and thus Pm = P ′m,

for each m ∈ Zn.

Since the sets (2.64) and (2.65) are equal, it follows that the systems F{Rj}
A (Ψ) and FA(Ψ)

have the same characterizing equations, and this completes the proof. 2
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2.3.4 Special case: quasi-affine systems a ∈ Q

Let us consider the one-dimensional case where A = a = p
q , p, q ∈ Z, p > q > 1, (p, q) = 1

and let

Rj =





s p−j , j < 0

s qj , j ≥ 0,
(2.66)

where s ∈ Z. The following theorem, which is not a consequence of Theorem 2.17, shows that,

in this case, if the affine system Fa(ψ) is a frame, then also the corresponding oversampled

system is a frame. As is the case for similar results that we have proved in Sections 2.3.1

and 2.3.2, here, again, the idea of the proof consists in expressing N2
{Rj}(f) as an appropriate

average over N2(Tv f), where v ranges over a finite set.

Theorem 2.18. Let a = p
q , where p, q ∈ Z, p > q ≥ 2, (p, q) = 1, and s ∈ Z, with s ≥ 1,

(s, p) = 1, (s, q) = 1. If the affine system Fa(ψ) = {Dj
a Tk ψ : j ∈ Z, k ∈ Z} is a frame for

L2(R), then F{Rj}
a (ψ) = {R−1/2

j Dj
a TR−1

j k ψ : j ∈ Z, k ∈ Z}, where {Rj} is given by (2.66),

is also a frame for L2(R), and the frame bounds are the same.

Proof. It suffices to prove the theorem for f in a dense subspace of L2(R). By Propo-

sition 2.8, for each f ∈ D, where D is given by (1.6) with E = {0}, and for any x ∈ R we

have

N2(Tx f) =
∑

j,k∈Z
|〈Tx f,Dj

a Tk ψ〉|2 =
∑

j∈Z

∑

m∈Z
ŵj(m) e2πiajm·x, (2.67)

where ŵj(m) is given by (2.22), and the sum converges absolutely.

Denote by Vj , with j ∈ Z, a complete set of distinct representatives of the quotient group

Z/( qj

pj Z ∩ Z). Observe that (q/p)j Z ∩ Z = p−j Z if j < 0 and (q/p)j Z ∩ Z = qj Z if j ≥ 0,

and so the order of the group is |Vj | = p−j if j < 0 and |Vj | = qj if j ≥ 0.

If j ≥ 0, it follows from Lemma 2.15 (it suffices to let u = k/qj in the lemma) that:

1
|Vj |

∑

v(j)∈Vj

e
2πi k

qj ·v(j) =





1 if k ∈ qj Z

0 if k ∈ Z \ qj Z.
(2.68)

This implies that

1
|Vj |

∑

v(j)∈Vj

e
2πim pj

qj ·v(j)
=





1 if m ∈ qj Z

0 if m ∈ Z \ qj Z.
(2.69)

In fact, if m ∈ qjZ, then k = mpj ∈ pjqj Z ⊂ qjZ. On the other hand, if m ∈ Z \ qjZ,

then k = mpj ∈ Z, but k = mpj /∈ qjZ since (p, q) = 1. Now we will argue as in the proof

of Proposition 2.14. By the Third Homomorphism Theorem [10], for any 0 ≤ j ≤ J the
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quotient group (Z/qJ Z)/(qj Z/qJ Z) is isomorphic to Z/qj Z. This implies that Z/qJZ =⋃
v(j)∈Vj

(
v(j)+ qjZ/qJZ

)
, and, thus, each v(J) ∈ VJ is of the form v(J) = v(j)+ qj v(J − j),

where v(j) ∈ Vj and v(J − j) ∈ VJ−j (notice that qj (Z/qJZ ' qj Z/qJ−jZ)). Since VJ−j has

cardinality qJ−j , VJ is made up of as many copies of Vj . Therefore, from (2.69) we have that,

for each 0 ≤ j ≤ J ,

1
|VJ |

∑

v∈VJ

e
2πim pj

qj ·v =





1 if m ∈ qj Z

0 if m ∈ Z \ qj Z.
(2.70)

If j < 0 the same argument carries through with the roles of p and q reversed, and we obtain

that, for each −J ≤ j < 0,

1
|VJ |

∑

v∈VJ

e
2πim pj

qj ·v =





1 if m ∈ p−j Z

0 if m ∈ Z \ p−j Z.
(2.71)

From (2.67), for any J ≥ 0, we have:

1
|VJ |

∑

v∈VJ

N2(Tv f) =
1
|VJ |

∑

v∈VJ

∑

−J≤j<0

∑

m∈Z
ŵj(m) e2πiajm·v

+
1
|VJ |

∑

v∈VJ

∑

0≤j≤J

∑

m∈Z
ŵj(m) e2πiajm·v

+
1
|VJ |

∑

v∈VJ

∑

|j|>J

∑

m∈Z
ŵj(m) e2πiajm·v

= I1(J) + I2(J) + I3(J), (2.72)

where I1(J) is the sum for −J ≤ j < 0, I2(J) is the sum for 0 ≤ j ≤ J and I3(J) is the sum

for |j| > J . Since the sum (2.72) converges absolutely, then

lim
J→∞

I3(J) = 0. (2.73)

By (2.71),

I1(J) =
∑

−J≤j<0

∑

m∈Z
ŵj(p−jm), (2.74)

and by (2.70)

I2(J) =
∑

0≤j≤J

∑

m∈Z
ŵj(qjm). (2.75)

Thus, using (2.73), (2.74), and (2.75) into (2.72), it follows that

lim
J→∞

1
|VJ |

∑

v∈VJ

N2(Tv f) = lim
J→∞

( ∑

−J≤j<0

∑

m∈Z
ŵj(p−jm) +

∑

0≤j≤J

∑

m∈Z
ŵj(qjm)

)
. (2.76)
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Write

R̃j =





p−j , j < 0

qj , j ≥ 0,
(2.77)

so that Rj = s R̃j for all j ∈ Z. By Proposition 2.9 we have that, for any f ∈ D,

N2
{R̃j}(f) =

∑

j,m∈Z
ŵj,`(R̃j m),

where N2
{R̃j}

(f) is given by (2.24), ŵj,`(m) is given by (2.22) and the series converges abso-

lutely. Using (2.77) in this expression we have

N2
{R̃j}(f) =

∑

m∈Z

∑

j<0

ŵj,`(p−j m) +
∑

m∈Z

∑

j≥0

ŵj,`(qj m).

Comparing this equation with (2.76) we deduce

N2
{R̃j}(f) = lim

J→∞
1
|VJ |

∑

v∈VJ

N2(Tv f). (2.78)

Now let U be a complete set of representatives of the quotient group s−1Z/Z. An argument

similar to the one used in Theorem 2.12 shows that

N2
{Rj}(f) = lim

K→∞
1
s

∑

u∈U

N2(TpKqK u f), (2.79)

for all f ∈ D. Notice that to prove (2.79) it is necessary to use the assumptions (p, q) = 1,

(s, p) = 1 and (s, q) = 1. Finally, combining (2.78) and (2.79) we obtain that, for any f ∈ D,

N2
{Rj}(f) = lim

J,K→∞
1
s

∑

u∈U

1
|VJ |

∑

v∈VJ

N2(Tv+pKqK u f). (2.80)

The proof now follows from (2.80) as in the last step of the proof of Theorem 2.6. 2

2.3.5 Co-affine Systems

Another possible choice of matrices in class (II), defined in Theorem 2.4, is given by the

matrices Rj = A−j , for each j ∈ Z, where A ∈ GLn(R) is the dilation matrix and B =

AT is expanding on a subspace F ⊂ Rn. In fact, if Rj = A−j , for each j ∈ Z, then

Rj Aj = I ∈ GLn(Z) and this trivially shows that the matrices Rj are in class (II). Under

these assumptions, since Dj
A TAjk = Tk Dj

A, it follows that the oversampled affine systems

F{Rj}
A (Ψ) are the co-affine system

F{A−j}
A (Ψ) = F̃A(Ψ) = {|det A|j/2 Tk Dj

A ψ` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L}.
However, since | detRj | = | detA|−j is not bounded below, it follows from Proposition 2.1

that this system cannot be Bessel and, thus, cannot be a frame for L2(Rn). This situation is

also investigated in [9].
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3 Oversampling of the shift-invariant systems

In this section, we consider families of the form

Φ{gp}
C =

{
TCk gp : k ∈ Zn, p ∈ P}

, (3.1)

where {gp : p ∈ P} ∈ L2(Rn) and C ∈ GLn(R). They are special cases of the families Φ{gp}
{Cp},

given by (1.3), where Cp = C, for each p ∈ P. It is clear that, unlike the more general

systems given by (1.3), the families Φ{gp}
C are invariant with respect to C Zn translations,

and so, we will refer to these systems as shift-invariant systems. As we shall see, this

invariance makes the study of these systems easier and their properties simpler than the

general systems Φ{gp}
{Cp} where Cp depends on p ∈ P.

In [17], we characterize those {gp : p ∈ P} such that Φ{gp}
C is a Parseval frames for L2(Rn).

We obtain the following result (cf. [17, Th.3.1]), that can also be found in [20]. Observe that

this characterization is simpler than Theorem 1.1 since the L.I.C. is not needed in this case.

Theorem 3.1. Let {gp}p∈P ⊂ L2(Rn) and C ∈ GLn(R). Then Φ{gp}
C , given by (3.1), is a

PF for L2(Rn) if and only if
∑

p∈P
ĝp(ξ) ĝp(ξ + CIm) = | detC| δm,0 for a.e. ξ ∈ Rn, (3.2)

for each u ∈ Zn, where CI = (CT )−1 and δ is the Kronecker delta in Zn.

In the same paper, we also deduce the following result (cf. [17, Prop.4.1]), which is similar

to Proposition 2.7, except that the L.I.C. is not needed in this case.

Proposition 3.2. Let {gp}p∈P be a countable collection in L2(Rn) and C ∈ GLn(R). Assume

that ∑

p∈P
|ĝp(ξ)|2 ≤ B (3.3)

for a.e ξ ∈ Rn, for some B > 0. Then, for each f ∈ D, where D is given by (1.6) with

E = ∅, the function w(x) = N2(Tx f) =
∑

p∈P
∑

k∈Zn |〈Txf, TCk gp〉|2 is continuous and

coincides pointwise with the absolutely convergent series
∑

m∈Zn ŵ(CIm) e2πiCIm·x, where

ŵ(CIm) =
1

| detC|
∫

Rn

f̂(ξ) f̂(ξ + CIm)
( ∑

p∈P
ĝp(ξ) ĝp(ξ + CIm)

)
dξ, (3.4)

and the integral in (3.4) converges absolutely.

Define the oversampled shift-invariant system corresponding to Φ{gp}
C as the family

Φ{gp}
R−1C

=
{|det R|−1/2 TR−1Ck gp : k ∈ Zn, p ∈ P}

, (3.5)
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where R ∈ GLn(R). Using the same approach as in the case of affine systems, we obtain

conditions such that, if the shift-invariant system Φ{gp}
C is a frame, then the corresponding

oversampled system Φ{gp}
R−1C

is also a frame with the same frame bounds. The following result

can also be found in [15], where the proof does not involve the use of the Fourier series

expansion. The proof that we present, on the other hand, illustrates how the the approach

that we used in the case of affine systems simplifies in the case of shift-invariant systems.

Theorem 3.3. If the shift-invariant system Φ{gp}
C , C ∈ GLn(R), is a frame and W =

C−1 RC ∈ GLn(Z), then Φ{gp}
R−1C

is also a frame with the same frame bounds.

Proof. Since Φ{gp}
C is a frame, then it is Bessel with Bessel constant β, for some β > 0.

By Proposition 3.2, condition (3.3) is satisfied (with B = β| det C|), and, thus, we can apply

Proposition 3.2, which gives the absolutely convergent series

N2(Tx f) =
∑

p∈P

∑

k∈Zn

|〈Txf, TCk gp〉|2 =
∑

m∈Zn

ŵ(CIm) e2πiCIm·x, (3.6)

for all f ∈ D and x ∈ Rn, where ŵ(CIm) is given by (3.4). Replacing the matrix C by R−1C

in (3.6) and letting S = RT , Proposition 3.2 also gives

N2
R(Tx f) =

1
| detR|

∑

k∈Zn

∑

p∈P
|〈Txf, TR−1Ck gp〉|2 =

∑

m∈Zn

ŵ(SCIm) e2πiSCIm·x,

which is an absolutely convergent series for all f ∈ D and x ∈ Rn.

Let V be a complete set of distinct representatives of the group W−1 Zn/Zn, where

W = C−1RC ∈ GLn(Z). By Lemma 2.11,

1
| detW |

∑

v∈V

e2πim·v =





1 if m ∈ W TZn

0 if m ∈ Zn \W TZn.

Observe that m ∈ W TZn = CT SCIZn if and only if CIm ∈ SCIZn. Thus, the above

expression is equivalent to

1
| detW |

∑

v∈V

e2πiCIm·v =





1 if CIm ∈ SCIZn

0 if CIm ∈ Zn \ SCIZn.
(3.7)

By applying (3.7) to (3.6), it follows that

1
| detW |

∑

v∈V

N2(Tv f) =
∑

m∈Zn

ŵ(CIm)
1

|det W |
∑

v∈V

e2πiCIm·v

=
∑

m∈Zn

ŵ(SCIm) = N2
R(f), (3.8)
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for all f ∈ D. Since Φ{gp}
C is a frame, there are 0 < α ≤ β < ∞ such that α ‖f‖2 ≤ N2(f) ≤

β ‖f‖2, for all f ∈ L2(Rn), and, as a consequence, α ‖f‖2 ≤ 1
|det W |

∑
v∈V N2(Tv f) ≤ β ‖f‖2

for any f ∈ L2(Rn). Using (3.8), it follows that

α ‖f‖2 ≤ N2
R(f) ≤ β ‖f‖2,

for all f ∈ D. These inequalities can be extended to all f ∈ L2(Rn) by the usual density

argument. Therefore, Φ{gp}
R−1C

is a frame for L2(Rn) with frame bounds α and β. 2

We will now apply Theorem 3.3 to the Gabor systems. Let My, y ∈ Rn, be the mod-

ulation operator, defined by My f(x) = e2πiy·x f(x). The Gabor systems generated by

G = {g1, g2, . . . , gL} ⊂ L2(Rn) are the families of the form

GB,C(G) = {TCk MBm g` : m, k ∈ Zn, ` = 1, 2, · · · , L}, (3.9)

where B, C ∈ GLn(R). The corresponding oversampled Gabor system GR
B,C(G) are

defined as the collections

GR
B,C(G) = {|detR|−1/2 TR−1Ck MBm g` : m, k ∈ Zn, ` = 1, 2, · · · , L},

where B,C, R ∈ GLn(R). An elementary application of Theorem 3.3 gives the following

result.

Corollary 3.4. If the Gabor system GB,C(G) is a frame and C−1 RC ∈ GLn(Z), then

GR
B,C(G) is also a frame with the same frame bounds.

Proof. Let P = {(m, `) : m ∈ Zn, ` = 1, · · · , L}, gp = gm,` = MBm g` for any p =

(m, `) ∈ P. Under these assumptions, the system {TCk gp : p ∈ P} is exactly the Gabor

system given by (3.9). The proof now follows immediately from Theorem 3.3. 2

4 Dilation–oversampling of the affine systems

So far we have considered the oversampled systems obtained by using a larger collection of

translations. In this section, we examine the case where we increase the number of dilations

of an affine system.

Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), and A ∈ GLn(R) be of the form A = eE , where

E ∈ GLn(R). Let FA(Ψ) be the affine system given by (1.10). For M ∈ N, define the

dilation–oversampled affine systems relative to FA(Ψ) as the collections

FA,M (Ψ) = { 1√
M

DAj/M Tk ψ` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L}. (4.1)

We obtain the following result which shows that the dilation–oversampled affine systems

FA,M (Ψ) preserve the frame property of the corresponding affine systems FA(Ψ).
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Theorem 4.1. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), and A ∈ GLn(R) be of the form A = eE,

where E ∈ GLn(R). If the affine system FA(Ψ), given by (1.10), is a frame for L2(Rn), then

the dilation–oversampled affine system FA,M (Ψ), given by (4.1) is also a frame for L2(Rn),

and the frame bounds are the same.

Proof. Suppose that the affine system FA(Ψ) is a frame for L2(Rn). Then there are

constants 0 < α ≤ β < ∞ such that

α ‖f‖2 ≤ N2(f) ≤ β ‖f‖2, (4.2)

for all f ∈ L2(Rn), where N2(f) is given by (2.21). Then, for all f ∈ L2(Rn) we have:

N2
M (f) =

L∑

`=1

∑

j∈Z

∑

k∈Zn

|〈f,
1√
M

DAj/M Tk ψ`〉|2

=
1
M

L∑

`=1

∑

k∈Zn

∑

m∈Z

M−1∑

u=0

|〈f,DAm DAu/M Tk ψ`〉|2

=
1
M

M−1∑

u=0

L∑

`=1

∑

k∈Zn

∑

m∈Z
|〈DA−u/M f,DAm Tk ψ`〉|2

=
1
M

M−1∑

u=0

N2(DA−u/M f). (4.3)

Since ‖f‖ = ‖DA−u/M f‖, for any f ∈ L2(Rn), it follows from (4.2) that

α ‖f‖2 ≤ N2(DA−u/M f) ≤ β ‖f‖2,

for any f ∈ L2(Rn) and all u = 0, 1, . . . , M − 1. Thus, from (4.3) we have that

α ‖f‖2 ≤ N2
M (f) ≤ β ‖f‖2,

for any f ∈ L2(Rn). 2

5 Wave Packets

In this section, we examine those function systems generated by the combined action of

translations, modulations and dilations on a finite family of functions. Systems of this form

have been considered by several authors, including [6], [16], [14], and have been applied, for

example, to decompose the symbol or the kernel of some classes of singular integral operators

(see, for example, [6], [8, Ch. 3], [18]). In this paper, we will only consider discrete systems

and will refer to such systems as wave packet systems. Our terminology generalizes the one
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introduced by Córdoba and Fefferman, where the wave packets are the families of functions

obtained by applying dilations, modulations and translations to the Gaussian function.

Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and S ⊂ Z×Rn be a countable set. We define the wave

packet systems generated by Ψ relative to the dilation matrices A = {Aj} ⊂ GLn(R) and

to S ⊆ Z× Rn as the set

WA,S(Ψ) =
{
DAj Tk Mν ψ` : k ∈ Zn, (j, ν) ∈ S, ` = 1, . . . , L

}
. (5.1)

Special cases of such WA,S(Ψ) are the affine systems FA(Ψ), where Aj = Aj , S = Z × {0},
and the Gabor systems GB(G), where S = {0}×Zn. This simple observation already suggests

that the wave packet systems provide greater flexibility than the affine or the Gabor systems.

We are interested in characterizing the families Ψ ⊂ L2(Rn) such that the system WA,S(Ψ) is

a reproducing system for L2(Rn). While it is well known that such reproducing systems exist

in the special cases given by the affine and Gabor systems, it is not obvious that for more

general sets S ⊆ Z × Rn there exist families Ψ ⊂ L2(Rn) such that the collection WA,S(Ψ)

is a Parseval frame for L2(Rn). The following one-dimensional example, whose idea was

suggested to us by D. Speegle, shows that such “nontrivial” wave packet systems do exist.

Example 5.1. Let ψ ∈ L2(R) be such that ψ̂(ξ) = χ[1,2)(ξ), ξ ∈ R. Let Z+ = {j ∈ Z : j ≥ 0}
and

S = {(j, 0) : j ∈ Z+}
⋃
{(j,−3) : j ∈ Z+}

⋃ {
(0,−1), (0,−2)

}
. (5.2)

We will show that the wave packet system W2,S(ψ), given by (5.1) with dilations Aj = 2j

and S given by (5.2), is an orthonormal basis (ONB) for L2(R).

Observe that (
Dj

2 Tk Mν ψ
)∧ = D−j

2 M−k Tν ψ̂.

If (j, ν) = (0,−1) and (j, ν) = (0,−2), we have:

{M−k T−1 ψ̂(ξ) : k ∈ Z} = {e−2πik·ξ χ[0,1)(ξ) : k ∈ Z},

and

{M−k T−2 ψ̂(ξ) : k ∈ Z} = {e−2πik·ξ χ[−1,0)(ξ) : k ∈ Z}.
The combination of these two systems forms an ONB for L2([−1, 1)). For (j, ν) = (j, 0), j ∈
Z+ we have the system

{D−j
2 M−k ψ̂(ξ) : k ∈ Z, j ∈ Z+} = {2−j/2 e−2πi2−jk·ξ χ[2j ,2j+1)(ξ) : k ∈ Z, j ∈ Z+}.

This gives an ONB for L2([1,∞)). For (j, ν) = (j,−3), j ∈ Z+, a similar calculation shows

that the system

{D−j
2 M−k T−3 ψ̂(ξ) : k ∈ Z, j ∈ Z+} = {2−j/2 e−2πi2−jk·ξ χ[−2j+1,−2j)(ξ) : k ∈ Z, j ∈ Z+}
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is an ONB for L2((−∞,−1)). Combining all these systems, we have that the collection

{D−j
2 Mk Tν ψ̂ : k ∈ Z, (j, ν) ∈ S} is an ONB for L2(R) and, as a consequence, W2,S(ψ) is

also an ONB for L2(R).

We will now turn our attention to the characterization of the wave packet systems. Using

Theorem 1.1, we obtain the following characterization of all Ψ ⊂ L2(Rn) such that the system

WA,S(Ψ), given by (5.1), is a PF for L2(Rn).

Theorem 5.2. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), A ∈ GLn(R) and S ⊂ Z×Rn be a countable

set. Assume the L.I.C.:

L(f) =
∑

(j,ν)∈S

∑

m∈Zn

∫

supp f̂
|f̂(ξ + Bj m)|2 |ψ̂`(B−1

j ξ − ν)|2 dξ < ∞ (5.3)

for all ` = 1, . . . , L and for any f ∈ D, where D = DE is given by (1.6) with E = {0}. Then

the system WA,S(Ψ), given by (5.1), is a Parseval frame for L2(Rn) if and only if

∑

(j,ν)∈Pα

ψ̂`(B−1
j ξ − ν) ψ̂`(B−1

j (ξ + α)− ν) = δα,0 for a.e. ξ ∈ R, (5.4)

where Bj = AT
j , α ∈ Λ =

⋃
j∈ZBj Zn and, for each α ∈ Λ, Pα = {(j, ν) ∈ S : B−1

j α ∈ Zn}.

Proof. Let P, {gp}p∈P and {Cp}p∈P be defined by

P =
{
(j, ν, `) : (j, ν) ∈ S, and ` = 1, . . . , L

}
,

gp(x) = g(j,ν,`)(x) = DAj Mν ψ`(x), Cp = C(j,ν,`) = A−1
j . (5.5)

With these assumptions, it follows that

TCpk gp = TA−1
j k DAj Mν ψ` = DAj Tk Mν ψ`,

and so the collection {TCpk gp : k ∈ Zn, p ∈ P} is the wave packet system WA,S(Ψ). We can

now apply Theorem 1.1.

Under these assumptions for P, gp and Cp, we have that Λ =
⋃

p∈P CI
p Zn =

⋃
j∈ZBj Zn,

and, for α ∈ Λ, we have Pα = {p ∈ P : CT
p α ∈ Zn} = {j ∈ Z : Bj

−1 α ∈ Zn}. Since

ĝp = (DAj Mν ψ`)∧ = DB−j 1 Tν ψ̂`, the expression (1.7) is exactly the L.I.C. (5.3). Finally, by

direct computation, from (1.8) we obtain equation (5.4). 2
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5.1 A very general example

Using some ideas from Example 5.1 it is possible to construct some very general wave packet

systems. In fact, in the following example, the dilations do not have to be expanding and

the modulations do not have to be associated with a lattice. For simplicity, we will present

a one-dimensional construction.

Let I1 = [1, 2) and consider the tiling of R given by the union of countably many disjoint

half-open intervals {Ij}j≥1. That is:

R =
⋃

j≥1

Ij . (5.6)

For each interval Ij = [cj , dj), let aj = dj−cj be the length of the interval. Let xj = cj−aj =

2 cj − dj . Thus a−1
j (Ij − xj) = a−1

j [aj , 2 aj) = [1, 2), and this shows that to each interval Ij

there is a uniquely associated dilation aj and translation xj mapping I1 into Ij .

Consider the (one-dimensional) wave packet system

W(ψ) =
{
Daj Tk Ma−1

j xj
ψ : k ∈ Z, j ∈ Z+

}
, (5.7)

where ψ̂(ξ) = χI1(ξ). We will now apply Theorem 5.2 to show that W(ψ) is an PF for L2(R).

Since any function ψj,k = Daj Tk Ma−1
j xj

ψ in W(ψ) has norm equal one, this will also imply

that W(ψ) is an orthonormal basis.

Since |ψ̂(a−1
j (ξ − xj))| = χIj (ξ), the left hand side of the L.I.C., given by (5.3), becomes

L(f) =
∑

j≥1

∑

m∈Z

∫

supp f̂
|f̂(ξ + ajm)|2 |ψ̂(a−1

j (ξ − xj))|2 dξ

=
∑

j≥1

∑

m∈Z

∫

supp f̂∩Ij

|f̂(ξ + ajm)|2 dξ (5.8)

We need to show that L(f) < ∞ for all f ∈ D, where D is given by (1.6). Since f̂ is

compactly supported and aj = |Ij | > 0, for each fixed j there are only finitely many m ∈ Z
such that the integral in (5.8) is nonzero. More precisely, if supp f̂ ⊂ (−R, R), with R > 0,

then |m| ≤ 2R/aj . Furthermore, there are only finitely many intervals Ij intersecting supp f̂

(say, J of them). Thus, from (5.8) we have

L(f) ≤
∑

j≥1

2R + 1
aj

∫

supp f̂∩İj

‖f̂‖2
∞ dξ ≤ J (R + 1)‖f̂‖2

∞ < ∞,

which shows that condition (5.3) is satisfied. In order to show that the wave packet system

W(ψ) is a Parseval frame it only remains to show that ψ satisfies the characterizing equations

(5.4) which, in this case, are the two equations:
∑

j∈P
|ψ̂(a−1

j (ξ − xj))|2 = 1 for a.e. ξ ∈ R, (5.9)
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∑

j∈Pα

ψ̂(a−1
j (ξ − xj)) ψ̂(a−1

j (ξ + α− xj)) = 0, for a.e. ξ ∈ R, if α 6= 0. (5.10)

Since ψ̂(a−1
j (ξ − xj)) = Txj D−1

aj
ψ̂ = χIj (ξ), then (5.6) implies equation (5.9). Next consider

equation (5.10) with α 6= 0 and observe that

ψ̂(a−1
j (ξ + α− xj)) = χIj (ξ + α) = χIj (ξ + aj (a−1

j α)).

By the definition of Pα, we have that a−1
j α ∈ Z for each j ∈ Pα. Therefore, since χIj (ξ) has

support of length aj , and α 6= 0, we have

ψ̂(a−1
j (ξ − xj)) ψ̂(a−1

j (ξ + α− xj)) = χIj (ξ) χIj (ξ + aj (a−1
j α)) = 0,

for each j ∈ Pα, and thus equation (5.10) is also satisfied.

Observe that the choice of the interval I1 plays no special role in this example. The

construction can easily be modified by choosing any initial interval I1. Furthermore, this

construction easily generalizes to higher dimensions.
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