
Deep Learning and Neural Networks

Demetrio Labate

March 4, 2024



Part 2
Convolutional Neural Networks

2 / 60



2.3 Advanced CNN design

3 / 60



Convolutional Neural Networks

Since the introduction of CNNs in 1989, various modifications have
been achieved in CNN architecture including structural
reformulation, regularization and parameter optimization.

Some key upgrades in CNN performance occurred due to

1. the use of network depth;

2. processing-unit reorganization;

3. development of novel blocks.

4 / 60



Convolutional Neural Networks

5 / 60



Common Test Sets

Standard datasets used to benchmark deep learning algorithms
include:

▶ MNIST. Database of handwritten digits including a training
set of 60,000 samples, and a test set of 10,000 samples. The
digits are size-normalized and centered in a fixed-size
28x28-pixel grey-scale image. [Link]

▶ CIFAR-10. This dataset consists of 60,000 32x32-pixel colour
(RGB) images in 10 classes, with 6,000 images per class.
There are 50,000 training images and 10,000 test images.

▶ CIFAR-100. This dataset is like CIFAR-10, except it has 100
classes containing 600 images each. There are 500 training
images and 100 testing images per class. The 100 classes in
CIFAR-100 are grouped into 20 superclasses. [Link]

6 / 60

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html


Common Test Sets
▶ ImageNet. There are different versions of ImageNet. The

most highly-used subset is the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012-2017 image
classification and localization dataset; this version is also
referred to in the literature as ImageNet-1K or ILSVRC2017.
It contains RGB images spanning 1000 object classes that
inclue 1,281,167 training images, 50,000 validation images
and 100,000 test images. Images vary in dimensions and
resolution (often applications resize/crop images to 256x256
pixels). [Link]
The full original dataset is referred to as ImageNet-21K. It
contains 14,197,122 images divided into 21,841 classes. Some
papers round this up and name it ImageNet-22k.

▶ Other sets: Microsoft Common Objects in Context (MS
COCO) data set (images), Places (images), PASCAL VOC
(images), Caltech Pedestrian (videos), Intel Image
Classification (images), MIT Indoor Scenes (images).

7 / 60

https://www.kaggle.com/c/imagenet-object-localization-challenge/overview/description


Convolutional Neural Networks - LeNet

The history of deep CNNs began with LeNet [LeCun et al, 1995]
that was aimed at solving the handwritten digit recognition tasks.
However, it did not work well with more general image classes.

8 / 60



Convolutional Neural Networks - AlexNet

AlexNet [Krizhevsky, Sutskever, Hinton, 2017] significantly
improved the CNN learning ability by increasing depth and
implementing several parameter optimization and regularization
strategies.

9 / 60



Convolutional Neural Networks - AlexNet

To improve on the performance of previous networks, AlexNet
included several new design choices.

▶ The number of feature extraction stages was increased from 5
in LeNet to 7 in AlexNet, with a larger number of convolution
kernels (95 in first layer of AlexNet, as compared to 6 in
LeNet). This significantly enhances expressive power but
increases the risk of overfitting.

▶ To prevent or reduce the chance of overfitting, Alexnet adopts
a strategy relying on ReLU activation functions and dropout
regularization proposed by Dahl, Sainath and Hinton (2013).

▶ To improve performance, large-size filters are used in the
earlier layers, namely 11× 11 and 5× 5.

▶ ReLU is utilized as a non-saturating activation function that
enhances the rate of convergence by reducing the vanishing
gradient problem.

10 / 60



Convolutional Neural Networks - Dropout

Dropout refers to dropping out some nodes (in input or hidden
layer) in a neural network so that all the forward and backwards
connections with a dropped node are temporarily removed, thus
creating a new network architecture out of the parent network.
The nodes are dropped by a dropout probability of p.

11 / 60



Convolutional Neural Networks - Dropout

Example:
Suppose we have an input x : {1, 2, 3, 4, 5} to a fully connected
layer and a dropout layer with probability p = 0.2 (or keep
probability = 0.8).

During the forward propagation (training) from the input x, 20% of
the nodes would be dropped, i.e. the x could become {1, 0, 3, 4, 5}
or {1, 2, 0, 4, 5} and so on. Similarly, it applied to the hidden layers.

For instance, if the hidden layers have 1000 neurons (nodes) and a
dropout is applied with drop probability p = 0.5, then 500 neurons
would be randomly dropped in every iteration (batch).

Generally, for the input layers, the keep probability, i.e. 1- drop
probability, is closer to 1, 0.8 being the best as suggested by the
authors.
For the hidden layers, the greater the drop probability more sparse
the model, where 0.5 is heuristically determined to be optimal.

12 / 60



Convolutional Neural Networks - Dropout

How is dropout producing regularization?

Overfitting occurs when the model learns the statistical noise in
the training data rather than the true pattern.
This results in poor performance when the model is evaluated on
new data, e.g. a test dataset.

Dropout approximates the operation of averaging the training
process over a large number of neural networks with different
architectures in parallel.

During training, some number of layer outputs are randomly
ignored or “dropped out.” This has the effect of making the layer
look-like and be treated-like a layer with a different number of
nodes and connectivity to the prior layer. In fac, each update to a
layer during training is performed with a variation of the configured
layer.

13 / 60



Convolutional Neural Networks - Dropout

In overfitting, a node may change in a way that fixes up the
mistakes of the other nodes.

This leads to complex co-adaptations, which in turn leads to the
overfitting problem because this complex co-adaptation fails to
generalise on the unseen dataset.

Dropout has the effect of preventing nodes to fix up the mistake of
other nodes, thus preventing co-adaptation, as in every iteration
the presence of a node is highly unreliable.
So by randomly dropping a few units (nodes), it forces the layers
to take more or less responsibility for the input by taking a
probabilistic approach.

This ensures that the model is getting generalised and hence
reducing the overfitting problem.

14 / 60



Convolutional Neural Networks - Dropout

How is dropout implemented?

Dropout is implemented per-layer in a neural network.

It can be used with most types of layers, including dense fully
connected layers, convolutional layers, and recurrent layers.

Dropout may be implemented on any or all hidden layers in the
network and in the input layer. It is not used on the output layer.

A common dropout probability is p = 0.5 for retaining the output
of each node in a hidden layer and a value close to 1.0, such as
0.8, for retaining inputs from the input layer.

Note: Dropout is not used after training when making a prediction
with the fit network. The weights of the network will be larger
than normal because of dropout. Therefore, before finalizing the
network, the weights are first scaled by the chosen dropout rate.

15 / 60



Convolutional Neural Networks - NiN

Network-in-network [Lin, Chen, Yan, 2014] introduced two
innovative concepts.

▶ The first idea was to employ multiple layers of The MLPconv
layers consisting of a linear convolution layer and a two-layer
MLP with a ReLU used as an activation function.1

1Some authors call it perception convolution and describe it as consisting of
convolutions with a 1× 1 filter followed by ReLU nonlinearities.

16 / 60



Convolutional Neural Networks - NiN
▶ The second idea is the application of Global Average

Pooling enabling a significant reduction in the number of
model parameters. This solution generates a feature map for
each classification category. The average of each feature map
and the resulting vector are then directly fed into the softmax
layer. One advantage is that there is no parameter to optimize
which avoids over-adjustments at this layer.

17 / 60



Convolutional Neural Networks - NiN

Network-in-network is implemented as a cascade of perception
convolution layers followed in the last stage by Global Average
Pooling.

The implementation also includes the use of dropout to improve
performance.

18 / 60



Convolutional Neural Networks - VGG

The Visual Geometry Group (VGG) networks [Simonyan,
Zisserman, 2014] introduced an innovative architecture cascading
many more layers (16 to 19 layers) than prior constructions.

19 / 60



Convolutional Neural Networks - VGG

VGG uses stacks of convolutional layers with 3× 3 filters to replace
single convolutional layers with 11× 11 or 7× 7 filters such as
those used in AlexNet and ZefNet.

What is the advantage of using smaller filters while adding more
layers?

- First, by incorporating three non-linear rectification layers instead
of a single one, it makes the decision function more discriminative.

- Second, it decreases the number of parameters.

Assuming that both the input and the output of a three-layer 3× 3
convolution stack has C channels, the stack is parametrised by
3(32C 2) = 27C 2 weights.
At the same time, a single 7× 7 convolutional layer would require
72C 2 = 49C 2 parameters, i.e. 81% more.

20 / 60



Convolutional Neural Networks - VGG

It was shown experimentally that cascading layers with small-size
filters could produce the same representation power as larger-size
filters.

This can be interpreted as a regularisation on the larger
convolutional filters, forcing them to have a decomposition through
3× 3 filters.

VGG also incorporates 1× 1 convolutional layers of the type
introduced in the Network-in-network architecture.
Even though in this case the 1× 1 convolution is essentially a
linear projection onto the space of the same dimensionality (the
number of input and output channels is the same), an additional
non-linearity is introduced by the rectification function.

Padding is also implemented to maintain the spatial resolution of
the input signal

21 / 60



Convolutional Neural Networks - VGG

VGG obtained significant results for localization problems and
image classification and became very popular due to its enlarged
depth, homogenous topology, and simplicity.

Historically, the VGG network established that representation
depth is beneficial for the classification accuracy. It also produced
a research trend for working with small-size filters in CNN.

However, VGG’s computational cost for training was very intensive
due to its utilization of around 140 million parameters. This
represented its main shortcoming.

22 / 60



GoogLeNet

GoogLeNet, also called Inception-V1, emerged in 2014 [Szegedy
et al, 2015] by winning the 2014-ILSVRC competition.

GoogLeNet is a 22-layer deep CNN whose architecture is very
different from previous state-of-the-art architectures such as
AlexNet and ZfNet.

It includes several ideas to improve performance, most notably:

▶ a novel inception block (or module) that combines
multiple-scale convolutional transformations by employing
merge, transform, and split functions for feature extraction;

▶ 1× 1 convolutions;

▶ global average pooling.

These methods are aimed at creating a deep architecture while
controlling the total number of weights.

23 / 60



GoogLeNet
In prior CNN architectures, there was a fixed convolution size for
each layer. In the Inception module, filters of different sizes,
namely 5× 5, 3× 3, 1× 1 and 3× 3 max pooling are performed in
parallel and then stacked together to generated final output.

The idea behind convolution filters of different sizes is to better
capture channel information together with spatial information at
diverse ranges of spatial resolution.

24 / 60



GoogLeNet

▶ As above, 1× 1 convolutions are used to decrease the number
of parameters of the architecture, hence allowing to increase
the depth of the architecture.

▶ Global average pooling is also used to decrease the number of
trainable parameters.

▶ Auxiliary Classifier for Training:
The inception architecture uses some intermediate classifier
branches in the middle of the architecture during training.
Each branch consist of (1) a 5× 5 average pooling layer with
a stride of 3, (2) a 1× 1 convolutions with 128 filters, (3) two
fully connected layers of 1024 outputs and (4) a softmax
classification layer with 1000 outputs. It includes dropout
regularization with dropout probability 0.7.

These methods help in combating gradient vanishing problem and
provide regularization.

25 / 60



GoogLeNet

Below is a layer-by-layer description of GoogLeNet architecture

26 / 60



GoogLeNet

The overall architecture is 22 layers deep. The architecture
contains two auxiliary classifier layer connected to the output of
Inception (4a) and Inception (4d) layers.

27 / 60



ResNet

ResNet (Residual Network) [He et al 2016], with an architecture
consisting of 152 layers, was the winner of ILSVRC 2015.

Remark: After the first CNN-based architecture, AlexNet, won the
ImageNet competition in 2012, every subsequent winning
architecture used more layers in a deep neural network to reduce
the error rate.

However, increasing the network depth revealed a problem in deep
learning associated with the vanishing gradient (or exploding
gradient). This phenomenon causes the gradient to become 0 (or
too large) so that training and test error rate increase when the
number of layers is getting too large.

28 / 60



ResNet

To illustrate the vanishing gradient problem, the following
numerical experiments compares the training and test error of two
standard CNNs, with 20 and 56 layers respectively.

In the above plot, we can observe that a 56-layer CNN gives more
error rate on both training and testing dataset than a 20-layer
CNN architecture.

The analysis of the error rate reveals that it is caused by
vanishing/exploding gradients.

29 / 60



ResNet

To solve the problem of the vanishing/exploding gradient, the
novel idea of ResNet is the use of skip connections (also called
bypass pathways), originally introduced in the Highway Nets
[Srivastava et al, 2015].

30 / 60



ResNet

The skip connection connects activations of a layer to further layers
by skipping some layers in between. This forms a residual block.

Resnets are made by stacking these residual blocks together.

ResNet prevents the problem of diminishing gradients as the
shortcut connections (residual links) accelerate the deep network
convergence.

This is achieved at relatively low computational cost.
In comparison with VGG, ResNet has lower computational
complexity, even with enlarged depth.

31 / 60



ResNet

The conceptual novelty of ResNet is that, instead of learning the
underlying mapping, we allow the network to fit the residual
mapping.

Consider a residual block with a certain number of stacked layers.
Denote the underlying function performed by this subnetwork as
H(x) where x is the input to this subnetwork. The idea of
Residual Learning re-parameterizes this subnetwork and lets the
parameter layers represent a residual function F (x) := H(x)− x ,
so that the ouptut of the subnetwork is y = F (x) + x .

32 / 60



ResNet

The ResNet architecture is organized into an input stage, followed
by 5 processing stages and an output stage.

▶ Input image is zero-padded.

▶ Different versions of the ResNet architecture use a varying
number of residual blocks at the different stage levels.

▶ The output layers include Average Pooling, Flattening and
finally a fully connected layer reducing its input to the number
of classes using a softmax activation.

33 / 60



ResNet

A detailed, informative listing of the structure of the residual
blocks for different ResNet architectures is given below

34 / 60



ResNet

The models of ResNet-50, ResNet-101, and ResNet-152 are all
based on Bottleneck Blocks.

Left: A Basic Block consists of two sequential 3× 3 convolutional
layers and a residual connection.
Right: A Bottleneck Block consists of three sequential
convolutional layers and a residual connection. The first layer is a
1× 1 convolution for dimension reduction, e.g., to 1/4 of the input
dimension; the second layer performs a 3× 3 convolution; the last
layer is another 1× 1 convolution for dimension restoration

35 / 60



ResNet

Let us examine the architecture of ResNet50

It contains 1 input convolutional layer, 3 ·3+4 ·3+6 ·3+3 ·3 = 48
layers in the stages 1-4 and 1 output fully connected layer.

Resnet50 in PyTorch

36 / 60

https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html


ResNet

Stage 1: It includes 1 convolution layer, batch normalization,
ReLU and max pooling.

The convolutional layer takes as input an image with dimensions
(224, 224, 3). This layer uses 64 filters, each with a kernel size of
(7, 7) and a stride of (2, 2) to downsample the input image by a
factor of 2 in both the width and height dimensions. It outputs a
feature map with dimensions (112, 112, 64).

After the convolutional layer, a batch normalization layer is applied
to normalize the activations, followed by a ReLU.

Finally, a max pooling layer with a pool size of (3, 3) and a stride
of (2, 2) is applied to further downsample the feature map by a
factor of 2 in both dimensions.
This produces a feature map with dimensions (56, 56, 64), which
serves as the input to the subsequent convolutional block.

37 / 60



ResNet

Stage 2: It consists of 3 Residual blocks containing 3 layers each.
The size of kernels used to perform the convolution operation in all
3 layers of the block are 64, 64 and 256 respectively. The size of
the feature output is the same as the input, (56, 56, 64).
Stage 3,4,5: They consist of 4,6,3 Residual blocks respectively,
containing 3 layers each. For each stage, the first residual block of
the stage is modified with the the convolution operation in the
Residual Block performed with stride 2. Hence, the size of input is
reduced to half in terms of height and width but the channel width
will be doubled.
As we progress from one stage to another, the channel width is
doubled and the size of the input is reduced to half, so that the
output of Stage 5 is (7, 7, 512).
Output Stage: Finally, the network has an Average Pooling layer
followed by a fully connected layer having 1000 neurons (ImageNet
class output).

38 / 60



Inception-ResNet

Szegedy et al. proposed Inception-ResNet, Inception V3,
Inception V4 as upgraded versions of GoogLeNet/Inception-V1
(and V2).

Most notably, Inception-ResNet (also called Inception-4 with
residual connections) [Szegedy et al, 2016] bring together the
inception block and the residual learning power by replacing the
filter concatenation with the residual connection.

Inception-ResNet can achieve a similar generalization power to
Inception-V4 with enlarged width and depth and without residual
connections. Using residual connections in training it significantly
accelerates the Inception network training, highlighting the benefit
of using residual connections.

39 / 60



Inception-ResNet

The block diagram of the Inception Residual unit shows the
branches of the inception block together with a skip connection.

40 / 60



DenseNet
DenseNet, which was proposed by Huang et al. in 2017, follows
the same direction as ResNet and the Highway network,
generalizing the notion of skip connection.

41 / 60



DenseNet

DenseNet attempts to address the following limitations of ResNet:

▶ ResNet has a large number of weights, as each layer has an
isolated group of weights.

▶ Several layers contribute extremely little or no information.

The key idea of DenseNet it to employ cross-layer connectivity by
connecting each layer to all layers in the network using a
feed-forward approach.

This way, the feature maps of each previous layer are employed to
input into all of the following layers.

Since each layer receives feature maps from all preceding layers,
the number of units in each layer can be fewer.

42 / 60



DenseNet
In ResNet, element-wise addition is used to pass a state from
one ResNet module to another one.

In DenseNet, each layer obtains additional inputs from all
preceding layers by concatenation and passes on its own
feature-maps to all subsequent layers.

Each layer is receiving a “collective knowledge” from all preceding
layers. 43 / 60



DenseNet

Since each layer receives feature maps from all preceding layers and
the feature maps are concatenated after each block, the
unit/channel dimension is increasing.

If the output of a layer produces k feature maps every time, then
for the l-th layer we have

kl = ko + k(l − 1)

This hyperparameter k is the growth rate.

44 / 60



DenseNet

The growth rate k is the additional number of units for each layer
of a DenseNet.

The growth rate regulates how much information is added to the
network each layer.

Since the unit/channel dimension is increasing, network can be
thinner, i.e. number of units/channels can be fewer.

Higher computational efficiency and memory efficiency w.r. to
ReNet.

45 / 60



DenseNet

For each layer, the number of parameters in ResNet is directly
proportional to C × C (where C is the number of units) while
number of parameters in DenseNet is directly proportional to
l × k × k where k is the growth rate and l is the number of
preceding layers.

Since k ≪ C , DenseNet has much smaller size than ResNet.

ResNet50: 25.6M parameters; DenseNet-201: 20.0M parameters.

46 / 60



DenseNet Architecture
The architecture of a DenseNet includes:
▶ Dense Blocks, where the dimensions of the feature maps

remains constant within a block, but the number of filters
changes between them;

▶ Transition Layers, used between different Dense Blocks to
take care of the downsampling applying a batch
normalization, a 1x1 convolution and a 2x2 pooling layers.

A Dense Block consists of several Dense Layers, also called
DenseNets-B (Bottleneck), that employ 1× 1 convolution to
reduce the feature maps size before the 3× 3 convolution.

47 / 60



DenseNet Architecture

Multiple Dense Blocks are combined with Transition Layers

▶ Feature map sizes are the same within the dense block so that
they can be concatenated together.

▶ Transition layers reduce feature map sizes

▶ At the end of the last dense block, a global average pooling is
performed followed by a softmax classifier.

48 / 60



DenseNet - Architectures

Sizes of outputs and convolutional kernels for different DenseNets
architectures, designed for ImageNet classification (output: 1,000
classes)

49 / 60



DenseNet-121

Architecture of DenseNet-121, with input 224× 224× 3.

C1: Convolution Block; Dx: Dense Block x; Tx: Transition Block x.

The numbers under each volume represent the sizes of the width
and depth, the numbers on top represent the feature maps
dimension.

Note: width and depth decrease in successive blocks.

50 / 60



DenseNet-121

The volume after every Dense Block increase by the growth rate
times the number of Dense Layers within that Dense Block.

DLx: Dense Layer x; Growth rate = 32

Every layer is adding to the previous volume 32 new feature maps.
This is why we go from 64 to 256 after 6 layers.

51 / 60



DenseNet-121

The volume and the feature maps are halved after every Transition
Block

The Transition Block performs as 1× 1 convolution with 128
filters, followed by a 2× 2 pooling with a stride of 2, resulting on
dividing the size of the volume and the number of feature maps on
half. In the visulized block, it goes from 256 to 128.

52 / 60



DenseNet-121
The figure shows how the first Dense Layer within the first Dense
Block is adding 32 times the number of layers.

First, we perform a 1× 1 convolution with 128 filters to reduce the

feature maps size and next we perform a 3× 3 convolution (with

padding, to ensure dimensions remain constant) with this chosen 32

number of feature maps. Finally, the input volume and the result of the

two operations are concatenated.
53 / 60



ResNext

ResNext [Xie et al, 2017] is an enhanced version of the Inception
Network also known as the Aggregated Residual Transform
Network.

It combines ideas from ResNet, VGG, and Inception.

54 / 60



ResNext

ResNeXt includes

▶ skip connections from the previous block to next block,
adapted from ResNet;

▶ stacking layers to build a deep architecture model, adapting
VGG;

▶ split-transform-merge strategy adapted from Inception, where
input is split into multiple blocks and merged blocks later.

It reports improved classification performance on ImageNet with
respect to ResNet using similar network depth and paramater size.

55 / 60



Xception

The Xception [Chollet et al, 2017] model (meaning Extreme
Version of Inception) adjusts the original inception block by
making it wider and rearranging it.

As the original inception, it uses a depthwise convolution
consisting of a channel-wise n × n spatial convolution.

56 / 60



Xception

The original depthwise separable convolution was inplemented
depthwise convolution followed by a 1× 1 convolution.

In the modified depthwise separable convolution, the 1× 1
convolution convolution is followed by a depthwise convolution.

The Xception architecture also includes skip connections

57 / 60



Xception - Architecture

58 / 60



CapsNets

Capsule Neural Networks or CapsNets [Sabour, Frosst, Hinton,
2017] were introduce to overcome the limitations of CNNs related
to learning hierarchical structures and spatial relationships.

CapsNets are designed to emulate hierarchical relationships,
drawing inspiration from the hierarchical organization observed in
biological neural systems.

The fundamental building block of a CapsNet is called a capsule.

A capsule is a group of neurons whose outputs represent different
properties of the same entity.

Unlike neurons that work with scalars, capsules process inputs by
encapsulating the result in informative vectors through an affine
transformation.

59 / 60



CapsNets
Compared to CNNs, CapsNets have a number of advantages.

▶ Improved handling of hierarchies. By capturing the spatial
hierarchies among features, CapsNets improve representation
learning by handling hierarchical relationships in data
efficiently.

▶ Reduced need for data augmentation. Compared to
CNNs, CapsNets frequently require less data augmentation.

▶ Improved robustness to adversarial attacks. CapsNets
demonstrate heightened resilience against adversarial attacks
due to their use of vector representations, making it
challenging for attackers to influence the network with minor
input perturbations.

▶ Explicit pose information. CapsNets encode pose
information, enhancing structured representations for tasks
like object recognition and pose estimation, where
understanding spatial relationships is crucial.

60 / 60


	Convolutional Neural Networks
	Advanced CNN design


