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Abstract

Blind inpainting algorithms based on deep learning architectures have shown a remarkable
performance in recent years, typically outperforming model-based methods both in terms of
image quality and run time. However, neural network strategies typically lack a theoretical
explanation, which contrasts with the well-understood theory underlying model-based meth-
ods. In this work, we leverage the advantages of both approaches by integrating theoretically
founded concepts from transform domain methods and sparse approximations into a CNN-
based approach for blind image inpainting. To this end, we present a novel strategy to learn
convolutional kernels that applies a specifically designed filter dictionary whose elements are
linearly combined with trainable weights. Numerical experiments demonstrate the competitive-
ness of this approach. Our results show not only an improved inpainting quality compared
to conventional CNNs but also significantly faster network convergence within a lightweight
network design. Our code is available at https://github.com/cv-stuttgart/SDPF Blind-Inpainting.
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1 Introduction

Image inpainting is a longstanding problem in
image processing, which aims to digitally remove
visual corruptions from images that may be asso-
ciated with scratches or other missing blocks of
image information. The inpainting problem can
be divided into two formulations, blind and non-
blind image inpainting, depending on the amount

of a-priori knowledge about the image corruption.
For non-blind image inpainting, the location of the
damage within the image is known and can be
used within the algorithmic solution. However, in
this work, we focus on the more challenging blind
inpainting problem, which aims at recovering a
missing region whose location is unknown. Such
location information can be missing when random
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pixels of an image are damaged, or when identi-
fying the damage would otherwise require human
interaction. Due to the reduced amount of avail-
able information, the blind inpainting problem is
generally more difficult to solve than non-blind
inpainting.

Before the overwhelming success of neural net-
works for many image processing problems, the
best performing strategies for blind image inpaint-
ing were model-based. They heavily relied on
a mathematical framework that was instrumen-
tal to solve the problem. Due to this modeling
aspect, classical image inpainting strategies (e.g.,
those based on variational or transform domain
methods) are inherently predictable and explain-
able, which is often not true for learning-based
approaches. In this work, we develop a strategy
to combine the high accuracy and fast evaluation
times of Convolutional Neural Networks (CNNs)
with the interpretability of model-based ideas.
Namely, we propose a novel notion of a receptive
field layer that relies on the properties of a Parse-
val Frame dictionary (Fig. 1) specifically designed
for image inpainting, which is combined with an
appropriate sparsity constraint during network
training. As we argue below, this new strategy
brings highly desirable properties from the the-
ory of sparse image representations into the CNN
model, making it not only more lightweight but
also more explainable.

1.1 Related work

In the literature, the most successful inpaint-
ing strategies can be roughly grouped into three
categories:
(i) Representation (or transform domain) meth-

ods that formulate the inpainting problem
as an optimization task in a transform
domain [2, 4, 11, 13, 19, 33];

(ii) PDE-based and Variational techniques that
recover missing data from the neighborhood
points through a regularity criterion that
might be associated with a PDE [3, 8, 9, 14,
32];

(iii) Learning-based strategies such as convolu-
tional neural networks (CNNs) that learn an
end to end mapping from input images to
inpainted images based on training data [5,
10, 26, 35, 36].

Fig. 1: The proposed 5 × 5 Sparse Directional
Parseval Frame (SDPF) dictionary. Filters from
top left to bottom right: one low-pass filter; twelve
first-order finite difference filters; twelve second-
order finite difference filter; 24 filters for the
Parseval frame completion.

In the following, we discuss the state of the art for
inpainting with (i) representation methods, (iii)
learning-based strategies as well as combinations
of these seemingly alternative approaches, which
is also the goal of this work.

Representation methods (i) model image
inpainting as a signal restoration problem, where
the image is represented as a superposition of a
clean component and a “noisy” one. It is then
reasonable to assume that the clean component
of the image has a sparse representation in some
domain, e.g., in a wavelet space. That is, it can
be represented using relatively few representation
coefficients. Since the noise does not satisfy the
same sparsity property, its energy is spread over
the whole transform domain. The clean image
can then be recovered by identifying its sparse
representation through ℓ1-norm minimization (in
the transform domain). This intuitive argument
explains the critical role of sparsity in image
representation methods.

The study of efficient image representations
has been the focus of an intense research start-
ing with the introduction of wavelets in the late
1980’s [30] and continuing with the development
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of more advanced multiscale representations dur-
ing the following two decades (cf. the excellent
review by Donoho et al. [12] about the role of
such representations in image processing). Some
of the most important developments in this area
occurred with the introduction of curvelets [6]
and shearlets [23], two multiscale methods that
were shown to be provably sparser than tradi-
tional wavelets [7, 15] for a large class of images
called cartoon-like images. The hallmark of both
methods is to combine the multiresolution struc-
ture of classical wavelets with superior directional
sensitivity. This directional sensitivity is achieved
through the power of anisotropic scaling and the
action of rotation or shear operators.

In parallel with the development of sparse rep-
resentation methods, several sparsity-based algo-
rithms for image inpainting were proposed in the
literature; they include several methods based on
wavelets [4, 11, 33] and shearlets [19] as well as
methods such as K-SVD [2, 28, 29] that, rather
than using a fixed dictionary as in the wavelet or
shearlet case, build a dictionary adaptively from
images. While most of these results are focused on
the algorithmic side, some research also investi-
gated performance guarantees. For instance, some
results established a precise relationship between
image inpainting of cartoon-like images and prop-
erties of the representation. Due to their ‘geomet-
ric’ properties, namely, their anisotropic support
and directional sensitivity, shearlets were shown to
offer a very convenient framework for inpainting
as they can provably fill larger gaps than wavelets
in the class of cartoon-like images [16, 19].

During the last five years or so, with the
emergence of deep learning (iii) in many areas of
engineering and applied mathematics, deep learn-
ing methods have gained increasing recognition
also in image inpainting due to their very com-
petitive performance. Such methods have been
especially effective to address non-blind inpaint-
ing, with earlier works using simple architectures
like multilayer perceptrons [22] or encoder-decoder
structures [31]. Later research focused on develop-
ing alternatives for convolutions that specifically
use the corruption’s location, such as partial con-
volutions [25] or gated convolutions [39]. Most
recent approaches for non-blind image inpaint-
ing use generative adversarial networks (GANs)
in order to inpainting missing regions in ways
that are visually hard to discriminate from similar

images [37–39]. The main limitation of such meth-
ods is that their performance if highly dependent
on the type of images used for training. In addi-
tion, they usually fail if the image location to be
inpainted if unknown. By contrast, a much smaller
number of methods were proposed to address the
more challenging blind inpainting problem. Exist-
ing methods often use encoder-decoder structures
based on CNN architectures [5, 10] that may con-
tain residual blocks to improve performance [26].
The most advanced and best performing schemes
in the literature for blind inpainting adopt a
two-stage approach where the first stage of the
algorithm estimates the location of image corrup-
tions and the second stage applies a non-blind
inpainting pass on the detected regions [35]. The
improved performance comes at the cost of a
significantly higher network complexity.

While deep neural networks have demon-
strated impressive results and often outperform
conventional methods, one major concern is the
lack of interpretability due to their black-box
nature [40]. Therefore, there is an increasing effort
to include principles from model-based methods
into deep learning for an improved interpretabil-
ity. For instance, Xie et al. [36] proposed a
network-based image restoration approach con-
sisting of stacked denoising autoencoder (SDA)
that takes inspirations from the K-SVD algo-
rithm [2]. Inspired by the structure of a sparse
representation method, each denoising autoen-
coder block is a two-layer neural network trained
to reconstruct a clean image from a corrupted
one with the inner layer representation con-
strained to be sparse. Similarly, Chaudhury and
Roy [10] proposed a CNN for image restoration
(IRCNN) where the hidden layers are designed to
learn a data-driven sparse representation. Another
method to bring principles of classical image rep-
resentation into neural network designs are the
Structured Receptive Field Networks (SRFN),
where convolutional filters are built as linear com-
binations from a pre-defined dictionary, and only
the coefficients of the representation are learned
during training [17]. While this idea was originally
proposed to learn expressive feature representa-
tions in scenarios with limited training data, we
adapt and refine this idea to build our approach
for image inpainting.
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1.2 Contribution

In this work, we introduce a novel blind inpainting
strategy that leverages the computational effi-
ciency of a CNN along with the interpretability of
mathematical representation methods. For that,
we adopt the SRFN idea where each convolutional
filter is a linear combination of elements from a
fixed dictionary, where the coefficients of the linear
combination are learned during training. Within
this framework, we take advantage of the success-
ful theory of multiscale directional representations
to build a new discrete dictionary that is espe-
cially effective for image inpainting. Below are the
main contributions of our approach.
(1) We design a new dictionary of filters to pro-

vide efficient representations for salient fea-
tures such as edges and corners in natural
images. Our filter design is based on a recently
proposed mathematical framework for the
construction of Parseval frames with compact
support [18].

(2) We include a sparsity constraint during the
training that is inspired by the sparsity norms
used in model-based representation methods.

(3) We implement our inpainting strategy using a
simple transform CNN architecture [10]. After
examining the most effective placement of
receptive field layers, we select two lightweight
architectures.

(4) We run numerical experiments to demonstrate
the capabilities of our method as compared to
state-of-the-art methods for blind inpainting.
Specifically,
(a) we demonstrate the learning capabilities

of our receptive field layers and provide
an interpretation of their capabilities in
terms of image representation;

(b) we show that our filter learning strategy
provides more than merely a good layer
initialization and demonstrate the efficacy
of our approach throughout the complete
training process;

(c) we experimentally confirm that our net-
work strategy significantly reduces the
amount of training data required for high-
quality inpainting results.

We remark that another application of the
SRFN idea in the context of hyperspectral clas-
sification was presented by some of the authors

in [24], but with a very different rationale, network
design and algorithm.

2 Method

We formulate image inpainting as an inverse prob-
lem that aims to recover an image x from its
corrupted version y = x + w. A solution of this
problem is found by solving

x̂ = argmin
x
∥y − x∥22 + λΦ(x), (1)

where λ is a trade-off parameter and Φ is a reg-
ularization operator enforcing some condition on
the solution, e.g., sparsity.

Rather than solving Equation (1) directly
through image representation methods and opti-
mization techniques, here we opt for a learning-
based approach. This choice is motivated by the
efficiency of learning-based methods to address
a specific corruption process, e.g., noise removal,
and their fast evaluation speed compared to
model-based approaches. Additionally, we include
concepts from representation methods to endow
our CNN approach with interpretability. In con-
trast to existing methods that try to combine the
advantages of learning- and model-based methods
by mimicking the structure representation meth-
ods at the architectural level [10, 36], our approach
acts at the layer level.

2.1 Method overview

The architectural foundation for our network
design is a slim, fully convolutional network archi-
tecture similar to the Image Restoration CNN
(IRCNN) by Chaudhury and Roy [10]. It consists
of a sequence of convolutional layers with ReLU
activations, and can therefore process images of
any input dimensions [27]. As shown in Fig. 2,
the network architecture forms three sections that
resemble the process of a classical representation
method: feature extraction, nonlinear dimension-
ality reduction and clean image reconstruction.
We select this network architecture due to this
structural resemblance to representation meth-
ods as well as its simplicity. However we remark
that our following strategy of expressing a con-
volutional filter as linear combination from a
pre-designed sparse dictionary can be applied to
any existing CNN architecture.
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Fig. 2: Baseline network architecture, adapted from [10]. Similar to classical transform domain meth-
ods, this architecture includes 3 blocks: feature extraction, transform and reconstruction. Our geometric
biased, sparse filters from Fig. 1 have the largest impact if used in the first two layers.

Following the SRFN idea, we assume that any
5 × 5 convolutional filter {Sk} of our network is
expressed as linear combination of 5×5 basis filters
Bi, i = 1, . . . L that are taken from an appropriate
dictionary. Hence, any convolutional filter Sk is of
the form

Sk =

L∑
i=1

αk,iBi, (2)

where the filter coefficients αk,i are learned dur-
ing training. With respect to the original SRFN
method [17], we introduce two innovative fea-
tures that, combined with our selection of network
architecture, are designed to reflect some funda-
mental idea from the sparsity-based approach to
inpainting.

One major novelty of our approach is to build
our filter dictionary as a tight frame consisting of
directional filters based on the theory of shearlets.
Guided by the theoretical insight that shearlet-
based inpainting algorithms achieved state-of-the-
art performance [19], our strategy is to select the
convolutional filters of our CNN from a shearlet-
like dictionary consisting of filters with high direc-
tional sensitivity. We remark that we cannot use
the original shearlet filters that are defined in the
Fourier domain [15, 19] nor its space-domain vari-
ants [21] due to their large support. To implement
them in a CNN, we need a filter with small sup-
port. Therefore, we designed a shearlet-like filter
dictionary consisting of 5 × 5 matrices with the
following properties:
(i) it forms a Parseval frame (completeness),
(ii) it produces discrete directional differentia-

tion in all directions (edge detection),
(iii) the filters have few non-zero entries (fast

computation).

In this paper, we solve the filter design problem
using the theory of compactly supported direc-
tional framelets [18], recently proposed by one of
the authors. As shown in Fig. 1, our dictionary
contains 5 × 5 filters with a pronounced direc-
tional response that are highly efficient to capture
edges and sharp transitions in images. In the next
section, we illustrate the dictionary construction
in detail.

Another novelty of our approach is to impose a
sparsity constraint during training that limits the
number of dictionary elements allowed in any lin-
ear combination of filters. That is, in Equation (2),
we only allow the sum to contain a small number
of terms, e.g., three. This condition can be inter-
preted as a geometric constraint. The elements of
our filter dictionary include low-pass filters and
edge detectors along various discrete orientations.
Therefore, a linear combination of a few filters of
this type generates a kernel acting as a low-pass
filter or an edge detector along selected orien-
tations. As a consequence, while the weights of
the network layer are still determined by data,
our filter construction strategy results in convo-
lutional kernels that are interpretable: They may
act as direction-selective edge detectors or aver-
aging operators. We also remark that, due to the
sparsity constraint, this approach requires signif-
icantly fewer trainable weights than a standard
convolution, where a weight for every filter pixel
has to be learned.

In the following, we call the dictionary built for
our network a Sparse Directional Parseval Frame
(SDPF) dictionary and a convolutional layer build
from this SDPF dictionary using Equation (2)
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(possibly with the sparsity constraint) a SDPF
constrained receptive field layer.

2.2 Filter design

Here we adapt a method recently proposed by one
of the authors in [18], to build compactly sup-
ported multidimensional wavelet-like systems with
high directional sensitivity. In the 2-dimensional
case, this approach starts with a compactly sup-
ported function ϕ ∈ L2(R2) whose Fourier trans-

form ϕ̂ satisfies the properties ϕ̂(0) = 1 and

ϕ̂(2ξ) = H0(ξ)ϕ̂(ξ) for a Z2 periodic function
H0(ξ) ∈ L2(T2) called a low-pass filter. Then
a multiwavelet system {ψi : i = 1, . . . , v} is
obtained by choosing high-pass filters H1,i(ξ) ∈
L2(T2) such that ψ̂i(2ξ) = H1,i(ξ)ϕ̂(ξ), i =
1, . . . , v, and |H0(ξ)|2 +

∑v
i=1|H1,i(ξ)|2 = 1.

In practice, as the filters are expressed in the
Fourier domain as trigonometric polynomials, e.g.,
H0(ξ) =

∑M−1
k,n=0 h0(n,k)e

2πi(m,k)·ξ for the low-
pass filter, the filter construction consists in
determining the matrix of filter coefficients, e.g.,
{h0(m,k)} for the low-pass filter coefficients. In
brief, the method in [18] consists of choosing
low-pass filter coefficients and an initial set of
high-pass filter coefficients. Additional high-pass
filter coefficients are next added until the com-
bined set forms a frame or a Parseval frame. As we
show below, this construction affords some flexi-
bility that can be used to endow the frame with
desirable properties.

We recall that a collection {fi} in a Hilbert
space H is a frame if there are lower and upper
frame bounds α, β, with 0 < α ≤ β < ∞, such
that

α ∥f∥2 ≤
∑
i

|⟨f,fi⟩|2 ≤ β ∥f∥2 (3)

for all elements f ∈ H. A frame is a Parseval frame
if α = β = 1. The Parseval frame condition gener-
alizes the notion of orthonormal basis and ensures
that any f ∈ H can be expressed as a linear com-
bination f =

∑
n αi(f) fi of frame elements. In

other words, the system {fi} is complete in H.
The first step in the construction of our Parse-

val frame is the selection of the low-pass filter coef-
ficients. While there are several possible choices to
build a compactly supported function, we choose

H0(ξ) = µ0(ξ1)µ0(ξ2) for ξ = (ξ1,ξ2) ∈ T2 where

µ0(γ) =
(

1+e2πiγ

2

)n
, γ ∈ T, (4)

is the uni-variate low-pass filter associated with
the n-th order cardinal B-spline. Note that µ0 is a
trigonometric polynomial with n+1 terms so that
the matrix of filter coefficients h0 is a (n+1)×(n+1)
matrix. By denoting as a = (a0, . . . ,aN−1) the
vectorization of the filter coefficients h0 of H0,
we can write H0(ξ) = cW (ξ), where N = (n +
1)2, c = (

√
a0,
√
a1, . . . ,

√
aN−1), and W (ξ) =

(
√
a0,
√
a1e

2πiξ, . . . ,
√
aN−1e

2πi(N−1)ξ)T . We next
apply the following theorem from [18]:

Theorem 1 With the notation introduced above for
N , c and W , let H0(ξ) = cW (ξ) be the low-pass fil-
ter obtained as the tensor product of two uni-variate
low-pass filters associated with the n-th order cardinal
B-spline (4). Suppose that Y is a v × N real-valued
matrix with v ≥ max{N, 2n−1} such that the rows
of ( c

Y ) form a Parseval frame in RN and all rows
of Y are perpendicular to c. Then the rows of the
v × N matrix B = Y diag(c) hold the high-pass filter
coefficients inducing a Parseval frame of L2(RN ).

We will apply Theorem 1 with n = 4 to build
a set of filter coefficients forming a Parseval frame
in R25 (N = 25). Note that, in this case, (4) is

µ0(γ) =
(

1+e2πiγ

2

)4
(5)

so that the matrix of low-pass filter coefficients is

h0 =
1

64

(
1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

)
(6)

and the vector c ∈ R25 is obtained by vectorizing
h0 and taking the square root of the entries.

According to Theorem 1, each set of (vector-
ized) high-pass filter coefficients occupies a single
row in a v×25 matrix Y and we can hand pick any
filters that we wish, provided that each row of Y
is perpendicular to c. We can exploit the flexibil-
ity afforded by this construction to enforce useful
properties such as directional sensitivity at specific
orientations, similar to the properties of the shear-
let representation [16]. Hence, in our construction,
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we choose a set of first-order central difference fil-
ter coefficients hi, i = 1, . . . ,12, oriented at all
possible discrete orientations on the 5 × 5 grid

h1 =

(
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0

)
, h2 =

(
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0

)
,

· · · · · ·

h11 =

(
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 1
0 0 0 0 0
0 0 0 0 0

)
, h12 =

(
0 0 0 0 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0
0 0 0 0 0

)
.

Additionally, we select a set of second-order cen-
tral difference filters hi, i = 13, . . . ,24,

h13 =

(
0 0 0 0 −1
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
−1 0 0 0 0

)
, h14 =

(
0 0 0 −1 0
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 −1 0 0 0

)
,

· · · · · ·

h23 =

(
0 0 0 0 0
0 0 0 0 0
−1 0 2 0 −1
0 0 0 0 0
0 0 0 0 0

)
, h24 =

(
0 0 0 0 0
0 0 0 0 0
0 −1 2 −1 0
0 0 0 0 0
0 0 0 0 0

)
.

Next, we build a matrix Y =
(

D1(λ
∗)

D2

)
where

D1(λ
∗) includes our chosen first- and second order

filter coefficients up to rescaling by λ∗ and D2 is
a suitable completion matrix ensuring that B =
Y diag(c) holds the high-pass filter coefficients of a
Parseval frame of R25. By Lemma 3.1 in [18], such
a completion matrix D2 is found if the singular
values sν of Q =

( c
D1(λ

∗)

)
satisfy sν ≤ 1.

To this end, we first need to define D1(λ) and
then find λ = λ∗ such that Q satisfies sν ≤ 1. We
convert the matrix filters hi, i = 1, . . . ,24, into
vectors using the map Λ : R5×5 → R25 where

Λ(hi) = (h5,1i , . . . ,h5,5i , . . . , h1,1i , . . . ,h1,5i ) (7)

and, for a real variable λ, we let

d (λ, hi) := λ
(

Λ(hi)k
ck

)25
k=1

. (8)

Given c = (ck)
25
k=1, and assuming an element-wise

division in the definition of d(λ, hi), we define the
matrix D1(λ) ∈ R24×25 as the matrix whose rows
are the d(λ, hi) vectors associated with the 24
high-pass filters hi given above.

To find the value λ = λ∗ such that the singular
values sν of Q =

( c
D1(λ

∗)

)
satisfy sν ≤ 1, we solve

max trace(c⊤c+D1(λ)
⊤D1(λ)) (9)

s.t.
∥∥c⊤c+D1(λ)

⊤D1(λ)
∥∥ ≤ 1. (10)

Hence, by Lemma 3.1 in [18], the condition above
ensures that we can find a completion matrix D2

for which rows of

( c
Y ) =

( c
D1(λ

∗)
D2

)
∈ R(υ+1)×25, υ ≥ 24 (11)

form a Parseval frame for R25. Conveniently, the
proof of Lemma 3.1 in [18] is constructive and pro-
vides instructions on how to build D2. First, we
perform a Singular Value Decomposition (SVD)
on Q, which gives Q = UΣ1V

⊤ with U ∈ R25×25,
V ∈ R25×25 and

Σ1 = diag(σ1, . . . , σ25) ∈ R25×25. (12)

Given the singular values σ1, . . . , σ25 and the
matrix V , the completion matrix D2 is con-
structed as D2 = Σ2V

⊤ ∈ R25×25 with

Σ2 = diag(
√

1− σ2
1 , . . . ,

√
1− σ2

25) ∈ R25×25.

(13)
From the result of the SVD, we have σ1 = 1, then√

1− σ2
1 = 0 and the matrix Σ2 reduces to

Σ2 = diag(0,
√

1− σ2
2 , . . . ,

√
1− σ2

25) ∈ R25×25

(14)
so that the first row of D2 will be a zero vector.
Therefore, we get 24 new filters to complete the
Parseval frame for R25, and we obtain a high-pass
filter matrix as

B =
(

D1(λ
∗)

D2

)
diag(c).

Figure 1 shows that our 5 × 5 filter dictionary
includes a low-pass filter, 24 first- and second-
order finite difference filters, followed by 24 addi-
tional filters required to obtain a Parseval frame.

The same procedure described above can be
used to build filters of any support size, e.g., 3× 3
or 7×7. In this work, we selected the size 5×5 since
it offers a good compromise between efficiency
and complexity. Filters with shorter support (e.g.,
3 × 3) have reduced geometric sensitivity (e.g.,
we can only handle 4 orientations in the 3 × 3
grid). Filters with larger support are less local and
more complex (more orientations and more ele-
ments). The filter construction in the general case
is summarized in Algorithm 1.



Springer Nature 2021 LATEX template

8 Blind Image Inpainting with Sparse Directional Filter Dictionaries for Lightweight CNNs

Algorithm 1 SDPF Dictionary Construction

Require: The filter size N , a low-pass filter h0
and L high-pass filters h1 . . . hL with L+1 ≤ N

1 function SDPF(N,h0, h1, . . . , hL, ϵ)
2 a ← Λ(h0) ∈ RN ▷ Λ: filter to vector
3 c ← (

√
a0,
√
a1, . . . ,

√
aN−1) ∈ RN

4 λ ← (1, . . . ,1) ∈ RN ▷ Initialize λ
5 for i = 1 . . . L do
6 di(λ) ← λi

(
Λ(hi)1

c1
, . . . ,

Λ(hi)N
cN

)
7 end for

8 D1(λ) ←

d1(λ)...
dL(λ)

 ∈ RL×N

9 λ∗ ← argmax
λ

trace(c⊤c +D1(λ)
⊤D1(λ))

s.t. ∥c⊤c+D1(λ)
⊤D1(λ)∥ ≤ 1

10 Q ←
(

c
D1(λ

∗)

)
∈ R(L+1)×N

11 V,Σ1 ← SVD of Q = UΣ1V
⊤

12 for i = 1 . . . L+ 1 do

13 si ←
√

1− (Σ1)2i,i
14 if si < ϵ then
15 si ← 0
16 end if
17 end for
18 Σ2 ← diag(s1, . . . , sL+1, 1, . . . , 1) ∈ RN×N

19 D2 ← Σ2V
⊤ ∈ RN×N

20 B ←
(
D1(λ

∗)
D2

)
diag(c), eliminate 0-rows

21 P ←
(
c
B

)
∈ R(υ+1)×N , υ ≥ N − 1

22 return P
23 end function

Ensures: Parseval filter bank P ∈ R(v+1)×N ,
with v high-pass filters and 1 low-pass filter,
filters obtained by reshaping the columns of P
into N ×N matrices.

3 Results

The experimental evaluation of our image inpaint-
ing algorithm is divided into four parts. In the first
part, we discuss how to select the best configu-
ration of SPDF constrained receptive field layers
in our network for image inpainting. The second
part provides a deeper analysis of the learned

filters, and the impact of SPDF constrained recep-
tive field layers on the training process. In the
third part, we analyze the amount of training data
that is required to effectively train a network with
SPDF constrained receptive field layers as com-
pared to a conventional CNN. Lastly we measure
the inpainting quality and run time of our top
performing network configurations in comparison
to state-of-the-art inpainting methods. Preceding
the experimental analysis we describe the imaging
dataset used for our experiments.

3.1 Experimental data set

The dataset used for our experiments consists of
225,100 images with 256 × 256 pixels from the
Places data set [41], which we overlaid the images
with handwriting masks (line width about 10
pixels) extracted from scanned pages, cf. Fig. 8
for examples. The full dataset is available at
https://doi.org/10.18419/darus-2886. The masks
are either colored white, in a random color or with
Gaussian noise (µ = 0.4363, σ = 0.2737, according
to color distribution of the selected images from
Places). Note that we obtained our mask library
by rotating a set of 56,275 handwriting masks by
0◦, 90◦, 180◦ and 270◦, resulting in a total of
225,100 masks.

Our handwriting masks provide a variable cov-
erage of a given image, ranging from 1% to 25%
of the total number of pixels in an image. Table 1
lists the distribution of masks by the size of the
area they occlude, and how they are split into
training and test sets. Note that not enough sam-
ples were available in the coverage range 20-25%,
to allow an even distribution of test samples.

Table 1: Number of handwriting images in the
training and test sets, grouped by occlusion area.

Occlusion Training Test

0-5% 100,000 1,000
5-10% 100,000 1,000
10-15% 10,000 1,000
15-20% 10,000 1,000
20-25% 1,000 100

https://doi.org/10.18419/darus-2886
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Table 2: Inpainting comparison for network configurations that use exactly one SDPF constrained recep-
tive field layer. Performance values are computed on the test set, after the network was trained on 5,000
training images for 100 epochs; results are averaged over 10 training runs.

Configuration Param.
MSE L1 PSNR SSIM

(×10−2) (×10−2)

C-C-c-C-C-C (IRCNN) 172,113 0.1437 1.3949 30.5622 0.9437
B-C-c-C-C-C (GBCNN) 170,705 0.1074 0.9458 32.2214 0.9552
C-B-c-C-C-C 82,001 0.1180 1.0838 31.7225 0.9520
C-C-c-B-C-C 138,321 0.1283 1.2192 31.1119 0.9469
C-C-c-C-B-C 149,585 0.1359 1.2727 30.8522 0.9430
C-C-c-C-C-B 171,409 0.1366 1.3159 30.7806 0.9442

3.2 Network configuration and
training

To identify the best network configuration for
inpainting, we systematically tested different
architectures where any convolutional layer is
either a SDPF constrained receptive field layer
or a conventional convolutional layer. In the first
case, any convolutional kernel is a linear combi-
nation of only 3 filters that are randomly selected
out of the 25 filters of the SPDF dictionary. The
number 3 indicates that we imposed a sparsity
constraint with sparsity 3. In our implementation,
the sparsity value s is treated as a hyperparame-
ter of the neural network indicating that s filters
are randomly chosen from the SPDF dictionary to
generate each convolutional filter when the net-
work is initialized. We tested several values of the
sparsity level s and heuristically found that spar-
sity s = 3 is the best choice for our dataset. A
higher sparsity level would increase the number of
trainable parameters without improving or even
downgrading performance.

We trained the networks on a reduced train-
ing set with white masks, consisting of 5,000
images (1,000 per occlusion area range) to limit
the computational budget. The CNNs were imple-
mented using Tensorflow [1] with the Adam opti-
mizer [20] (using default setting) and trained
for 100 epochs with batch size 10. Our code
is available at https://github.com/cv-stuttgart/
SDPF Blind-Inpainting.

To describe the network architectures, in the
following we denote a conventional 5 × 5 con-
volutional layer by C, while we denote by c a
conventional 1×1 convolutional layer. By contrast,
we denote by B a SDPF constrained receptive field

layer with sparsity 3. As our dictionary is con-
structed from 5 × 5 filters, the third layer c is
never replaced by a receptive field layer. Note that
the configuration with only convolutional layers
(C-C-c-C-C-C) is the IRCNN from [10].

Table 2 reports the image inpainting perfor-
mance for multiple network configurations that
are derived from the CNN architecture in Fig. 2
by using either conventional convolutional lay-
ers or SDPF constrained receptive field layers.
We note that all configurations with a receptive
field layer (B) outperform the original IRCNN
architecture for all measured metrics, indicating
the improvement due to our modified design and
despite the reduced number of trainable parame-
ters.

Among the various configurations, the best
inpainting quality is achieved with the first layer
being a SDPF constrained receptive field layer
and the remaining layers being conventional con-
volutional layers (B-C-c-C-C-C). For brevity, we
call this configuration Geometric-Biased CNN
(GBCNN), due to the geometric bias (high direc-
tional sensitivity) that is imposed by the combi-
nation of SDPF filters and sparsity constrained
in the first layer. We explain the excellent per-
formance of this configuration with the improved
ability of the SDPF constrained receptive field
layer to respond to geometric cues in images,
such as edges or corners - an ability which is
particularly effective in the first layer(s). This is
supported the performance measures in Table 2,
which show a decreasing inpainting performance
with the depth of the SDPF filters in the network.
Out of all network configurations that use SDPF
filters, C-C-c-C-C-B yields the worst performance,

https://github.com/cv-stuttgart/SDPF_Blind-Inpainting
https://github.com/cv-stuttgart/SDPF_Blind-Inpainting
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Table 3: Inpainting comparison of network configurations based on the GBCNN architecture, trained on
5,000 images for 100 epochs with results averaged over 10 training runs. Best results displayed in bold.

Configuration Param.
MSE L1 PSNR SSIM

(×10−2) (×10−2)

B-C-c-C-C-C (GBCNN) 170,705 0.1074 0.9459 32.2213 0.9552

B-C-c-C-C-B 170,001 0.1113 0.9867 32.0204 0.9532
B-C-c-C-B-C 148,177 0.1138 1.0383 31.8524 0.9519
B-C-c-C-B-B 147,473 0.1230 1.0890 31.5003 0.9487
B-C-c-B-C-C 136,913 0.1160 1.0469 31.7855 0.9519
B-C-c-B-C-B 136,209 0.1183 1.0465 31.6908 0.9505
B-C-c-B-B-C 114,385 0.1255 1.1303 31.3345 0.9479
B-C-c-B-B-B 113,681 0.1441 1.2946 30.5393 0.9405

B-B-c-C-C-C (GBCNN-L) 80,593 0.1109 1.0113 31.9925 0.9538
B-B-c-C-C-B 79,889 0.1166 1.0451 31.7482 0.9513
B-B-c-C-B-C 58,065 0.1391 1.3125 30.7628 0.9430
B-B-c-C-B-B 57,361 0.1294 1.1457 31.1907 0.9462
B-B-c-B-C-C 46,801 0.1184 1.0562 31.6847 0.9508
B-B-c-B-C-B 46,097 0.1244 1.0977 31.4052 0.9484
B-B-c-B-B-C 24,273 0.1292 1.1401 31.1820 0.9462
B-B-c-B-B-B 23,569 0.1484 1.3634 30.3444 0.9378

even though it still outperforms the fully convo-
lutional IRCNN architecture. Also, the weakening
effect of the SDPF filters with increasing network
depth appears to be independent of the network’s
parameter count (and hence its expressiveness),
indicating that the improved performance indeed
comes from the introduction of model assumptions
into the network.

Table 3 lists an extended architectural eval-
uation based on the top performing GBCNN
configuration (B-C-c-C-C-C). It reports the per-
formance of the network configurations resulting
from all possible combinations of receptive field
and convolutional layers following the first layer.

We observe that the modification of the sec-
ond layer has the largest impact on the amount
of trainable parameters. When using a second
layer with SDPF filters and sparsity constraint
(B-B-c-C-C-C), the amount of parameters is more
than halved compared to using a fully convolu-
tional one. In accordance with the results from
Table 2, receptive field layers impair the inpainting
performance when placed in the image reconstruc-
tion section of the network (cf. Fig. 2, layers
four to six). Out of those three positions, using
SDPF filters in the last layer leads to the least
degradation of results.

This yields two candidates with fewer param-
eters and only a slight degradation in per-
formance compared to GBCNN: the configura-
tions B-C-c-C-C-B with 170,001 parameters and
B-B-c-C-C-C with 80,593 parameters. We remark
that PSNR and MSE do not behave necessarily
the same for each architectures due to averag-
ing the numbers per image, and subsequently
per dataset. We then select B-B-c-C-C-C as the
lightweight version of GBCNN and denote it as
GBCNN-L. Below, we will compare both network
configurations against state-of-the-art methods.

3.3 Filter analysis

Here we analyze the properties of SDPF filters
in the first network layer. We compare the filter
structure to fully convolutional filters after a com-
pleted training, and investigate their influence on
the training process.

3.3.1 SDPF filter response

To analyze the differences between convolutional
and SDPF constrained receptive field layers, we
investigate the structure of learned features when
they are applied to natural images. Fig. 3 visu-
alizes the 64 filters in the first layer of IRCNN
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(3a) and GBCNN (3b) after being trained for 100
epochs on the full test set of 221,000 images with
white masks.

Filters learned in the first layer of the GBCNN
are visually more structured and include several
first- and second order difference filters. These
clearly result from the linear combinations of a
few elements from the SDPF dictionary. We also
notice a few low-pass filters (e.g., row 2, column
7 and row 8, column 8). By contrast, the IRCNN
filters appear less symmetrical and include almost
no elements identifiable as difference filters.

In Fig. 4, we illustrate the responses of a rep-
resentative selection of filters applied to natural
images, to highlight the different filter charac-
teristics. To this end, we visualize the effect
of randomly selected filters from the first lay-
ers of IRCNN and GBCNN on images from the
test data set. The filters learned in the SDPF
constrained receptive field layers in Fig. 4b act
typically as edge detectors along selected orienta-
tions (columns 1,3,5,6) but also include a low-pass
(column 2) and high-pass (column 4) filter. By
contrast, the filter responses for the IRCNN archi-
tecture in Fig. 4a are less structured and do not
include strong directional responses. This high-
lights the geometric character and interpretability
of the filters associated with our SDPF con-
strained receptive field layers that are inspired by
principles of sparse image approximations.

3.3.2 SDPF filters during training

Here we investigate whether applying our strat-
egy based on pre-designed filters is advantageous
throughout the whole training process. One could
suppose that these filters simply act as a good
“layer initialization” during the first epochs; one
could then lift the SDPF dictionary constraint
after a certain number of epochs after which the
network would convergence to an even better
model. To investigate this possibility, we imple-
mented a version of a receptive field layer that
we trained for a fixed number of epochs under
the constraint that convolutional kernels are taken
as linear combinations our SDPF dictionary ele-
ments; after a prescribed number of epochs, we
used the learned filters as initial weights for a
conventional convolutional layer that we trained
further.

(a) Conventional convolutional kernels (layer type C)

(b) Kernels in receptive field layer (layer type B)

Fig. 3: The 64 learned filters in the first layer
of the CNN architecture in Fig. 2 resulting from
different types of training strategies.

Fig. 5 shows the result of this numerical exper-
iment, where we trained a GBCNN for 60 epochs,
after which we lifted the SDPF constraint. This
effectively replaces the SDPF constrained recep-
tive layer with a conventional convolutional layer
that we initialized with the filters learned after 60
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(a) IRCNN (b) GBCNN

Fig. 4: Filter responses on five natural images with overlaid handwriting for six randomly sampled filters
from the first layer of the IRCNN and GBCNN networks (cf. Fig. 3 for entire filter sets). The filters are
displayed in the top row and the original images are shown in the first column on the right.

Fig. 5: Inpainting performance as a function of the number of training epochs. The GBCNN performance
is always above the IRCNN performance. The purple curve (labeled Switch 60) shows the effect of relaxing
the SDPF constrained receptive field layer into a conventional convolutional layer after 60 epochs; the
network performance decreases to a level comparable to the IRCNN. Results are averaged over 10 runs.

epochs. The figure compares the inpainting perfor-
mance of the model resulting from this experiment
against a GBCNN and an IRCNN. Remarkably,
despite the good initialization after 60 epochs, the
performance of the network trained with conven-
tional convolutional layers decreases with respect
to the GBCNN and falls to the level of a network
that used convolutions during the whole training.

To further illustrate this phenomenon, Fig. 6
visualizes a randomly selected set of filters over

the duration between lifting the SDPF constraint
until the training ends. We see that the filter
responses change dramatically, even though the
filters appear to change very gradually. In some
instances, the filter responses lose their sensitiv-
ity to edges and salient features that is common
for filters obtained from the SDPF dictionary
(cf. Fig. 4a)

All in all, these observations show that our
training strategy based on SPDF dictionary and
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Fig. 6: Evolution of selected kernels in the first
network layer, after the receptive field layer is
relaxed into a conventional one. Each kernel is
displayed above its response every 10 epochs,
between 60-120 epochs.

sparsity constraint affects the convergence of the
network kernels throughout the entire training
process and its effect cannot be reduced to a clever
filter initialization.

3.4 Inpainting performance with
increasing training set size

In practical applications of neural networks, it is
often important to decide the amount of training

data that is required for the network to converge
to a satisfactory model.

We systematically investigated the inpaint-
ing performance of our GBCNN as compared
to a IRCNN for different amounts of training
data with white masks and reported the results
in Fig. 7. The figure shows the image inpaint-
ing performance in PSNR for images corrupted
by occlusions affecting a different fraction of the
image area as a function of the number of train-
ing samples (between 10 and 10,000 samples).
The networks are trained for 100 epochs and
the results averaged over 10 runs. Compared to
IRCNN, our GBCNN approach exhibits higher
PSNR values on the test set after being trained
on relatively few data samples. This difference in
performance reduces with more data, but remains
very significant on images with smaller areas to
inpaint.

Since our GBCNN uses a lower number of
trainable parameters than an IRCNN (with the
same architecture), it was expected that the for-
mer would converge with a lower number of train-
ing samples. This intuition was confirmed by our
numerical experiments. We explain this behavior
with the improved ability of the SPDF dictio-
nary to capture the essential image characteristics
which is also the reason for the competitive per-
formance found in the shearlet-based inpainting
algorithm that motivated this study. By contrast,
the IRCNN requires more training samples to
reach the same performance as the GBCNN.

3.5 Benchmark comparison of
inpainting performance

We compared the performance of our GBCNN and
GBCNN-L against state-of-the-art algorithms for
blind image inpainting, including IRCNN [10] and
VCNet [35]. Our comparison does not include the
wide body of work on non-blind deep inpainting
methods, e.g., partial convolutions [25], contex-
tual attention [38], convolutions [39] or genera-
tive approaches, due to their use of information
about the corruption’s location and the resulting
problem simplification. However, we included the
non-blind method ShearLab [19] in the compar-
ison, as our approach is partially motivated by
sparsity-based ideas underlying this approach.

The networks are compared on all three ver-
sions of the dataset (masked with white, random
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Fig. 7: Image inpainting performance in PSNR for IRCNN (dashed) and GBCNN (solid), for different
occlusion areas (distinguished by color and marker) on the training images. For 20-25% coverage only
103 samples were available. Networks are evaluated after training for 100 epochs and the numbers are
averaged over 10 network trainings.

color or Gaussian noise) and trained on the full
data sets (221,000 images) for 100 epochs. VCNet,
however, is trained from scratch using 160,000
iterations with a batch size of 12 images following
the original paper training schedule1. Each net-
work is trained five times, and the training run
with the best performance is displayed.

Table 4 reports the image inpainting perfor-
mance in PSNR on the full test sets and their
subsets associated with different fractions of the
image area lost to occlusion. Since the qualita-
tive performance, as measured using the SSIM
metric, is very similar to the PSNR, we did not
report it. The results for Shearlet inpainting are
only stated for the first (white masked) dataset,
as Shearlab uses explicit information about the
mask’s location and is therefore invariant to the
masking color.

The table shows the dataset type has a sig-
nificant influence on the overall inpainting quality
as well as the performance of the different meth-
ods. While all blind inpaintig methods (VCNet,
IRCNN, GBCNN and GBCNN-L) perform well
on the white-masked dataset, the more complex
VCNet performs low on the more difficult ran-
domly colored and Gaussian noise datasets. We
remark that VCNet requires 1,600 times more
training epochs than GBCNN and uses a com-
plex multistep algorithm. Except for VCNet,

1Retraining the network became necessary since the pre-
trained VCNet model provided by the authors in [35] did not
achieve comparable results even after tuning it on our data set
for 100,000 additional iterations.

all learning-based approaches consistently out-
perform the (non-blind) shearlet-based inpainting
method from [19]. This is remarkable, considering
that the latter method is non-blind, and con-
firms the superior performance of learning-based
methods in inpainting.

Among the more lightweight CNN-based
approaches (GBCNN-L, GBCNN and IRCNN),
the differences per dataset are much smaller. Our
sparse architectures GBCNN and GBCNN-L both
outperform IRCNN’s PSNR on the white and ran-
domly colored datasets, with the best results for
white masks achieved by GBCNN-L and for ran-
domly colored by GBCNN. IRCNN leads on the
Gaussian noise set, closely followed by GBCNN.

When we examine the performance on the sub-
sets by percentage of masked image area, the table
shows an interesting shift in the top-performing
methods for the white dataset. For relatively small
occlusions (0-5%), GBCNN-L outperforms the
other methods, with GBCNN performing closely
and VCNet showing a significantly worse per-
formance (37.8666 vs 39.9796 dBs). For larger
occlusions (5-10%) GBCNN has the best perfor-
mance with GBCNN-L performing closely. For
the largest tested occlusions (15-20% and 20-
25%) VCNet achieves the best performance, even
though the improvement with respect to GBCNN
is less that 0.5 dBs. We attribute this observa-
tion to the fact that for large inpainting areas,
the information about the location of the missing
region becomes more important and VCNet, tak-
ing advantage of its greater complexity, is able to
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Table 4: Image inpainting performance measured as average PSNR on the entire test set or on subsets
associated with the percentage of image lost due to occlusion. Best result by column in bold, second best
underlined.

Method Entire set 0–5% 5–10% 10–15% 15–20% 20–25%

Dataset white

Shearlet [19] 30.7005 34.5694 31.4638 29.5394 27.7532 25.4599

VCNet [35] 32.6120 37.8666 33.1650 30.9287 29.0408 27.0796
IRCNN [10] 32.5554 38.9941 33.0309 30.5410 28.2957 26.1550
GBCNN (ours) 32.9497 39.5763 33.3030 30.8849 28.6630 26.6679
GBCNN-L (ours) 33.0063 39.9796 33.2698 30.8267 28.5877 26.6221

Dataset random color

VCNet [35] 28.7741 33.9609 29.6332 27.2164 24.8558 22.6557
IRCNN [10] 32.0852 37.9933 32.5079 30.2452 28.1787 26.2413
GBCNN (ours) 32.4776 38.3913 32.9436 30.6258 28.5373 26.6047
GBCNN-L (ours) 32.2264 38.3673 32.5892 30.3000 28.2446 26.2721

Dataset Gaussian noise

VCNet [35] 29.8666 35.7458 30.3789 27.8976 25.9770 24.0801
IRCNN [10] 32.6010 39.5739 32.9097 30.3680 28.1927 26.1986
GBCNN (ours) 32.5193 39.6120 32.8116 30.2465 28.0567 26.0254
GBCNN-L (ours) 32.1891 39.2154 32.4960 29.9362 27.7528 25.7499

recover large blocks of missing image information
more effectively. Yet, the performance of GBCNN
is not far off (about -0.4dBs) and it seems that
VCNet’s larger complexity does not help to detect
non-white masks.

The comparison of the different network
approaches shows that, due to their ability to cap-
ture salient image features in images, our GBCNN
and GBCNN-L perform very competitively over-
all, even outperforming the more sophisticated
VCNet approach for all mask types. Even though
our approach is designed for the detection of edges
and not for noise removal, also in the presence
of masked filled with Gaussian-noise, the inpaint-
ing performance is still comparable to the IRCNN
architecture and even delivers top results when a
relatively small fraction of the area is affected by
occlusion.

Representative reconstruction results for all
inpainting methods and datasets are shown in
Fig. 8. In terms of visual quality, close inspec-
tion shows that our approach is more effective
to remove the mask contents than VCNet. We
observed this property particularly in the random-
colored and Gaussian-noise datasets and interpret
it as a consequence of our special filter selection

process that is designed to capturing edge-like
structures with high efficiency.

3.5.1 Evaluation time and parameters

We also compared the inference times for all of the
inpainting algorithms considered in this study in
Table 5, and additionally considered the number
of trainable parameters. All run times are com-
puted using a single NVIDIA Tesla V100 PCIe
graphics card with 32 GB memory. All network
approaches were implemented in Python and Ten-
sorflow, while the shearlet-based method has a
Matlab implementation.

Top times are delivered by IRCNN, GBCNN
and GBCNN-L with about 2.5 msec, since infer-
ence requires a computationally cheap feed for-
ward pass on a simple network architecture. The
time differences between these three methods are
negligible, and might be due to small fluctuations
in the time measurements. Due to the lightweight
architecture resulting from the placement of recep-
tive field layers, GBCNN-L has the lowest param-
eter count, followed by GBCNN and IRCNN with
twice as many parameters. Compared to the three
networks above, VCNet has about 20 times more
parameters and takes roughly 5 times longer for
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00-05% 28.7775 27.6978 30.1450 30.2545 30.2093

05-10% 32.8018 31.4703 34.4950 34.4153 34.2522

10-15% 29.7380 27.2641 31.1860 31.2596 31.4438

15-20% 30.5713 31.9964 30.4789 30.6045 30.6514

20-25% 28.6865 28.5921 28.9568 29.7666 29.3380

White 21.7812 26.6984 22.7466 23.6397 23.5825

Random 21.7812 28.3310 25.3800 25.4305 25.4481

Gauss 21.7812 22.6284 24.9764 24.8050 24.7281

Original Masked Shearlet [19] VCNet[35] IRCNN [10] GBCNN GBCNN-L

Fig. 8: Inpainting comparison on images with varying occlusion percentages on random-color dataset
(top) and dataset comparison on 20-25% occlusion (bottom); PSNR per method reported in the image.

inference. This comparison shows the advantages
of SDPF constrained receptive field layers for
the development of lightweight and fast network
architectures.

The iterative nature of the shearlet-based
inpainting algorithm significantly increases its run
time (about 104 times larger) as compared to all
network implementations.
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Table 5: Comparison of network parameter count and average evaluation time µt per image (size 256×
256) in milliseconds for inpainting methods.

ShearLab [19] VCNet [35] IRCNN [10] GBCNN GBCNN-L

Parameters – 3,789,892 172,113 170,705 80,593

µt [msec] 29,147.001 17.460 2.539 2.453 2.534

4 Conclusions

We have introduced a novel strategy for blind
image inpainting that brings model-based prin-
ciples from the theory of sparse representation
into the design of a new deep learning model.
Our approach employs a specifically designed fil-
ter dictionary, called SPDF, in combination with
a sparsity constraint, that is motivated by the
success of shearlet representations in image pro-
cessing applications. With these novel concepts
we develop two lightweight network models called
GBCNN and GBCNN-L.

One main advantage of our approach to blind
inpainting is the increased interpretability. As
compared to the conventional CNN approach
where there is essentially no control on the ker-
nel structure, the kernels learned by our GBCNN
and GBCNN-L reflect the geometric properties of
the SPDF dictionary that are critical to capture
salient image features such as edges and corners.
This behavior is consistent with the model-based
principles that guided our design strategy.

By integrating model-based principles into a
simple and light weight network architecture, our
approach outperforms not only conventional CNN
schemes with similar architectures in terms of
inpainting quality. It also excels the significantly
more complex VCNet algorithm, which applies a
multistep strategy for blind image inpainting.

However, our approaches exhibit a reduced
inpainting quality in the case where the region
to be inpainted is relatively large. We believe the
reduction in competitiveness of our method in this
case to be explained by the support size of our
filter dictionary, whose element were selected to
have fixed size of 5×5 pixels. This observation sug-
gests that our method could possibly be improved
by considering a filter dictionary with elements
having multiple size supports, e.g., 5 × 5, 7 × 7
and 9× 9, and the idea of using filters of different
support size in CNNs has been already employed

successfully in the deep learning literature [34].
This extension would be fully consistent with the
theoretical framework of shearlet-based inpaint-
ing [16] that inspired the present work, since the
desirable properties of the shearlet representation
system include not only directional sensitivity but
also multiresolution.
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