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Convolutional Neural Networks

Convolutional neural networks (CNNs) form a class of artificial
neural networks that has become dominant in various image
processing and computer vision tasks following their success in
the object recognition competition known as the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) in 2012.

Since then, CNNs have been successfully applied to multiple image
analysis and processing tasks including

1. object detection

2. classification

3. segmentation

4. image reconstruction

5. natural language processing
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Convolutional Neural Networks
CNNs are motivated by applications of machine learning where the
input data has some spatial structure that should be leveraged
when solving supervised or unsupervised problems.

Images are one predominant example of such data with spatial
constraints.

Another example are videos.
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Convolutional Neural Networks
Image information is stored over a regular rectangular grid/matrix
at small square units/entries called pixels.

A computer sees an image as an array of numbers. The matrix on
the right contains numbers between 0 and 255, each of which
corresponds to the pixel brightness in the left image.
The pixel values are, in most cases, of little to no use without
knowledge of their spatial location.
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Convolutional Neural Networks

CNNs are designed to deal with input data having some spatial
structure.

At the heart of such neural network is the convolution operation
which can be essentially thought of as a weighted linear
combination (through a structured set of learnable parameter
forming a kernel) that preservers the spatial structure of its input.

This mathematical operation is modeled on the organization of
animal visual cortex and a CNN is designed to automatically and
adaptively learn spatial hierarchies of features, from low- to
high-level patterns.

We will examine the convolution operator in more detail.
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Convolutional Neural Networks

Any CNN is typically composed of three types of layers:

▶ convolution layers

▶ pooling layers

▶ fully connected layers

The first two types of layers, convolution and pooling layers,
perform feature extraction, whereas the fully connected layer
maps the extracted features into final output, such as classification.

A typical CNN architecture consists of multiple blocks of
convolution and pooling layers followed by fully connected layers.
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Convolutional Neural Networks

A CNN is composed of a stacking of several building blocks:
convolution layers, pooling layers (e.g., max pooling), and fully
connected (FC) layers.

The first section performs feature extraction and the last section
performs an inference task, e.g., classification.
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2.1 The convolution operator
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The convolution operator
I start by defining the operation of convolution for functions
defined on the set of integers Z

Definition.

For functions x ,w defined on Z, the discrete convolution of x
and w is

(x ∗ w)[n] =
∞∑

m=−∞
x [n −m]w [m]

By commutativity

(x ∗ w)[n] = (x ∗ w)[n] =
∞∑

m=−∞
x [m]w [n −m]

Note: we can apply commutativity here because functions have
infinite support.
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The convolution operator

The operation of convolution extends to functions with finite
support.

When w has finite support in the set {−M,−M + 1, . . . ,M}, we
define the discrete convolution of x and w as

(x ∗ w)[n] =
M∑

m=−M

x [n −m]w [m]

Remarks:

▶ Unlike the infinite-support case, it is not true that
x ∗ w = w ∗ x .

▶ In electrical engineering, w is typically identified with the finite
input response associated with a linear time-invariant system.

▶ In the neural network literature, w is typically referred to as
the convolution filter or kernel.
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The convolution operator
To illustrate the significance of the operation of convolution, we
consider time-series data.

A time-series data set usually takes the general form

(t1, x1), . . . , (tN , xN),

where the inputs t1, . . . , tN are time-marks or time-stamps sorted
in ascending order (that is, t1 < t2 < · · · < tN) and x1, . . . , xN
denote the corresponding output values, respectively.

Example: daily job approval ratings of a political candidate plotted here

both without (left) and with (right) linear interpolation.
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The convolution operator

Notice how the time-series data set in the Example appears jagged
due to the relatively rapid fluctuation in the data.

Many time-series data sets exhibit similar behavior that can be
attributed to a high-frequency (i.e., rapidly changing) noise
perturbing the smooth signal we are aiming to observe.

We can denoise the data by computing the average of each
observed data in its M-vicinity as :

yn =
1

2M + 1
(xn−M+xn−M+1+ · · ·+xn+M) =

1

2M + 1

M∑
m=−M

xn−m

Note that yn = (x ∗ wM)n with

wM
m =

{
1

2M+1 if m ∈ {−M, . . . ,M}
0 otherwise
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The convolution operator

Here is the result of the denoising experiment where we use the
convolution y = x ∗ wM with M = 4
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The convolution operator

Here is the result of the denoising experiment where we use the
convolution y = x ∗ wM with M = 10

15 / 57



The convolution operator

More generally, we can process the time series x by convolution
with a ’bump’ function g of finite support.
For example:

wM
m =

{
M+1−|m|
(M+1)2

if m ∈ {−M, . . . ,M}
0 otherwise

generates a triangle function centered at the origin.

y = x ∗ wM is now an even smoother (denoised) version of x .

Note: the design of denoising filters is part of classical study of
Linear Time-Invariant filters in Signal Processing.
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The convolution operator

Remark: Boundary conditions

Let x [n] be define for n = 1, . . . ,N and w [n] be defined for
n = −M, . . . ,M.

Notice that to compute

y [n] = (x ∗ w)[n] =
M∑

m=−M

x [n −m]w [m]

we need to access elements of x that fall outside its original range.

Specifically, the convolution operation requires the evaluation of
terms ranging over

x [1−M],X [2−M], . . . , x [N + 1], x [N +M]
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The convolution operator

To fix this issue, we add M entries to both the beginning and the
end of x so that for every n, x is defined in an M-vicinity of n.

This insertion operation is called padding.

How we pad x is for mostly inconsequential, particularly when M is
relatively small compared to N, as padding only affects the first
and last M elements of the resulting signal.

In the figure, N = 8 and M = 3.
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The convolution operator

The convolution operation can be extended in a straightforward
manner to higher dimensions.
We are mostly interested in the two-dimensional case.

Definition.

For functions x ,w defined on Z2, the discrete convolution of x
and w is defined entry-wise as

(x ∗ w)[n1, n2] =
∞∑

m1=−∞

∞∑
m2=−∞

x [n1 −m1, n2 −m2]w [m1,m2]
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The convolution operator

As above, the convolution operation can be defined on
two-dimensional functions with compact support.

When g has finite support in the set n1 ∈ {−L1,−L1 + 1, . . . , L1},
n2 ∈ {−L2,−L2 + 1, . . . , L2}, the discrete convolution of x and w
is given by

(x ∗ w)[n1, n2] =

L1∑
m1=−L1

L2∑
m2=−L2

x [n1 −m1, n2 −m2]w [m1,m2]
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The convolution operator

In the neural network literature, the convolution operation has
been defined historically with a ”+” sign. Technically, it should be
called cross-correlation.

This has no impact of the properties and interpretation of the
operation.

In the following, in accord with neural network convention, we
will refer to the convolution of x and w as the following operation

(x ∗ w)[n1, n2] =

L1∑
m1=−L1

L2∑
m2=−L2

x [n1 +m1, n2 +m2]w [m1,m2]

In this setting, w is called the convolution filter or the kernel.
It is a matrix of dimension (2L1 + 1)× (2L2 + 1).
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The convolution operator

As in the one-dimensional case, to carry out the operation of
convolution in the compact support case we need to manage the
boundary.

Let x [n1, n2] be supported in [1,N1]× [1,N2]
and w [n1, n2] be supported in [−M1,M1]× [−M2,M2]

For the operation

(x ∗ w)[n1, n2] =

L1∑
m1=−L1

L2∑
m2=−L2

x [n1 +m1, n2 +m2]w [m1,m2]

to be defined on the grid [1,N1]× [1,N2] the signal x must be
zero padded.
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The convolution operator

The input matrix x has been zero-padded to become a matrix of
size (N1 + 2L1)× (N2 + 2L2) so that (x ∗ w)[n1, n2] can be
evaluated for 1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2.
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The convolution operator

The kernel slides across the height and width of the image-producing the

image representation of that receptive region. This produces a

representation of the image called feature map giving the response of

the kernel at each spatial position of the image.

The sliding size of the kernel is called a stride.
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The convolution operator

You can find online animated illustration of the operation of image
convolution

link: illustration of convolution
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The convolution operator - Implementation note

What is the output size of a convolution operation in a CNN?

If we have an input of size L× L and a kernel of size of W ×W
with stride S (by default S = 1 in convolution) and amount of
padding P, then the size of the output feature map is Lout × Lout
where Lout is determined by the following formula

Lout =
L−W + 2P

S
+ 1

For instance, in the example of slide 24, we have that

Lout =
4− 2 + 0

1
+ 1 = 3,

hence, the feature map has size 3× 3.

Clearly, if we have N kernels of size W ×W , the output of the
convolution layer will contain N feature maps of size Lout × Lout .
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2.2 Feature Extraction
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Feature extraction by convolution

To carry out supervised or unsupervised tasks on image data, like
object detection, classification, or image compression, one could
always use the raw pixel values directly as features. This naive
approach however has been shown experimentally to produce low
quality results in virtually all machine learning tasks involving
natural images.

An alternative, more efficient approach would be to represent an
image by making use of geometric features derived from the raw
pixel values, e.g., information associated with edges, corners or
other landmarks.

This observation is consistent with the way our visual cortex
processes information.

28 / 57



Feature extraction by convolution

The distinguishing information in a natural image is largely
contained in the relatively small number of edge pixels in an image.

The edge-detected version of the image describes the scene very
well using only a fraction of the information contained in the
original image
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Feature extraction by convolution

Studies performed on frogs, cats, and primates, where a subject is
shown visual stimuli while electrical impulses are recorded in a
small area in the subject’s brain where visual information is
processed, show the visual cortex is very sensitive to edges.

These studies have determined that individual neurons involved in
early stages of visual processing roughly operate by identifying
edges of different orientations.
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Feature extraction by convolution

Each neuron tacts as a small ”edge detector,” locating edges in an
image of a specific orientation and thickness. It is thought that by
combining and processing these edge detected images, humans and
other mammals ”see.”
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Feature extraction by convolution

▶ Edges can be detected within an image using convolution.

Each of the 8 kernels shown above corresponds to one of 8 equally
(angularly) spaced edge orientations, starting from 0 degrees with
seven additional orientations at increments of 45 degrees.
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Feature extraction by convolution

Example. To capture the total ’edge content’ of an image x in
each direction, we generate image features as follows:

1. we convolve x with the directional derivative kernels
w1, . . . ,w8 given above;

2. we pass the results through a rectified linear unit (ReLU) to
remove negative entries;

3. we sum up the remaining positive pixel values.

This way we generate the 8 feature vectors

fi =
∑

all pixels

max{0, x ∗ wi}, i = 1, . . . , 8

Note: We use ReLU so that large positive values in wi ∗ x do not
get canceled out by possible large negative values in it.
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Feature extraction by convolution

Example. Here we plot an input image x representing a circle,
along with the convolution plots of the input image with each of
the eight kernels wi displayed above after passing through ReLU.
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Feature extraction by convolution

Here we plot an input image x representing a star, along with the
convolution plots of the input image with each of the eight kernels
wi displayed above after passing through ReLU.
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Feature extraction by convolution

Images used in applications are often significantly more
complicated than these simplistic geometrical shapes. Summarizing
them using just eight features to solve supervised learning tasks
would be extremely ineffective if one wants

In fact, the 8 directional features computed above would not be
sufficient to discriminate between the circle and the star.

To fix this issue, instead of computing the edge histogram features
over the entire image, one can break the image into relatively small
patches (that may be overlapping), compute features for each
patch

fi ,j =
∑

all pixels in patch j

max{0, x ∗ wi}, i = 1, . . . , 8

and then concatenate the results to arrive at the final feature
representation.
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Pooling

Feature extraction is typically followed a pooling layer.

Pooling layers provide an approach for downsampling feature
maps by summarizing the presence of features in patches of the
feature map.
Two common pooling methods are average pooling and max
pooling: they summarize the average presence of a feature and the
most activated presence of a feature respectively.

Significance: A problem with the output feature maps is that they
are sensitive to the location of the features in the input.
Downsampling the feature maps has the effect of making the
resulting downsampled feature maps more robust to changes in the
position of the feature in the image.
This desirable property is called local translation invariance.
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Pooling

The pooling operation is carried out by applying a sliding window
to the input image, similar to convolution but with some
differences.

With pooling, the sliding window can jump multiple pixels at a
time depending on how much overlap is required between adjacent
windows/patches. The number of pixels the sliding window is
shifted is referred to as the stride.

The second difference is how the content of the sliding window is
processed. With convolution, you compute the sum of the
entry-wise product between the windowed input and a kernel. With
pooling there is no convolution operation but we simply average
the entries within the window (average pooling) or take the
maximum value (max pooling).
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Pooling

The example below illustrates max pooling which reports the
maximum output within a window.

In this example, window size is 2 and stride is 2.
With this choice of the stride, it reduces the size of the feature
map in half, here from 4× 4 to 2× 2
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Pooling

In general, if we have an input feature map of size L× L, a pooling
kernel of spatial size W and stride S , then the size of output image
is Lout × Lout where Lout is determined by the following formula

Lout =
L−W

S
+ 1

In the example above, L = 4, W = 2, S = 2.

Hence Lout =
4−2
2 + 1 = 2

If we choose, L = 16, W = 2, S = 2,

then Lout =
16−2
2 + 1 = 8

Note: If W = S , then Lout =
L
S
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Convolution Neural Networks

Putting together all the components discussed above, i.e.,
convolution, ReLU, and pooling, we have a complete end-to-end
image feature extraction pipeline

For compactness only four out of eight kernels are shown.
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Convolution Neural Networks - Implementation note

The presentation of the CNN design given above suggests that,
given a set of images to analyze, one would process the images one
after the other with a loop.

This implementation would be extremely inefficient in Python,
particularly for medium- to large-sized datasets.

A careful examination about how convolutional feature maps are
constructed on a set of images shows that we can re-write the
convolutional layers in a much more efficient manner by employing
tensors.
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Convolution Neural Networks - Implementation note
The figure shows how to process an entire stack (tensor) of images
simultaneously, thereby minimizing the number of explicit for-loops
required.

Left: An implementation processing images sequentially is

computationally slow because feature maps are computed for each

individual image and for each individual kernel, using a nested for-loop.

Right: A tensor-based implementation of the convolutional layers speeds

up computation considerably.
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Convolution Neural Networks

Convolution in neural networks leverages three important ideas
that motivated computer vision researchers: sparse interaction,
parameter sharing, and locally invariant representation.

▶ Sparse interaction. Fully connected neural network layers
use matrix multiplication by a matrix of parameters describing
the interaction between the input and output unit. This
means that every output unit interacts with every input unit.

However, CNNs have sparse interaction that is achieved by
making kernel smaller than the input e.g., an image can have
several thousands of pixels, but while processing it using
kernel we can detect meaningful information that is of tens or
hundreds of pixels.

Hence we need to store fewer parameters. This not only
reduces the memory requirement of the model but may also
improve the statistical efficiency of the model.
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Convolution Neural Networks
▶ Parameter sharing. If computing one feature at a spatial

point (x1, y1) is useful then it should also be useful at some
other spatial point say (x2, y2). It means that for creating one
feature map, neurons are constrained to use the same set of
weights.

In a fully connected neural network, each element of the
weight matrix is used once and then never revisited, while a
CNN has shared parameters i.e., for getting output, weights
applied to one input are the same as the weight applied
elsewhere.

▶ Locally invariant representation. Due to the combinatin of
convolution and pooling the layers, the features maps
generated by a convolution neural network are locally
equivariant to translation.
That is, if we shift the input in a way, the output will also get
changed in the same way (locally).
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2.3 Transfer learning
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Transfer learning

Transfer learning is a machine learning method that reuses a
trained model designed for a particular task to accomplish a
different yet related task.

In this process, the knowledge acquired from a given task is
transferred to the second model that focuses on a new task.

Significance. Transfer learning speeds up the overall process of
training a new model and consequently improves its performance.
It is primarily used when a model requires large amount of
resources and time for training.
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Transfer learning
The transfer learning process consists of several steps.

▶ 1. Access a pre-trained models. Pre-trained models may
be available from open-source repositories.

Specifically, PyTorch Hub is an open-source repository of
pre-trained models (including model definitions and
pre-trained weights) for tasks including object detection,
image and video classification and more.

Similarly, TensorFlow Hub is an open repository and reusable
ML library with several pre-trained models that can be used
for a multiplicity of tasks.

Example: VGG-19 is a convolutional neural network that is 19
layers deep. A pretrained version of this network trained on
more than a million images from the ImageNet database is
widely availabe. The pretrained network can classify images
into 1000 object categories, such as keyboard, mouse, pencil,
and many animals.
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Transfer learning

▶ 2. Freeze layers. A typical neural network reveals three
blocks: early, middle, and latter layers. In transfer learning,
the early and middle layers are retained as they are, and only
the latter layers are retrained so that the method can use
the labeled data of the task that it was previously trained on.

Intuitively, the earlier layers have learned to recognize
”general” object features, so we only need to retrain the latter
layers to adapt/tranfer this knowledge to the new task

By freezing of this group of layers, we avoids the
re-initialization of the weights in the model. The
re-initialization step can cause the model to lose all its
previous learning.
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Transfer learning

▶ 3. Train new layers. Upon freezing the requisite layers, new
layers must be added to the model and trained to make new
predictions on the latest dataset.

▶ 4. Fine-tune the model. Fine-tuning the base model is not
necessary. However, it usually improves the overall model
performance. This process includes unfreezing some layers of
the model and then retraining it at a low-learning rate to
handle a new dataset.
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Transfer learning
Example:

Transfer Learning for Computer Vision: A PyTorch Tutorial by
Abdullah Meda

blog link

It demonstrates transfer learning using a PyTorch’s ConvNeXT
base model pre-trained on ImageNet to carry out a new
classification task using a dataset of Cats Breed Dataset.

The blog presents two different fine-tuning strategies

1. Full Fine Tuning. Network is initialized with a pretrained
network, trained on ImageNet (1000 classes). Rest of the
training is as usual, that is all layers are trained.

2. Partial Fine Tuning. We freeze the weights for all of the
network except that of the final fully connected layer. This
last fully connected layer is replaced with a new one with
random weights and only this layer is trained.
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Transfer learning - ConvNeXt model
ConvNeXt was proposed in A ConvNet for the 2020s by Liu, Mao,
Wu, Feichtenhofer, Darrell and Xie in 2022.

It is a pure convolutional model, that adapts the architecture of
ResNeXt and is inspired by the design of Vision Transformers.

Note the large kernel size.
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Transfer learning - ConvNeXT model

The ConvNeXt architecture consists of several ConvNeXt blocks
(skip connections are not portrayed in figure)

Besides the network architecture, the training methodology also
has a significant effect on the overall performance.
Vision Transformers introduced a new set of training techniques,
like the AdamW optimizer. These changes pertain mostly to the
optimization strategy and associated hyper-parameter settings.
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Transfer learning

The Cats Breed Dataset on Kaggle is a collection of images that
are categorized into different breeds of cats.

Key characteristics:

▶ Number of Classes: The dataset comprises 5 different classes,
each representing a unique breed of cat: Bengal, Domestic
Short-hair, Maine Coon, Ragdoll, Siamese.

▶ Images: The dataset contains a total of 953 images. These
images vary in size, shape, and quality. Each image is a
colored image of a cat belonging to one of the 5 classes.

▶ File Format: The images are stored in JPG format.

▶ Directory Structure: The dataset follows a directory structure
where the images of each breed are stored in a separate folder.
The folder name corresponds to the breed name.
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Transfer learning

Partial fine tuning rapidly (2 epochs) provides a satisfactory
accuracy but full fine tuning eventually achieves better accuracy.
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Transfer learning

There are a few additional things to keep in mind when performing
Transfer Learning:

▶ Constraints from pretrained models. If you wish to use a
pretrained network, you may be slightly constrained in terms
of the architecture you can use for your new dataset. For
example, you cannot arbitrarily take out Conv layers from the
pretrained network. However, you can easily run a pretrained
network on images of different spatial size.

▶ Learning rates. It is common to use a smaller learning rate
for CNN weights that are being fine-tuned, in comparison to
the (randomly-initialized) weights for the new linear classifier
that computes the class scores of your new dataset. This is
because we expect that the pretrained CNN weights are
relatively good, so we don’t wish to distort them too quickly
and too much.

56 / 57



Transfer learning

Here are additional tutorials:

Transfer Learning using ResNet18

Transfer Learning using DenseNet121

57 / 57

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://heartbeat.comet.ml/transfer-learning-with-pytorch-cfcb69016c72
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