
Deep Learning and Neural Networks

Demetrio Labate

February 22, 2024

Part 1
Feedforward Neural Networks

2 / 90

1.5 Advanced Implementation

3 / 90

MLP - Implementation

The design and implementation of MLPs for machine learning
applications requires data preparation through

▶ Batch normalization

and optimization of the training process that may include

▶ Normalized gradient descent

▶ Momentum method

▶ Regularization

▶ Stochastic and mini-batch gradient descent

▶ General steepest descent

▶ Early stopping

4 / 90

Input normalization

In linear supervised learning, normalization of the the input
feature of a dataset significantly aids in tuning the parameters of
the model as it improves the properties of the cost function.

To carry out this operation to MLPs, we need to normalize the
output of each network activation.
Moreover, since the activation outputs change during parameter
tuning - e.g., whenever a gradient descent step is made - we must
normalize every time we make a parameter update.

This leads to the incorporation of a normalization step onto the
architecture of the MLP which is called every time weights are
changed. This natural extension of input normalization is referred
to as batch normalization.

5 / 90

Input normalization

In linear supervised learning, we employ a linear model

Φ(x ,W) = w0 + x1w1 + · · ·+ xDwD

where x = (x, . . . , xD) ∈ Rd is the input and W = (w0, . . . ,wD)
are the parameters or weights of the model.

When tuning these weights during training via the minimization of
any cost function over a training set of P points {x (1), . . . , x (P)},
the input distribution along the n-th coordinate {x (p)n }Pp=1 touching
wn may affects the cost function along the wn direction making
optimization via gradient descent more challenging.

6 / 90

Input normalization

To control the support of the cost function and make it easier to
optimize, a solution is to normalize each input dimensions via the
standard normalization, that is, by mean centering and re-scaling
by its standard deviation.

Hence, for each input feature x (p), we make the change of variable

x
(p)
n ← x

(p)
n − µn

σn

where σn and µn are the mean and standard deviation along the
n-th coordinate of the training set, respectively.

Note that once the training set {x (1), . . . , x (P)} is normalized, they
never change again and remain stable regardless of how we set the
parameters of our model during training.

7 / 90

Batch normalization - single hidden layer
To understand the normalization step in the MLP, let us consider
the simplest case of an MLP with single hidden layer where

Φ(x ,W) = w
(2)
0 + f

(1)
1 (x)w

(2)
1 + · · ·+ f

(1)
N (x)w

(2)
N

with f
(1)
j (x) = ρ

(
w

(L)
0,j +

∑D
n=1 w

(L)
n,j xn

)

8 / 90

Batch normalization - single hidden layer

In this situation where

Φ(x ,W) = w
(2)
0 + f

(1)
1 (x)w

(2)
1 + · · ·+ f

(1)
N (x)w

(2)
N

we can see that the data input does not affect the weights of the

linear combination w
(2)
1 , . . . ,w

(2)
N (as was the case with the linear

model), but does affect the internal weights w
(1)
1 , . . . ,w

(1)
N .

Hence, by performing standard normalization on the input here we
control the support of the cost function along the internal weights
of a model employing single hidden layer elements.

We also observe that the weight w
(2)
1 , . . . ,w

(2)
N are affected by the

output distribution of the hidden layer f
(1)
1 (x (p)), . . . , f

(1)
N (x (p)),

where {x (p) : p = 1, . . . ,P} is the training set.

9 / 90

Batch normalization - single hidden layer
Thus, if the distribution touching the weight of a model affects the
cost function then, in analogy to how we have normalized the
input data, we need to normalize the output distribution of the
hidden layer.
We apply standard normalization to each unit by mean centering
and re-scaling as

f
(1)
j (x)←

f
(1)
j (x)− µ

f
(1)
j

σ
f
(1)
j

where

µ
f
(1)
j

=
1

P

P∑
p=1

f
(1)
j (x (p))

σ
f
(1)
j

=

√√√√ 1

P

P∑
p=1

(f
(1)
j (x (p))− µ

f
(1)
j

)2

10 / 90

Batch normalization

Unlike the distribution of the input data, the distribution of each of
our single layer units changes every time the internal parameters of
the system are changed.

That is, since each of the hidden layer units f
(1)
j is a function of

internal parameters (w
(1)
n,j), the distribution {f (1)j (x (p))}Pp=1 varies

depending on the setting of these internal weights.

In the jargon of deep learning this is often referred to as internal
covariate shift or just covariate shift of a network model.

Since the weights of our model change during training - e.g., from
one step of gradient descent to the next - in order to keep the unit
distributions normalized we have to normalize them at every
step of parameter tuning (e.g., via gradient descent).
To do this, a standard normalization step is usually built in directly
into the MLP architecture itself.

11 / 90

Batch normalization - multiple hidden layers

We can now extend the normalization step in the MLP to the
multilayer case where

Φ(x ,W) = w
(L+1)
0 + f

(L)
1 (x)w

(L+1)
1 + · · ·+ f

(L)
NL

(x)w
(L+1)
NL

with f
(L)
j (x) = ρ

(
w

(1)
0,j +

∑NL−1

n=1 w
(1)
n,j f

(L−1)
n (x)

)

The output units f
(L)
j (x) do not depends directly on the input x

but on the output units of the preceding hidden layer f
(L−1)
i (x).

12 / 90

Batch normalization - multiple hidden layers

In a general MLP, we standard normalize every unit in every layer.
For any layer ℓ we apply standard normalization as

f
(ℓ)
j (x)←

f
(ℓ)
j (x)− µ

f
(ℓ)
j

σ
f
(ℓ)
j

where

µ
f
(ℓ)
j

=
1

P

P∑
p=1

f
(ℓ)
j (x (p))

σ
f
(ℓ)
j

=

√√√√ 1

P

P∑
p=1

(f
(ℓ)
j (x (p))− µ

f
(ℓ)
j

)2

This procedure is referred as batch normalization.

13 / 90

Batch normalization - Example

To illustrate the impact of normalization, we consider the two-class
classification dataset shown below.

For classification, we use a MLP with a single hidden layer, reLU
activation function and 2 neurons in the hidden layer.

14 / 90

Batch normalization - Example

Thus, our model is simply

Φ(x ,W) = w
(2)
0 + f

(1)
1 (x)w

(2)
1 + f

(1)
2 (x)w

(2)
2

We run 5,000 steps of gradient descent to minimize loss (or cost)
function under two different settings:

1. without batch normalization

2. with batch normalization

We will show the evolution of the loss function as a fnction of the
number or iterations.
We will also show the evolution of the units {f (1)1 (xp), f

(1)
2 (xp)}Pp=1

15 / 90

Batch normalization - Example

Case 1: no batch normalization

16 / 90

Batch normalization - Example

Case 1: no batch normalization

17 / 90

Batch normalization - Example

Case 1: no batch normalization

18 / 90

Batch normalization - Example

Case 1: no batch normalization

19 / 90

Batch normalization - Example

Case 1: batch normalization

20 / 90

Batch normalization - Example

Case 1: batch normalization

21 / 90

Batch normalization - Example

Case 1: batch normalization

22 / 90

Batch normalization - Example

Case 1: batch normalization

23 / 90

Batch normalization - Example

The example show that, in the absence of batch normalization, the

distributions of the outputs {f (1)1 (xp), f
(1)
2 (xp)}Pp=1 changes

dramatically as the gradient descent algorithm progresses.

This sort of shifting distribution negatively effects the speed at
which gradient descent can minimize the loss function.

When batch normalization is applied, the distribution of the

outputs {f (1)1 (xp), f
(1)
2 (xp)}Pp=1 is considerably more stable and the

gradient descent converges more rapidly.

24 / 90

Gradient descent - Normalization
Recall that the gradient descent algorithm is a local optimization
method where - at each step - we employ the negative gradient as
our descent direction.

To find the local minima of a differentiable multivariate function g ,
starting from a point w0, we recursively update the variable w as

wk+1 = wk − α∇(g(wk))

the negative gradient at each step determines the direction to
travel in next.

25 / 90

Gradient descent - Normalization

How much we end up traveling in the direction of negative
gradient is determined by two factors:

1. the steplength parameter α

2. the magnitude of the gradient

This shows that we cannot fully control how much we travel at
each step by tuning the step-length parameter α alone

26 / 90

Gradient descent - Normalization

To provide full control on how much we travel at each step, we can
normalize the gradient by dividing off its magnitude to get the
unit-length descent vector.
This operation defines the normalized gradient descent step

wk+1 = wk − α
∇(g(wk))

∥∇(g(wk))∥

where, at each iteration, the step-length is now exactly equal to α,
so the step-length can be easily tuned during training.

Note that dividing the negative gradient by its magnitude does not
change its direction.

27 / 90

Gradient descent - Normalization
Example: We compare normalized and unnormalized gradient
descent for the function g(w) = w2, w ∈ R2.

In both cases, we use the same initial point and step-length
parameter (α = 0.1).

28 / 90

Gradient descent - Momentum

A common problem negatively affecting gradient descent in
practical problem is when minima lie in a long narrow valley. In
this case, convergence of the gradient descent step to the minima
may become very slow.

Figure shows that as the contours of a two-dimensional quadratic
(think of a paraboloid) get more elongated, the gradient descent
direction (red) diverges from the optimal direction (dashed black)
connecting wk to the desired minimum located in the center.

29 / 90

Gradient descent - Momentum

This problem can be addressed using a heuristic approach
consisting of adding a momentum term to the standard gradient
descent.

The momentum term is a weighted difference of the subsequent
k − 1-th and k-th gradient steps, that is

β(wk − wk−1)

for some β > 0.

The momentum term has the effect of reducing the zig-zagging
effect of regular gradient descent by tilting back the gradient steps
(that move perpendicular to the contours of the cost function)
towards the center where the minimum lies.

30 / 90

Gradient descent - Momentum

Figure shows that the addition of the momentum term (dashed
black arrow) pushes the gradient toward the function’s minimum,
thus ameliorating the zig-zagging of the standard gradient descent
(red arrow).

31 / 90

Gradient descent - Momentum

Example: We will show how momentum is used to speed up the
minimization of a quadratic function using gradient descent.

For w ∈ R2, a general quadratic function has the form

g(w) = a+ btw + w tCw

where a is a scalar, b is a vector and C is a matrix.

We choose a = 0, b =

(
0
0

)
and C =

(
1 0
0 12

)
We run gradient descent with momentum (β = 0.3) and without
momentum (β = 0) with the step-length parameter set to
α = 0.08 in both cases.

32 / 90

Gradient descent - Momentum

Figure shows that the addition of the momentum term (bottom
panel) corrects the zig-zagging effect of standard gradient,
achieving a better solution with the same number of iterations.

33 / 90

Gradient descent - Momentum

We repeat the gradient descent numerical experiment using again
a quadratic function. This time we choose parameters a = 0,

b =

(
2
0

)
and C =

(
1 0
0 12

)
We run gradient descent with momentum (β = 0.7) and without
momentum (β = 0) with the step-length parameter set to
α = 0.08 in both cases.

34 / 90

Gradient descent - Momentum

Figure again shows that the addition of the momentum term
(bottom panel) corrects the zig-zagging effect of standard gradient,
achieving a better solution with the same number of iterations.

35 / 90

Regularization - Combating non-convexity

Composition of nonlinear functions makes the loss function
associated with feed-forward neural networks non-convex.

This means that one can no longer randomly initialize gradient
descent (or any of its variants) and be sure the algorithm
eventually finds the global minimum, as is the case with convex
functions. In general, different random initializations may lead to
different local minima.

This theoretical inconvenience does not preclude the use of
non-convex loss functions, but motivates a variety of engineering
fixes to the loss function, the optimizing algorithm, or both, which
in practice allows us the effective use of non-convex loss in deep
learning models.

36 / 90

Regularization - Combating non-convexity

A common regularizer to ameliorate non-convexity is the addition
of a simple convex function to slightly convexify the non-convex
loos function

This can improve numerical optimization by avoiding poor
solutions near its saddle points or flat areas.

One of the most common regularizers used in practice is the
squared ℓ2 norm. In this case, the loss function g(w) is replaced by

g(w) + λ ∥w∥22,

where λ > 0 is a parameter controlling the trade-off between the
original loss function and the regularizer.

37 / 90

Regularization - Combating non-convexity

Example: Effect of regularization on a non-convex function.

We consider the non-convex loss function

g1(w) = max

(
0,

1

2
e−w sin(4π(w − 0.1))

)2

Problem: if gradient descent is initialized at any point lying in the
flat regions it will immediately halt.

38 / 90

Regularization - Combating non-convexity

To improve the convergence of gradient descent, we add an
ℓ2-norm regularizer term g2(w) = ∥w∥22 to the loss function

So we have the regularized loss function

g1(w) + λg2(w) = max

(
0,

1

2
e−w sin(4π(w − 0.1))

)2

+ λ∥w∥22

We will show how this changes the properties of the loss function
when λ is varied in the interval [0, 1]

39 / 90

Regularization - Combating non-convexity

g1(w) + λg2(w), λ = 0

40 / 90

Regularization - Combating non-convexity

g1(w) + λg2(w), λ = 0.5

41 / 90

Regularization - Combating non-convexity

g1(w) + λg2(w), λ = 1

42 / 90

Stochastic and mini-batch gradient descent

Stochastic and mini-batch gradient descent provide an
alternative to standard (or batch) gradient descent when applied to
large datasets that require less storage space it in active memory
and may converge faster.

The key observation is that (in most cases) the loss function can
be written as a sum of individual costs over each data point of the
training set (xp, yp)p=1,...,P

g(w) =
P∑

p=1

h(w , xp, yp)

For instance, in the case of squared error loss we have that

h(w , xp, yp) = (x tpw − yp)
2

43 / 90

Stochastic gradient descent

The observation that the loss function can be decomposed over
individual data points implies that we can write the gradient as a
summation of the gradients of each summand term

∇g(w) = ∇

 P∑
p=1

h(w , xp, yp)

 =
P∑

p=1

∇h(w , xp, yp)

Hence, when minimizing a loss function via gradient descent, we
can write

wk+1 = wk − αk+1∇(g(wk)) = wk − αk+1

P∑
p=1

∇h(wk , xp, yp)

Note that the steplength αk+1 may change at each step.

44 / 90

Stochastic gradient descent

wk+1 = wk − αk+1∇(g(wk)) = wk − αk+1

P∑
p=1

∇h(wk , xp, yp)

Remarks Formula shows we can (1) load a single data point at a
time in memory, (2) compute the gradient of the cost with respect
to that data point, (3) add the result to a container, (4) discard
the data point to free up the memory, and (5) move to the next
data point. After all data points are visited once, we can then take
a gradient step using what is stored in the gradient container.

This scheme works for any large dataset. One just needs to wait
for P evaluations of the gradient before taking a step.

Rather than waiting for all individual gradient terms to be
computed, stochastic gradient descent takes a step as soon as a
gradient term becomes available.

45 / 90

Stochastic gradient descent

Schematic comparison of first iteration of standard (top) and stochastic

(bottom) gradient descent, using a dataset with P = 3 points.

46 / 90

Stochastic gradient descent
The k-th iteration of stochastic gradient descent, sometimes called
an epoch, consists of P sequential point-wise gradient steps
written as

wk,p = wk,p−1 + αk+1

P∑
p=1

∇h(wk,p−1, xp, yp), p = 1, . . . ,P.

The double superscript wk,p reads ”the p-th individual gradient
step of the k-th stochastic gradient descent iteration.

Vocabulary note:
▶ In the standard (or batch) gradient descent we use ”step”

and ”iteration” interchangeably, i.e., each iteration consists
of one full gradient step in all P data points simultaneously as
shown in Slide 45.

▶ Conversely, with the stochastic gradient descent, we refer to a
single ”iteration” or ”epoch” as consisting of all P
individual gradient steps, one in each data point, executed
sequentially for p = 1, . . . ,P.

47 / 90

Mini-batch gradient descent

Implementation question: How do you choose the steplength
αk for stochastic gradient descent?

A diminishing steplength provably guarantees the convergence of
the stochastic gradient method provided:

1. The steplength must diminish as the number of iterations
increases: αk → 0 as k →∞.

2. The sum of the steplengths is not finite:
∑

αk =∞.

Common choices of steplength with the stochastic gradient
method include αk = 1

k or αk = 1√
k

In some cases, one may successfully use other steplength rules such
as fixed steplengths.

48 / 90

Mini-batch gradient descent

Mini-batch gradient descent is a modification of stochastic
gradient descent.

The core idea starts with the observation that we can decompose
the cost function defined over P individual data points as

g(w) =
P∑

p=1

h(w , xp, yp) =
J∑

j=1

∑
p∈Pj

h(w , xp, yp)

where P1, . . . ,PJ is a partition of the set {1, . . . ,P} into J index
sets.
These index sets divide the dataset into J disjoint subsets, each
called a mini-batch; that is, every data point belongs to one and
only one mini-batch.

49 / 90

Mini-batch gradient descent

Using this representation, the gradient is now decomposed over
each mini-batch (as opposed to each data point):

∇g(w) = ∇

 J∑
j=1

∑
p∈Pj

h(w , xp, yp)

 =
J∑

j=1

∇

∑
p∈Pj

h(w , xp, yp)

Mini-batch gradient descent is then the algorithm wherein we
take gradient steps sequentially using each mini-batch.

Typically one wants all mini-batches to have the same size - a
parameter called the batch size.

Note: a batch size of 1 turns mini-batch gradient descent into stochastic

gradient descent, whereas a batch size of P turns it into the standard (or

batch) gradient descent.

50 / 90

Mini-batch gradient descent

Example. Multiclass classification using a MLP on the MNIST
dataset consisting of P = 70, 000 images of hand-written digits
{0, 1, . . . , 9}.

We compare 40 iterations of standard stochastic and mini-batch
(batch size =500) gradient descent using the multi-class softmax
cost function; experiments were run with the same initialization
and fixed steplength.

51 / 90

Mini-batch gradient descent

Discussion.

The result in the Example is indicative of a major computational
advantage of stochastic/mini-batch gradient descent over the
standard batch version for dealing with large datasets.

When initialized away from a point of convergence, the
stochastic/mini-batch methods tend in practice to progress much
faster towards a solution.

Because moderately accurate solutions (provided by a moderate
amount of minimization of a cost function) tend to perform
reasonably well in machine learning applications, and because with
large datasets a random initialization will tend to lie far from a
convergent point, in many cases even a few iterations of
stochastic/mini-batch gradient descent can provide a relatively
good solution.

52 / 90

Mini-batch gradient descent

The figure shows that, taking a large number of ’imperfect’
mini-batch steps, is typically more effective in reducing the cost
function evaluation than taking a considerably smaller number of
’perfect’ gradient steps via the standard (batch) stochastic descent
method.

53 / 90

Mini-batch gradient descent
Implementation question: How do you choose batch size b for
mini-batch gradient descent?

It must be b ≤ P, where P the size of the training set.
Recall: for b = P, we have standard stochastic (batch) gradient
descent and, for b = 1, we have stochastic gradient descent.

Note: case b = P, large P, may be impossible due to memory
load.

54 / 90

Mini-batch gradient descent

While there is no formula for choosing the ”optimal” b, it is
generally observed that:

▶ Gradient with small batch size b oscillates much more
compared to larger batch size and take longer to converge.

▶ For a non-convex loss landscape (as in the case of MLP), this
oscillatory behavior helps come out of the local minima.

▶ Larger batches do fewer and coarser search steps for the
optimal solution, and so by construction, will be less likely to
converge on the optimal solution.

▶ Models trained with small batch sizes are often observed to
generalize better.

Common practise is to choose the batch size as a power of two, in
the range between 16 and 512.
b = 16 or 32 is a rule of thumb for the initial choice.

55 / 90

Steepest descent algorithm

Steepest descent algorithms are associated with different
normalization of the gradient that may significantly impact the
form descent direction.

The derivation of the gradient descent direction of a multivariate
function g(w) at a point v follows from the computation of the
tangent hyperplane to g at this point:

h(w) = g(v) +∇g t(v)(w − v)

It follows that the descent direction is given by the negative

gradient as −∇g(v) or, in the normalized form, as − ∇g(v)
∥∇g(v)∥2

.

56 / 90

Steepest descent algorithm

The descent direction can be derived more formally as an
optimization problem.

We want to find the unit-length direction d that provides the
smallest evaluation on the hyperplane

g(v) +∇g t(v)(w − v) = g(v) +∇g t(v)d

This leads to the constrained minimization problem

argmin
d
∇g t(v)d subject to ∥d∥2 = 1

whose solution is the steepest descent direction.

In this case, with an ℓ2 constraint, the solution is d = − ∇g(v)
∥∇g(v)∥2

which is also the gradient descent direction.

57 / 90

Steepest descent algorithm

We can choose different norms to determine a steepest descent
direction.

For example, replacing the ℓ2 with the ℓ1 or ℓ∞ norms to have a
similar looking problems

argmin
d
∇g t(v)d subject to ∥d∥1 = 1

and
argmin

d
∇g t(v)d subject to ∥d∥∞ = 1

The directions we find here will certainly be different than the ℓ2

constrained version.
In the ℓ1 constrained version, the solution is called coordinate
descent solution. This leads to an algorithm that is
computationally less involved than gradient descent.

58 / 90

Early stopping

Early Stopping consists simply in stopping the training of a neural
network before a model starts to overfit.

There are three main ways to apply early stopping.

1. Training a model on a preset number of epochs. This
method is a simple. However, by running a set number of epochs,
we run the risk of not reaching a satisfactory training point. With
a higher learning rate, the model might possibly converge with
fewer epochs, but it would require a lot of trial and error.

2. Stop when the loss function update becomes small. This
approach is more sophisticated but assumes that the weight
updates in gradient descent become significantly smaller as the
model approaches minima. Usually, the training is stopped when
the update becomes as small as 0.001, as stopping at this point
minimizes loss and avoids unnecessary epochs. However,
overfitting might still occur.

59 / 90

Early stopping
3. Validation set strategy. It requires to check how training and
validation errors change with the number of epochs. Typically, the
training error decreases until increasing epochs no longer impact
the error. The validation error, however, initially decreases with
increasing epochs, but after a certain point, it starts increasing.
This is the point where a model should be early stopped.

Although the validation set strategy is the best in terms of
preventing overfitting, it may take a large number of epochs.

60 / 90

1.6 Performance metrics

61 / 90

Performance metrics - Regression

Regression models have a continuous output.

So, a performance metric need to calculating some sort of distance
between predicted value and ground truth.

Standard performance metrics include:

▶ Mean Squared Error (MSE)

▶ Mean Absolute Error (MAE)

▶ Root Mean Squared Error (RMSE)

▶ R-Squared

62 / 90

Performance metrics - Regression

Mean squared error (MSE) is the most popular metric used for
regression problems.

It finds the average of the squared difference between the target
value and the value predicted by the regression model

Given a set of ground truth values yi , i = 1, . . . ,N and the
corresponding predicted values ŷi , i = 1, . . . ,N,

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

Properties:

▶ It is differentiable, so it is easier to optimize.

▶ It penalizes small errors by squaring them, leading to an
overestimation of how bad the model is.

▶ It is sensitive to outliers.

63 / 90

Performance metrics - Regression

Mean Absolute Error (MAE) replaced the ℓ2 distance with the
ℓ1 distance.

It is the average of the difference (in absolute value) between the
ground truth and the predicted values.

Given a set of ground truth values yi , i = 1, . . . ,N and the
corresponding predicted values ŷi , i = 1, . . . ,N,

MAE =
1

N

N∑
i=1

|yi − ŷi |

Properties:

▶ MAE is non-differentiable as opposed to MSE.

▶ It penalizes small errors less than MSE (no overestimation of
how bad the model is).

▶ It is more robust towards outliers than MSE.

64 / 90

Performance metrics - Regression
Root Mean Squared Error (RMSE) is the square root of MSE.

It finds the square root of average of the squared difference
between the target value and the value predicted by the regression
model

Given a set of ground truth values yi , i = 1, . . . ,N and the
corresponding predicted values ŷi , i = 1, . . . ,N,

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

Properties:
▶ It retains the differentiable property of MSE.
▶ It handles the penalization of smaller errors done by MSE by

square rooting it.
▶ Since scale factors are essentially normalized, it is less prone

than MSE to struggle in the case of outliers.
65 / 90

Performance metrics - Regression
R-Squared, the Coefficient of Determination is a measure of
the quality of a linear regression model.

It explains how much (what %) of the total variation in the target
y is explained by the variation in the regression line.

Given a set of ground truth values yi , i = 1, . . . ,N and the
corresponding predicted values ŷi , i = 1, . . . ,N,

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − y)2

Properties:

▶ R2 close to 1 means the regression was able to capture close to
100% of the variance in the target variable.

▶ R2 close to 0 means the regression was able to capture close to 0%
of the variance in the target variable.

▶ R2 outside the range 0 to 1 occur when the model fits the data
worse than the worst possible least-squares predictor.

66 / 90

Performance metrics - Regression

Remark.
Most authors advocate against the use of the R2 in nonlinear
regression analysis and recommend alternative measures.

For nonlinear regression models R2 cannot be interpreted as the
proportion of variance explained by the model.

In linear regression, R2 compares the fit of the regression line with a
horizontal line (forcing the slope to be 0.0). The horizontal line is the
simplest case of a regression line, so this makes sense. With most models
used in nonlinear regression, the horizontal line is not a simple case and
can’t be generated at all from the model with any set of parameters. So
comparing the fits of the chosen model with the fit of a horizontal line
does not make sense.

With nonlinear regression, R2 can be negative.

67 / 90

Performance metrics - Classification

Classification models have discrete output, so a corresponding
metric need to compare discrete classes in some form.

Standard classification performance metrics include:

▶ Accuracy

▶ Confusion Matrix (not a metric but a complemetary tool)

▶ Precision and Recall

▶ F1 score

▶ Area under Receiver Operating Characteristics (AUROC)

▶ Area under Precision-Recall curve

68 / 90

Performance metrics - Classification

Classification Accuracy is the simplest metric to use and
implement.

It is defined as the number of correct predictions divided by the
total number of predictions.

It is often multiplied by 100 and reported as a percent.

Remark. Accuracy can be a misleading metric for imbalanced data
sets. Consider a sample with 95 negative and 5 positive values.
Classifying all values as negative in this case gives 0.95 (or 95%)
accuracy score. However, we missed all the positive values.

69 / 90

Performance metrics - Classification

Confusion Matrix is a tabular visualization of the ground-truth
labels versus the model predictions.

This is not exactly a performance metric but rather a tool on
which other metrics evaluate the results.

To illustrate the confusion matrix, we need to set some value for
the null hypothesis as an assumption.

For example, let us consider the Breast Cancer data and let us
assume our Null Hypothesis to be ”the individual has no cancer”.

70 / 90

Performance metrics - Classification

Each row of the confusion matrix counts the instances in a
predicted class and each column represents the instances in an
actual class.

Each cell in the confusion matrix represents one of the evaluation
factors: True Positive (TP), True Negative (TN), False Positive
(FP), False Negative (FN).

71 / 90

Performance metrics - Classification

▶ True Positive (TP) counts how many positive class samples
the model predicted correctly.

▶ True Negative (TN) counts how many negative class samples
the model predicted correctly.

▶ False Positive (FP), or false alarm, counts how many positive
class samples the model predicted incorrectly. This factor
represents Type-I error in statistical nomenclature.

▶ False Negative (FN), or miss, counts how many negative class
samples the model predicted incorrectly. This factor
represents Type-II error in statistical nomenclature.

72 / 90

Performance metrics - Classification
Precision (also Positive Predictive Value (PPV)) is the ratio of
true positives over all predicted positives.

P =
TP

TP + FP

=
cancer pat. correctly identified

cancer pat. correctly identified + incorrectly labeled non-cancer pat. as cancer

The precision metric focuses on Type-I errors (FP), occurring when
we reject a true null Hypothesis. So, in this case, Type-I error is
incorrectly labeling non-cancer patients as cancerous.

A precision score 1 signifies that the model did not miss any true
positives, and the predicted positives are all true positives. What it
cannot measure is the existence of Type-II error, which is false
negatives – cases when a cancer patient is identified as non-cancer.

A low precision score (below 0.5) means the classifier has a high
number of false positives which can be an outcome of untuned
model hyperparameters or imbalanced class.

73 / 90

Performance metrics - Classification
Recall (also Sensitivity, True-Positive Rate (TPR)) is the ratio
of true positives over all positive samples.

R =
TP

TP + FN

=
cancer pat. correctly identified

cancer pat. correctly identified + incorrectly labeled cancer pat. as non-cancer

The recall metric focuses on type-II errors (FN) occurring when we
accept a false null hypothesis. So, in this case, type-II error is
incorrectly labeling a cancer patient as non-cancer.

Recall equal 1 signifies that the model did not miss any true
positives, and all the positives were correctly predicted. It cannot
measure is the existence of type-I error, that is, false positives -
cases when a non-cancer patient is identified as cancerous.

A low recall score (below 0.5) means the classifier has a high
number of false negatives which can be an outcome of untuned
model hyperparameters or imbalanced class.

74 / 90

Performance metrics - Classification

Precision and Recall, taken individually, do not provide a complete
assessment of classification performance.

The F1-score metric uses a combination of precision and recall.

F1 =
2TP

2TP + FP + FN
=

2
1
P + 1

R

It is often used as a measure of overall classification performance.

High F1 score indicates a high precision as well as high recall. It
gives good results also on imbalanced classification problems.

However, a low F1 score does not tell much as the problem could
be low precision or low recall and it is unclear whether the model
suffers from type-I or type-II error.

75 / 90

Performance metrics - Classification

Example.

Consider a set of 15 patients, 7 of which have cancer and the
remaining 8 having no cancer.

Suppose we have a binary classifier that identifies 9 cancer
patients, of which 6 are correct predictions. Hence 15-9=6 patients
are predicted as non-cancer.

In this case, TP=6, FP=9-6=3, FN = 7-6=1, TN = 6-1=5

It follows that

P =
6

6 + 3
=

2

3
, S =

6

6 + 1
=

6

7
, F1 =

12

12 + 3 + 1
=

3

4

76 / 90

Performance metrics - Classification

Example.

Consider the same set of 15 patients, 7 of which have cancer and
the remaining 8 having no cancer.

Suppose we have a binary classifier that identifies 1 cancer patient
correctly. Hence 15-1=14 patients are predicted as non-cancer.

In this case, TP=1, FP=0, FN = 7-1=6, TN = 8

It follows that

P =
1

1 + 0
= 1, S =

1

1 + 6
=

1

7
, F1 =

2

2 + 6
=

1

4

In this example, high precision comes at the expense of low
sensitivity.

77 / 90

Performance metrics - Classification

Example.

Consider the same set of 15 patients, 7 of which have cancer and
the remaining 8 having no cancer.

Suppose we have a binary classifier that predicts all 15 patients as
cancer patients. Hence 0 patients are predicted as non-cancer.

In this case, TP=7, FP=8, FN = 0, TN = 0

It follows that

P =
7

7 + 8
=

7

15
, S =

7

7 + 0
= 1, F1 =

14

14 + 8
=

7

11

In this example, high sensitivity comes at the expense of low
precision.

78 / 90

Performance metrics - Classification
The Area under Receiver Operating Characteristics
(AUC-ROC) curve is the most complete way to assess
classification performance.

It makes use of the true positive rate (TPR) (or recall or
sensitivity) and the false positive rate (FPR) (or fallout)

TPR =
TP

TP + FN
FPR =

FP

FP + TN
= 1−TNR = 1− TN

TN + FP

where TNR is the true negative rate or specificity.

▶ TPR/recall measures the proportion of positive data points that are
correctly considered as positive, with respect to all positive data
points. The higher the TPR, the fewer positive data points we miss.

▶ FPR/fallout measures to the proportion of negative data points that
are mistakenly considered as positive, with respect to all negative
data points. The higher the FPR, the more negative data points we
misclassify.

79 / 90

Performance metrics - Classification

The ROC curve is obtained by plotting TPR vs FPR computed for
many different thresholds values of the classifier.
The area under this curve, called the AUROC curve, quantifies the
classification performance (higher area, better classifier).

80 / 90

Performance metrics - Classification

The best possible classifier would yield a point in the upper left corner or
coordinate (0,1) of the ROC space, representing 100% sensitivity (no
false negatives) and 100% specificity (no false positives). The (0,1) point
is also called a perfect classification.

A random guess (no-skill classifier) would give a point along a diagonal

line - the so-called line of no-discrimination - from the bottom left to the

top right corners, regardless of the positive and negative base rates.
81 / 90

Performance metrics - Classification

When dealing with a highly skewed dataset (highly imbalanced
data), the Precision-Recall (PR) curve gives a more informative
picture of an algorithm’s performance with respect to the ROC
curve.

It is obtained by plotting P vs R computed for many different
thresholds values of the classifier.

As in the AUROC case, a higher area corresponds to a better
classifier since a high area under the Precision-Recall curve
represents both high recall and high precision.

82 / 90

Performance metrics - Classification

A classifier with perfect skill is depicted as a point at a coordinate of
(1,1) and a skillful classifier model is represented by a curve that bows
towards a coordinate of (1,1).

A no-skill classifier will be a horizontal line on the plot with a precision
that is proportional to the number of positive examples in the dataset.

For a balanced dataset this will be 0.5.
83 / 90

Performance metrics - Classification

Main formulas.

total population = P + N
accuracy = TP+TN

P+N

sensitivity or recall or TPR = TP
P = TP

TP+FN = 1− FNR

specificity or selectivity or TNR = TN
N = TN

TN+FP = 1− FPR

precision or positive predictive value PPV = TP
TP+FP = 1− FDR

negative predictive value NPV = TN
TN+FN = 1− FOR

miss rate or false negative rate FNR = FN
P = FN

FN+TP = 1− TPR

fall-out or false positive rate FPR = FP
N = FP

FP+TN = 1− PPV

false discovery rate FDR = FP
FP+TP = 1− PPV

false omission rate FOR = FN
FN+TN = 1− NPV

F1 score = 2TP
2TP+FP+FN

84 / 90

Performance metrics - Classification

85 / 90

Performance metrics - Confidence intervals

Much of machine learning involves estimating the performance of
a predictive model.

For instance, in a binary classification problem, we wan to estimate
the Accuracy of a predictor where

p := Accuracy =
correct predictions

all predictions
=

TP + FN

P + N

Note that Accuracy is a proportion describing the ratio of correct
(or incorrect) predictions made by the model.

Each prediction is a binary decision that could be correct or
incorrect. Technically, this is a Bernoulli trial and the proportions
in a Bernoulli trial have a specific distribution called a binomial
distribution.

86 / 90

Performance metrics - Confidence intervals

When we use a test set to compute the Accuracy of a predictor, we
are in fact estimating p. In other words, compute an estimator of
the accuracy that we denote p̂.

Question: How close is p̂ to p?

Confidence intervals are a way of quantifying the uncertainty of
an estimate.
They can be used to add a bounds or likelihood on a population
parameter, such as a proportion, estimated from a sample of
independent observations from the population - the test set in our
case.

Confidence intervals are one of the methods studied in statistical
inference.

87 / 90

Performance metrics - Confidence intervals

By the Central Limit Theorem, with large sample sizes n (n ≥ 30)
we can approximate the distribution of p̂ with a Gaussian with a
standard deviation √

p(1− p)

n

Hence, the (1− α)100 percent confidence interval of p is

p̂ ± zα/2

√
p̂(1− p̂)

n

For the 90% CI: α = 0.1, zα/2 = 1.645
For the 95% CI: α = 0.05, zα/2 = 1.960

88 / 90

Performance metrics - Confidence intervals

Example. Consider a predictive model with a classification accuracy
of 83% on a validation dataset with 50 samples, that is n = 50.
We can calculate the 95% confidence interval of the classification
accuracy p as

p̂ ± 1.960

√
p̂(1− p̂)

n
= 0.83± 1.960

√
0.83(0.17)

50
= 0.83± 0.10

This means that the classification accuracy is

p = 0.83± 0.10

or, alternatively,
p ∈ [0.73, 0.93]

with significance level α = 0.05.

89 / 90

Performance metrics - Confidence intervals

Sometimes we do not know the distribution for a chosen
performance measure.

I could also happen that the predicted variable is not normally
distributed, and even when it is, the variance of the normal
distribution might not be equal at all levels of the predictor
variable.

In this case, we can use a nonparametric method for calculating
confidence intervals, such as the bootstrap confidence interval.

The bootstrap is a simulated Monte Carlo method where samples
are drawn from a fixed finite dataset with replacement and a
parameter is estimated on each sample. This procedure leads to a
robust estimate of the true population parameter via sampling.

Press link.

90 / 90

https://machinelearningmastery.com/confidence-intervals-for-machine-learning/

	Feedforward Neural Networks
	Advanced Implementation

