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Neural Networks

A neural network is an algorithm for processing an input x ∈ RD

and returning an output in Rk
.

The algorithm involves the repeated application of two simple
operations:

1. an affine linear transformation, that is, a map of the form

x ↦ W (x) = Ax + b

2. a non-linear activation function ρ applied coordinate-wise.

In the simplest case, the two operations are repeated multiple
times by composition.
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Neural Networks

A feedforward neural network processes information by
composition

1. Denote the input as x̂
0
= x

2. For 1 ≤ ℓ ≤ L, set

x
ℓ
= W

ℓ(xℓ−1) = A
ℓ
x̂
ℓ−1

+ b
ℓ
, x̂

ℓ
= ρ(xℓ)

3. The output is Φ(x) = x
L

The values x
ℓ
, 1 ≤ ℓ ≤ L − 1, which are not seen by a user are the

hidden layers or latent variables of the neural network.

Remark: in practical implementations, the numerical values of the
matrices A

ℓ
and the biases b

ℓ
are learned during an appropriate

training process.
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Neural Networks

Graphical representation of a feedforward neural network with
input x ∈ R2

, output Φ(x) ∈ R and 4 layers (L = 4).

Information flows forward from input to output
⟶ feedforward architecture
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Neural Networks

In a feedforward neural network, information flows forward from
input to output.
When neural networks are extended to include feedback
connections, they are called recurrent neural networks
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Feedforward Neural Networks

Feedforward neural networks are also called multilayer
perceptrons (MLPs) and colloquially referred to as the ”vanilla”
neural networks.

History note.

▶ In 1958, a layered network of perceptrons, consisting of an
input layer, a hidden layer with randomized weights that did
not learn, and an output layer with learning connections, was
introduced by Frank Rosenblatt in his book Perceptron.

▶ Here a perceptron is a map of the form
x ↦ Φ(x) = θ(w ⋅ x + b) where w vector of real-valued
weights and θ is the heaviside step-function.

▶ In 1967, S. Amari first trained a MLP by stochastic gradient
descent to classify non-linearily separable pattern classes.
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Feedforward Neural Networks

A feedforward neural network with only one hidden layer is a
shallow neural network.

In this case, it takes a linear map of the input x ∈ RD
, applies an

activation function ρ and finally another linear map:

Φ(x) = A
2(ρ(A1

x + b
1)) + b

2

This can be written (for 1-dimensional output) as

Φ(x) =
n

∑
i=1

ai ρ(w t
i x + bi)

where n is the number of hidden neurons.
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Feedforward Neural Networks

Graphical representation of a shallow neural network with input
x ∈ R2

, output Φ(x) ∈ R. It only includes 1 hidden layer, so L = 2.

Φ(x) = A
2(ρ(A1

x + b
1)) + b

2
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Feedforward Neural Networks

A deep neural network has several inner layers

Φ(x) = A
4
ρ(A3

ρ(A2
ρ(A1

x + b
1) + b

2) + b
3) + b

4

Here we have a feedforward neural network with 4 layers and 3
hidden layers.

Note: for the function Φ to be well defined, the dimensions of
x ∈ RD

, the vectors b
i
and the matrices A

i
must be matched.

10 / 84



Feedforward Neural Networks

A deep neural network has several inner layers

Φ(x) = A
4
ρ(A3

ρ(A2
ρ(A1

x + b
1) + b

2) + b
3) + b

4

Here we have a feedforward neural network with 4 layers and 3
hidden layers.

Note: for the function Φ to be well defined, the dimensions of
x ∈ RD

, the vectors b
i
and the matrices A

i
must be matched.

10 / 84



Feedforward Neural Networks

Graphical representation of a deep neural network with input
x ∈ R2

, output Φ(x) ∈ R and 3 inner layers, that is, L = 4.
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1.1 Approximation properties
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Feedforward Neural Networks

A neural network produce a structured parametric families of
functions of the form

Φ(x) = W
L
◦ ρ ◦W

L−1
◦ . . . ρ ◦W

1(x), x ∈ RD

where

▶ W
ℓ(x) = A

ℓ
x + b

ℓ
, ℓ = 1, . . . , L

▶ A
ℓ
∈ RNℓ×Nℓ−1 are the filters and b

ℓ
∈ RNℓ are the biases

▶ ρ ∶ R → R is the activation function

▶ L(Φ) is the number of layers of Φ

▶ Nℓ ∈ N, i = ℓ, . . . , L is the width of the ℓ-th layer, N0 = D,
and N(Φ) = ∑L

i=0Ni is the number of neurons of Φ

▶ M(Φ) = ∑L
ℓ=1 ∣∣A

ℓ∣∣0 + ∣∣bℓ∣∣0 is the number of weights (or
parameters) of Φ
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Feedforward Neural Networks
Graph representation

▶ Number of layers L = 4

▶ Number of neurons N = 15

▶ Number of weights M = ∑4
ℓ=1 ∣∣A

ℓ∣∣0 + ∣∣bℓ∣∣0 = 44 + 13 = 57

Φ(x) = W
4(ρW 3(ρW 2(ρW 1(x))))
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Feedforward Neural Networks

Importance of network parameters.

The number of parameters (also called weights) of a neural
network is very important.

When designing a neural network supervised learning applications,
the number of trainable parameters is a hyperparameter affecting
the performance of the model.

Designing a deep network with a high number of parameters can
be useful to learn more complex models for non-trivial tasks but it
can also lead to severe overfitting if the training set is small or the
task at hand is simple.

Overfitting happens when the learning model network memorizes
the training set instead of learning the patterns of it. Therefore,
monitoring the number of trainable parameters of a neural
networks is important in neural network design for supervised
learning applications.
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Feedforward Neural Networks

One can derive a formula to count the number of parameters M
of a feedforward neural network.

M depends on the number of layers and neurons at each layer.

Observation: For 2 fully connected layers with number of neurons Ni and
Ni+1, the number of trainable parameters is

(Ni + 1) ∗ Ni+1

where the +1 term in the equation takes into account the bias terms.

Note: Software to draw neural networks: http://alexlenail.me/NN-SVG/
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Feedforward Neural Networks
Examples of activation functions:

▶ Sigmoid: ρ(x) = 1
1+e−x

▶ Rectified linear unit (ReLU): ρ(x) = max{x , 0}

• ReLU is the most common activation function in applications
• The sigmoid is differentiable
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Deep Neural Networks

▶ Modern network architectures are typically very deep

▶ Depth improves expressive power

▶ With respect to shallow networks, deep neural networks can
exploit composition → Blessing of compositionality

▶ Input and output can be multi-dimensional in general.

Note: Software to draw neural networks: http://alexlenail.me/NN-SVG/
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Universal approximations

Theoretical results demonstrate the ability of feedforward neural
networks to implement large classes of multivariate functions.

Universal approximation theorems have historically been used as
a justification of the expressive power of neural networks.

Definition.
A class of functions F is called a universal approximator over a
compact set S , e.g., S = [0, 1]D , if, for every continuous function
g and target accuracy ϵ > 0, there exists f ∈ F such that

sup
x∈S

∣f (x) − g(x)∣ < ϵ.
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Universal approximations
Universal approximation theorems state roughly that: regardless
of what function we are trying to learn, a sufficiently large
feedforward neural network will be able to represent this
function.

Theorem (Hornik, 1991)

Assume ρ is a C
∞

non-polynomial function. Then the class of
shallow neural networks is a universal approximator over [0, 1]D .
Note: the network may become arbitrarily wide.

Theorem [Kidger and Lyons, 2020]

Assume ρ is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that
point. Then the class of deep neural networks where the number of
neurons Nℓ for each layer ℓ can be bounded by D + d + 2 where d
is the output dimension is a universal approximator over [0, 1]D .
Note: the network may become arbitrarily deep.
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Universal approximations

Remarks
▶ Universal approximation theorems indicate that neural

networks have the ability to accurately approximate any
continuous multivariate function.

▶ The representation power of a neural network increases with
the number of neurons and layers.

▶ Warning: even if a neural network is able to represent a
function, the training algorithm may fail to learn that specific
function.

▶ Learning can fail (i) because the optimization algorithm used
for training may not be able to find the value of the
parameters corresponding to the desired function or (ii)
because the training algorithm might choose the wrong
function as a result of overfitting.
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Example: piecewise linear functions on R
Triangle function:

T (x) = {2x if 0 ≤ x <
1
2

2(1 − x) if 1
2
≤ x ≤ 1

x ∈ R,

I claim that T can be expressed using a shallow ReLU feedforward
neural network with 1 hidden layer of width N1 = 2

We have a neural network with 7 parameters:

Φ(x) = [a21 a22] ρ ([a11
a12

] x + [b11
b12

]) + b2,

where ρ(αx + β) = (αx + β)+
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Example: piecewise linear functions on R

We can write explicitly

Φ(x) = a21(a11x + b11)+ + a22(a12x + b12)+ + b2.

We can solve it as

Φ(x) = 2(x − 0)+ − 4(x − 1
2
)+

where (g(x))+ denotes the non-negative part of g(x)

Note that each term in Φ(x) is associated with a linear section of
the piece-wise linear function.
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Example: piecewise linear functions on R
The expression below is exactly matched to the graphical
representation of the neural network with each summand
identifying one branch

Φ(x) = 2(x − 0)+ − 4(x − 1
2
)+

▶ One can write any triangle function on an interval using a
similar network with N1 = 2.

▶ One can write any piecewise linear function on a compact
domain with N1 linear sections using N1 neurons.

More about it in the homework
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Representation power of neural networks

Using functional composition, feedforward neural networks can
represent more complex information.

We are going to show the output function of neurons in different
layers.
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Representation power of neural networks

Here we show the output function of neurons in the first 3 layers,
for random inputs, using the ReLU activation function
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Representation power of neural networks

Here we show the output function of neurons in the first 3 layers,
for random inputs, using the tanh activation function
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1.2 Supervised Learning
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Feedforward Neural Networks - Machine Learning

Feedforward Neural Networks can be adapted to various
supervised learning setups including the following.

▶ Univariate and multivariate regression. You want to predict
the values of a function

y = f (x), x ∈ Rd

Example: predicting values of multivariate continuous
function.

▶ Binary and multilabel classification. You want to predict
whether an instance x ∈ Rd

is associated to a label
y ∈ {0, 1, . . . ,m}.
Example: predicting whether a patient has diabetic
retinopathy or not, that is, y ∈ {0, 1}.
Example: predicting the class of an handwritten digit in the
label set {0, 1, 2, . . . , 9}.
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Feedforward Neural Networks - Machine Learning

The output layer of a Feedforward Neural Network is constrained
by the type of problem that you are modeling.

▶ Regression problem. Output is a single neuron and the
neuron may have no activation function.

▶ Binary classification problem. Output is a single neuron
and uses a sigmoid activation function to output a value
between 0 and 1 to represent the probability of predicting a
value for the class 1. This can be turned into a class
assignment by using a threshold of 0.5 and assigning values
less than the threshold to 0, otherwise to 1.

▶ Multi-class classification problem. Output layer may have
multiple neurons, one for each class. In this case, a softmax
activation function may be used to output a probability of the
network predicting each of the class values.
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Feedforward Neural Networks - Machine Learning

▶ Binary classification. The sigmoid (also called logistic
function)

f (x) = 1

1 + e−x

maps the output to values between zero and one. A threshold
set to 0.5 would assign samples of outputs larger or equal 0.5
to the positive class, and the rest to the negative class.

▶ K -class classification. The softmax function is a vector
valued function with components

s(x)i =
e
−xi

∑K
k=1 e

−xk

where x = (x1, . . . , xK ) The result is a vector containing the
probabilities that a sample belongs to each class; the output is
the class with the highest probability.
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Feedforward Neural Networks - Machine Learning

- Given an input, the sigmoid maps the input in the interval [0, 1].
This property works well for binary classification.

- In the multi-class problem, we want the outputs for each of the
class to be between 0 and 1 and the sum of these scores to be 1.
A sigmoid activation function does not satisfy these properties.

- Softmax is an activation function applied on top of Logits (the
outputs from the final layer) to get final scores (or probabilities) so
that final scores are between 0 and 0 and their total sum is 1.
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Feedforward Neural Networks - Machine Learning

To train a neural network, we need to define a loss function and
find parameters that minimize the loss on the training data.

MLPs uses different loss functions depending on the problem type.

▶ For regression, MLPs typically use the Mean Square Error
loss function.

▶ For classification, MLPs typically use the Average
Cross-Entropy loss function.

In most implementations, the loss function also includes a
regularization term (also known as penalty) that penalizes
complex models.
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Feedforward Neural Networks - Machine Learning

Let us consider the regression problem first.

• Let {(xi , yi) ∶ i = 1, . . . ,m}, where xi ∈ Rn
and yi ∈ R, be a

training set.

• The prediction of the Neural Network on a single input is the
result of the forward pass that we denote as

N (xi , θ) = ŷi ,

where θ is a parameter vector comprising all coefficients of the
filters and the biases.
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Feedforward Neural Networks - Machine Learning

To control the prediction error in the regression problem, a
standard choice is to use the square error.
• For a single sample, we have

L(ŷi , yi ; θ) =
1

2
(N (xi , θ) − yi)2 =

1

2
(ŷi − yi)2.

• Averaging over the training set (x , y), we mean square loss is

L(ŷ , y ; θ) = 1

2m

m

∑
i=1

(ŷi − yi)2.

• To train the Neural Network for regression, we need to find the
minimum of L as a function of the parameter vector θ.
This minimization problem has no analytic solution in general and
need to be solved numerically.
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Feedforward Neural Networks - Machine Learning

To improve the numerical convergence of the minimization
problem, the loss function often includes a regularization term:

L(ŷ , y ; θ) = 1

2m

m

∑
i=1

(ŷi(θ) − yi)2 +
α

2m
∥θ∥2

2,

that that penalizes more complex models.

▶ ∥θ∥2
2 = ∑i θ

2
i increases with the number and the size of the

parameters of the MLP. Hence, having more non-zero
parameters increases the loss.

▶ α is non-negative hyperparameter that controls the magnitude
of the penalty.
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Feedforward Neural Networks - Machine Learning

Let us now consider the classification problem. For simplicity we
consider a binary classification problem.

• Let {(xi , yi) ∶ i = 1, . . . ,m}, where xi ∈ Rn
and yi ∈ {0, 1}, be a

training set. Note that yi can only take two possible values.

• As above, the prediction of the Neural Network on a single input
is the result of the forward pass that we denote as

N (xi , θ) = ŷi ,

where θ is a parameter vector comprising all coefficients of the
filters and the biases.
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Feedforward Neural Networks - Machine Learning

To control the prediction error in classification problem, a standard
approach is to use the notion of cross entropy.

Given a true distribution t and a predicted distribution p, the cross
entropy between them is given by the equation

H(t, p) = −∑
s∈S

t(s) log p(s)

where S is the support of the probabilities.

This quantity can be used as a measure of error for categorical
multi-class classification problems.
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Feedforward Neural Networks - Machine Learning

For a binary classification problem, the binary cross entropy is

H(t, p) = −t log p + (1 − t) log(1 − p)

where p is the predicted probability and t is either t = 0 or t = 1.

Example:
Suppose the correct target is t = 1.
Then H(t, p) = − log p.

The binary cross entropy will reward giving a correct prediction:

▶ p closer to 1 will give a lower loss (H(t, p) = 0 if p = 1);

▶ p closer to 0 will give a higher loss.

The behavior is the same when the correct target is t = 0.
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Feedforward Neural Networks - Machine Learning

To control the prediction error in the binary classification problem,
we use the Average Cross-Entropy loss function. For a sample
set of size m, it is given by

L(ŷ , y ; θ) = −
1
m

m

∑
i=1

(yi log ŷi + (1 − yi) log(1 − ŷi)) ,

where yi is the true label of sample i and ŷi is the corresponding
probability value (= the output of the sigmoid function).

By the observation above, this loss function is larger when there is
miss-match between yi and ŷi .
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Feedforward Neural Networks - Machine Learning

For the K -class classification problem, for a sample set of size m,
the Average Cross-Entropy loss function, is given by

L(ŷ , y ; θ) = −
1
m

m

∑
i=1

K

∑
c=1

(yi(c) log ŷi(c)) ,

where yi is the true label of sample i and ŷi is the corresponding
probability (= the output of the softmax function).

The Average Cross-Entropy is larger when there is miss-match
between yi and ŷi .
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Feedforward Neural Networks - Machine Learning

Example:
Suppose that, for a specific training instance, the true label is B,
out of the possible labels A, B, and C.
Hence, for this instance, the correct distribution is y = (0, 1, 0)
Suppose the MLP predicts the probability distribution
ŷ = (0.228, 0.619, 0.153)
The Average Cross-Entropy is
L = −(0.0 ∗ ln(0.228) + 1.0 ∗ ln(0.619) + 0.0 ∗ ln(0.153)) = 0.479

Next suppose the MLP predicts the new probability distribution
ŷ = (0.001, 0.998, 0.001)
The Average Cross-Entropy is now
L = −(0.0 ∗ ln(0.001) + 1.0 ∗ ln(0.998) + 0.0 ∗ ln(0.001)) = 0.002

The distance of the predicted probability from the true probability
is very small.
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Feedforward Neural Networks - Machine Learning

Example: 4-class classification task where an image is classified as
either a dog, cat, horse or cheetah.

MLP outputs logits and the Softmax function converts logits into
probabilities.

The cross-entropy
H = −(1.0∗ln(0.775)+0∗ln(0.116)+0∗ln(0.039)+0∗ln(0.070) = 0.255

gives the distance from the true probability.
Note that y = (1, 0, 0, 0) in the example.
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Feedforward Neural Networks - Machine Learning

Regularization:

Also in this case, similar to the square loss for the regression
problem, the loss function typically includes a regularization term
to penalize more complex models:

L(ŷ , y ; θ) = −
1
m

m

∑
i=1

(yi ln ŷi + (1 − yi) ln(1 − ŷi)) +
α
m∥θ∥2

2

L(ŷ , y ; θ) = −
1
m

m

∑
i=1

K

∑
c=1

(yi(c) log ŷi(c)) +
α
m∥θ∥2

2
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Feedforward Neural Networks - Machine Learning

• To compute a classification or regression model using a MLP,
given a collection of training samples, we need to to find the
minimum of the loss function as a function of the weights and
biases.

• MLP with hidden layers have a non-convex loss function where
there exists more than one local minimum.
Therefore different random weight initializations can lead to
different validation accuracies.
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1.3 Gradient Descent and
Backpropagation
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Neural Networks - Gradient Descent
To mimimize the loss function of a MLP, the standard procedures
are Stochastic Gradient Descent, Adam, or L-BFGS.

▶ Stochastic Gradient Descent is a variation of Gradient
Descent that updates the model parameters based on the
gradient of the cost function for a single training example,
rather than the average gradient over the entire training set.
It starts at a random point on the cost function surface and
moves in the direction of the steepest descent, iteratively
updating the parameters using samples of the training set.

▶ Adam is similar to Stochastic Gradient Descent in a sense
that it is a stochastic optimizer, but it can automatically
adjust the amount to update parameters based on adaptive
estimates of lower-order moments.

▶ L-BFGS is a second-order optimization algorithm that
approximates the Hessian matrix representing the second-order
partial derivative of a function. It also approximates the
inverse of the Hessian matrix to perform parameter updates.
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Neural Networks - Gradient Descent

The minimum of the loss function of a MLP is not very easy to
locate because it is not an easy function to differentiate.

In a MLP, the output is dependent on all the weights, so the error
obtained at the last output node is also dependent on all the
weights.

To compute the derivative of the loss function with respect to the
weights, we need to backpropagate the error all the way to the
input node from the output node.

Backpropagation is a method to estimate the gradient of a neural
network model.
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Backpropagation

Learning occurs in a feedforward neural network by changing the
weights after each piece of data is processed, based on the amount
of error in the output compared to the expected result.
This is an example of supervised learning, and is carried out
through backpropagation.

We can represent the degree of error in an output node j in the
n-nth data point (training sample) by

ej(n) = dj(n) − yj(n)

where dj(n) is the desired target value for n-nth data point at
node j and yj(n) is the value produced by the neural network at
node j when the n-nth data point is given as an input.
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Backpropagation

The node weights can then be adjusted based on corrections that
minimize the error function E(n) in the entire output for the
n-nth data point, given by

E(n) = 1

2
∑

output node j

e
2
j (n)

Using the method of gradient descent, the change in each weight
Wji is

∆Wji(n) = −η
∂E(n)
∂vj

yi(n)

where yi(n) is the output of the previous neuron i , η is the
learning rate and vj(n) is the weighted sum of the input
connections of neuron j .

The learning rate is a hyperparameter selected to ensure that the
weights quickly converge to a response without oscillations.
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Backpropagation
The calculation of the derivative

∂E(n)
∂vj

above depends on the

induced local field vj which itself varies.

For an output node the derivative can be simplified to

∂E(n)
∂vj

= −ej(n)ρ′(vj(n))

where ρ
′
is the derivative of the activation function

For a hidden node the derivative can be simplified to

∂E(n)
∂vj

= −ρ
′(vj(n))∑

k

∂E(n)
∂vk

Wkj(n)

where the k-th nodes represent the output layer.

In sum, to change the hidden layer weights, the output layer weights

change according to the derivative of the activation function; hence this

algorithm represents a backpropagation of the activation function
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Backpropagation - Example

I will illustrate backpropagation on an simple neural network with a
single hidden layer.

Input and output are 2-dimensional; additionally, there is a bias.
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Backpropagation - Example

The network is initialized as below

There is a single training set: given inputs 0.05 and 0.10, we want
the neural network to output 0.01 and 0.99.

We assume ρ(x) = 1
1+e−x

. Note that ρ
′(x) = ρ(x)(1 − ρ(x)).

We assume for the learning rate: η = 0.5.

53 / 84



Backpropagation - Example

We start running a Forward Pass to compute what the neural
network currently predicts given the weights and biases above and
inputs of 0.05 and 0.10.

input to node h1:
vh1 = w1∗i1+w2∗i2+b1∗1 = 0.15∗0.05+0.2∗0.1+0.35∗1 = 0.3775
output from node h1:
yh1 = ρ(vh1) = 0.593269992
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Backpropagation - Example

Similarly

input to node h2:
vh2 = w3∗i1+w4∗i2+b1∗1 = 0.25∗0.05+0.3∗0.1+0.35∗1 = 0.3925
output from node h2:
yh2 = ρ(vh2) = 0.596884378
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Backpropagation - Example

We repeat the same calculation for the output layer.

vo1 = w5 ∗ o1 + w6 ∗ 02 + b2 ∗ 1 =

0.4 ∗ 0.593269992 + 0.45 ∗ 0.5968843781 + 0.6 ∗ 1 = 1.105905967
yo1 = ρ(vo1) = 0.75136507

vo2 = w7 ∗ o1 + w8 ∗ 02 + b2 ∗ 1 = (...)
yo2 = ρ(vo2) = 0.772928465
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Backpropagation - Example

We now calculate the error at the output.

eo1 = 0.01 − 0.75136507 = −0.74136507
eo2 = 0.99 − 0.772928465 = 0.217071535

Hence we have the total error
E =

1
2
(e2o1 + e

2
o2) = 0.298371109
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Backpropagation - Example

The goal of backpropagation is to update each of the weights in
the network so that they cause the actual output to be closer the
target output.

We apply the formulas stated above with learning rate η = 0.5.
We first consider the weights of the output layer.

∂E

∂voi
= −eoi ρ

′(voi)

Then

∂E
∂vo1

= −eo1 ρ
′(vo1) = −eo1 ρ(vo1)(1 − ρ(vo1)) = 0.1384985619

∂E
∂vo2

= −eo2 ρ
′(vo2) = −eo2 ρ(vo2)(1 − ρ(vo2)) = −0.03809823661
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Backpropagation - Example

Observing that w5 connects the nodes h1 to o1,

∆w5 = −η ∂E
∂vo1

yh1 = −0.04108352024

Hence the updated weight w5 is
w

+
5 = w5 +∆w5 = 0.3589164798

Similarly we find
w

+
6 = 0.408666186, w

+
7 = 0.511301270, w

+
8 = 0.561370121.
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Backpropagation - Example
We next consider the hidden layer.

∂E

∂vh1
= −ρ

′(vh1)∑
k

∂E

∂vk
Wkj

= −ρ(vh1)(1 − ρ(vh1)) (
∂E

∂vo1
w5 +

∂E

∂vo2
w6)

= 0.2413007086(0.1384985619 ∗ 0.4 − 0.03809823661 ∗ 0.45)
= 0.00923101128
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Backpropagation - Example

∆w1 = −η ∂E
∂vh1

yi1 = −0.5∗0.00923101128∗0.05 = −0.0002307753

w
+
1 = w1 +∆w1 = 0.1497692247

Similarly we find
w

+
2 = 0.19956143,w

+
3 = 0.24975114,w

+
4 = 0.29950229
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Backpropagation - Example

We have now updated all of the weights.

If we now run another Forward Pass with the updated weights, we
find that the new total error is E

+
= 0.291027924

As compared with the original error E = 0.298371109, we have
reduced the error by 0.007343185.

It might not seem like much, but error is decreasing.

After repeating this process 10,000 times, the error plummets to
0.0000351085.

At this point, when we feed forward 0.05 and 0.1, the two outputs
neurons generate 0.015912196 (vs 0.01 target) and 0.984065734
(vs 0.99 target).

See https://github.com/mattm/simple-neural-network
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1.4 Implementation
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MLP - Implementation from scratch

We introduce a notation that will be convenient for numerical
implementation.

For a single perceptron with input x ∈ RD
, we can write the

one-dimensional output as

f (x) = ρ(w0 +
D

∑
i=1

wixi) = ρ (w0, . . . ,wD) ⋅ x̃ ,

where x̃ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
x1
⋮
xD

⎞
⎟⎟⎟⎟⎟⎟
⎠

Note that we have denoted the bias as w0.
With this notation, we can write the affine transformation on x
as a linear transformation on x̃ .
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MLP - Implementation from scratch
For an MLP with a single hidden layer and N1 neurons, the output
at each neuron j is

f
(1)
j (x) = ρ(w (1)

0,j +
D

∑
i=1

w
(1)
i ,j xi)
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MLP - Implementation from scratch
The output of the hidden layer is the vector

f
(1)(x) = ρ (W (1)

x̃)

where W
(1)

is the transpose of the matrix with entries (w (1)
i ,j ), for

i = 0, 1, . . .D, j = 1, . . . ,N1.
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MLP - Implementation from scratch

The output is

Φ(x) = W
(2)

ρ (W (1)
x̃) + w

(2)
0 ,

where W
(2)

= (w (2)
1 , . . . ,w

(2)
N1

).
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MLP - Implementation from scratch
The output can also be written as

Φ(x) = W
(2)

ρ̃ (W (1)
x̃) ,

where W
(2)

= (w (2)
0 ,w

(2)
1 , . . . ,w

(2)
N1

) and ρ̃ (W (1)
x̃) = ( 1

W
(1)

x̃
)
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MLP - Implementation from scratch

This notation is very convenient.
For an MLP with L hidden layer, we can write the output as

Φ(x) = W
(L+1)

ρ̃ (W (L)
ρ̃ (W (L−1)

ρ̃ (. . .W (1)
x̃) . . . ))
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MLP - Implementation from scratch
We can implement in Python a module returning Φ as a function

of the input data, and w , a tensor of weights W
(1)

through W
(L)

# choose a nonlinear activation function

def activation(t):

nonlinearity = np.tanh(t)

return nonlinearity

# fully evaluate our network features using the tensor of weights in w

def feature transforms(a, w):

# loop through each layer matrix

for W in w:

# pad with ones (to take care of bias) for next layer computation

o = np.ones((1,np.shape(a)[1]))

a = np.vstack((o,a))

# compute inner product with current layer weights

a = np.dot(a.T, W).T

# output of layer activation

a = activation(a)

return a
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MLP - Implementation from scratch
We create initial weights for our feedforward network and generate
architectures with arbitrary numbers of layers
# create initial weights for arbitrary feedforward network

def initialize network weights(layer sizes, scale):

# container for entire weight tensor

weights = []

# loop over desired layer sizes and create appropriately sized initial

# weight matrix for each layer

for k in range(len(layer sizes)-1):

# get layer sizes for current weight matrix

N k = layer sizes[k]

N k plus 1 = layer sizes[k+1]

# make weight matrix

weight = scale*np.random.randn(N k+1,N k plus 1)

weights.append(weight)

# re-express weights so that w init[0] = omega inner contains all

# internal weight matrices, and w init = w contains weights of

# final linear combination in predict function

w init = [weights[:-1],weights[-1]]

return w init
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MLP - Implementation

A Python implementation of MLPs is available from
scikit-learn.org: Multi-layer Perceptron

This implementation is not intended for large-scale applications. In
particular, scikit-learn offers no GPU support.
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MLP - Applications

MLPs are capable of approximating various non-linear functions
so that they can perform non-linear regression and non-linear
classification.

I will show some simple applications.

Recall that the perceptron can only model linearly separable functions.

It can model the AND and OR logical functions but not the XOR
function.
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MLP - Applications

Example: Nonlinear regression using single hidden layer.

We want to approximate the noisy data below.
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MLP - Applications
We apply an MLP with a single hidden layer with N = 100 neurons
using the tanh activation. We run of 5,000 steps of gradient
descent.

Questions: How is the approximation performance impacted by N? by the

activation function?
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MLP - Applications

Example: Nonlinear regression using MLP

We want to approximate the noisy data below.
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MLP - Applications

Here we use a 3 layer MLP with 10 units in each layer.
This model will overfit the dataset if we tune the parameters well.

We run the gradient descent for 1000 iterations with η = 0.1. We
can then examine the cost function history to make sure gradient
descent is converging properly.

The loss (or cost) function plot decays rapidly.
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MLP - Applications
Here is the nonlinear regression fit

We overfit which is not a surprise since our network is very flexible.
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MLP - Applications

Example: Nonlinear classification using MLP

We want to classify the following 3-class data set
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MLP - Applications

To solve this classification problem, we use a MLP with

▶ Number of hidden layers: 2

▶ Number of units per layer: N1 = 12, N2 = 5

▶ Activation: tanh

▶ Loss function: Multi-class Softmax

▶ Optimizer: gradient descent
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MLP - Applications

We train the network running gradient descent for 10,000 steps
with learning rate η = 0.1

We see that the loss (or cost) function converges after about 5000
steps.
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MLP - Applications

Below we plot the resulting fit, visualizing the surface fit and -
simultaneously - the nonlinear boundary below.
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MLP - Applications

Example: Nonlinear two-class classification using MLP

We want to classify the following 2-class data set
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MLP - Applications

Example: Nonlinear two-class classification using MLP

We use a MLP with

▶ Number of hidden layers: 4

▶ Number of units per layer: Ni = 10, i = 1, . . . , 4

▶ Activation: tanh

▶ Loss function: Multi-class Softmax

▶ Optimizer: gradient descent
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