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3.1 Limitations of CNN models
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Limitations of CNN models

There are notable drawbacks of CNN models that are very critical
in some applications

1. classification of images with different viewpoints or
illuminations;

2. classification of scrambled images;

3. coordinate frame;

4. interpretability, black box problem;

5. adversarial examples;

6. computational complexity and need for many training samples.
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Limitations of CNN models - image viewpoint/illuminations
One major challenge in computer vision is to deal with the variance
or real world data, specifically how to identify imaged objects

▶ Under different angles;

▶ Under different backgrounds;

▶ Under different lighting conditions.
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Limitations of CNN models - image viewpoint/illuminations

CNNs have achieved great performance while classifying images
which are very similar to the dataset on which they are trained.

However, if images contain some degree of tilt or rotation, or some
change in illumination with respect to the training samples, then
CNNs usually have difficulty in classifying the image.

Note that images in ImageNet and the other common datasets are
collected with consistent illumination and orientation.

This challenge can be solved by adding different variations to the
image during the training process otherwise known as Data
Augmentation.
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Data augmentation
This technique is often adopted to increase the amount of
available data and avoid the overfitting issue. It is also useful to
improve the classification performance of a classification model,
with respect to variations in the data due to changes in viewpoint,
background and illumination.

Data augmentation aims to improve the attributes and size of
training datasets by incorporating a collection of methods such as:

1. Geometric transformations: randomly flip, crop, rotate,
stretch, and zoom images.

2. Color space transformations: randomly change RGB color
channels, contrast, and brightness.

3. Kernel filters: randomly change the sharpness or blurring of
the image.

4. Random erasing: delete some part of the initial image.

5. Mixing images: blending and mixing multiple images.

6. Noise injection: adding random noise to the image.
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Data augmentation
Geometric transformations include several possible operations.
You need to be careful about applying multiple transformations on
the same data, as this can reduce model performance.
▶ Flipping an image along the vertical or horizontal axis is

highly simple to implement and has been verified as valuable
on datasets like ImageNet and CIFAR-10.

▶ Rotation. Rotated images within 0 to 360 degrees around the
center are easily generated. Not every rotation is suitable. For
instance, in digit recognition tasks, small rotations (from 0 to
20 degrees) are helpful but larger rotations are not as data
labels cannot be preserved for large rotation degrees.

▶ Translation. To avoid positional bias within the image data,
a useful transformation is to shift the image up, down, left, or
right. When translating the initial images in a particular
direction, the residual space should be filled with random
noise or a constant value so that the spatial dimensions of the
image post-augmentation are preserved.
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Data augmentation
image flip

image rotation
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Data augmentation
Color space transformations

▶ Color channel transformations. An easy color augmentation
involves separating a channel of a particular color, such as
Red, Green, or Blue. To convert an image using a single-color
channel it is sufficient to insert additional double zeros from
the remaining two color channels.

▶ Contrast, brightness, saturation can be Increased or
decreased in an image using well established matrix operations
to manipulate the RGB values, similar to common
photo-editing applications.

Cropping. Data can be augmented by cropping a dominant patch
of an image. Random cropping may be employed to produce an
impact similar to translations. The difference between translations
and random cropping is that translations conserve the spatial
dimensions of this image, while random cropping reduces the input
size.
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Data augmentation

image brightness
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Data augmentation

image saturation

image crop
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Data augmentation in PyTorch

Pytorch has a module available called

torchvision.transforms

that lets us augment images in different ways.

You can add transform layers within torch.nn.Sequential or
apply an augmentation function separately on the dataset.

Here is a tutorial to data augmentation in PyTorch.

Augmentor is also a Python package for image augmentation and
artificial image generation. You can perform Perspective Skewing,
Elastic Distortions, Rotating, Shearing, Cropping, and Mirroring.
Augmentor also comes with basic image pre-processing
functionality.
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https://pytorch.org/vision/stable/transforms.html
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https://pypi.org/project/Augmentor/


Data augmentation

Remarks on data augmentation.

▶ Data augmentation techniques are not limited to images. You
can augment audio, video, text, and other types of data.

▶ One need to be careful in choosing the appropriate data
transformations for data augmentation to ensure that they do
not change the image label. For instance, rotations of the
digit 9 and 6 may change their label. Similarly, arbitrary
cropping and flipping may result in chaging the object label.

▶ The main disadvantage of data augmentation arises from data
bias. If the original data have biases, the augmented data will
also have biases which will lead to suboptimal results.
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Limitations of CNN models - Scrambled Images

While CNN are very efficient to extract image features, they are
not meant to preserve hierarchical structures and spatial
relationships of the features in the data.

In a CNN, early layers extract simple and interpretable features
such as edges,corners and endpoints.

Higher level layers in the CNN combine extracted features
regardless of order.

As network gets deeper, features become more abstract and
shrink in size due to repeated pooling and filtering.
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Limitations of CNN models - Scrambled Images

As you progress through the layers, feature maps become
increasingly complex and abstract. 16 / 53



Limitations of CNN models - Scrambled Images

A CNN does not keep track of spatial relationships.

To a CNN the above pictures appear very similar as both contain
the same features.
This is also called the Picasso problem in image recognition.
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Limitations of CNN models - Coordinate frames

CNNs do not have coordinate frames, that is, they lack an
internal representations of components and their part-whole
relationships.

A coordinate frame is a mental model which keeps track of the
orientation and different features of an object.

If we look at the figure we can identify that the image on the right,
if turned upside-down will give us the image on the left. Just by
mentally adjusting our coordinate frame in the brain we are able to
see both faces, irrespective of the picture’s orientation.
The human Coordinate frame enables us to see both the faces.

18 / 53



Limitations of CNN models - Black box problem

In a seminal paper titled “Visualizing and Understanding
Convolutional Neural Networks” (2013), Zeiler and Fergus begin
by observing that the success of CNNs is due in large part to the
accessibility of large training sets and increased computational
power with the usage of GPUs.

They point out to the limited knowledge that researchers have on
inner mechanisms of these models.

in other words, a CNN is a black box for which “development of
better models is reduced to trial and error”.
While we do currently have a significantly better understanding,
this still remains an issue.

One main contributions of their paper was a way of visualizing
feature maps.
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Limitations of CNN models - Black box problem

Questions:

▶ How is CNN model is learning the complex dependencies
present in the input?

▶ What kind of data/images cause certain neurons to fire?

▶ How good are the hidden representations of the input image?

To answer these questions, we can visualize the learned filter
weights
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Limitations of CNN models - Black box problem

The receptive field of a neuron is the region in the input image
that can influence the neuron in a convolution layer, that is, how
many pixels in the original image are influencing the neuron
present in a convolution layer.

As we go deeper in the CNN, the pixels at the deeper layers will
have a high receptive field, that is, the region of interest with
respect to the original image would be larger.
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Limitations of CNN models - Black box problem

Understanding the receptive field is important as it gives us an idea
of where we are getting our results from as data flows through the
layers of the network.

We are interested in the size of the receptive field in our initial
input to understand how much area the CNN covers from it.

This is essential in many computer vision tasks.

Consider, for example, the task of object detection. The network
takes an input image and predicts the class label of every pixel
building a label map in the process. If the network does not have
the capacity to take into account enough surrounding pixels when
doing its predictions some larger objects might be not fully
contained in the receptive field.

Computing Receptive Fields

Computing Receptive Fields - short version
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https://distill.pub/2019/computing-receptive-fields/#solving-receptive-field-region
https://www.baeldung.com/cs/cnn-receptive-field-size


Limitations of CNN models - Black box problem

Filter Visualization. By visualizing the filters of the trained
model, we can understand how CNN learns the spatial pixel
dependencies present in the image.

Consider that we have a 2D input of size 4x4 and we are applying
a filter of 2x2 (in red) on the image starting from the top left
corner of the image. As we slide the kernel over the image from
left to right and top to bottom to perform a convolution operation
we would get an output that is smaller than the size of the input.
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Limitations of CNN models - Black box problem

The output at a convolution operation is equal to the dot product
of the input vector and a weight vector. We know that the dot
product between the two vectors is proportional to the cosine of
the angle between vectors.

During convolution operation, certain parts of the input image
might give high value when we apply a filter.

The output would be high if the cosine value between the vectors
is close to 1.
That means the neuron is going to fire maximally when both
input vector (portion of the image) and the weight vector
are in the same direction.
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Limitations of CNN models - Black box problem

Conclusion

▶ We can think of a convolutional kernel or filter as an image.

▶ As we slide the filter over the input from left to right and top
to bottom whenever the filter coincides with a similar portion
of the input, the neuron will fire.

▶ For all other parts of the input image that does not align with
the filter, the output will be low.

▶ The kernel or weight matrix is called a filter because it filters
out portions of the input image that do not align with the
filter.
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Limitations of CNN models - Black box problem

We will visualize the trained filters of AlexNet.

Recall that this network contains 5 convolutional layers and 3 fully
connected layers. ReLU is applied after every convolution
operation. Remember that in convolution operation for 3D (RGB)
images, there is no movement of kernel along with the depth since
both kernel and image are of the same depth.

We will visualize these filters (kernel) in two ways

1. By combing three channels as an RGB image.

2. By visualizing each channel in a filter independently using a
heatmap.
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Limitations of CNN models - Black box problem

We have 64 filters of depth 3 (RGB) in the first convolutional
layer. We combine each filter RGB channels into one RGB image
of size 11x11x3.
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Limitations of CNN models - Black box problem

Interpretation

From the images, we see that the kernels seem to learn blurry
edges, contours, boundaries.

For example, figures 4, 20, 42, 59 in the above image indicate that
the filters are trying to learn a edges in different orientations.

Figures 31, 37 indicate that the filters have learned some contours.

Figures 3, 8, 9, 12, 16 and more show periodic patterns of different
frequency and orientation.
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Limitations of CNN models - Black box problem
Alternatively, we can display 3 separate images for each channel
since the depth of the filter is 3. In total, we now have 64*3
images as the output for visualization.
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Limitations of CNN models - Black box problem

By looking closely at the filter visualizations above, it is clear that
the patterns found in some of the channels from the same filter are
different. That means not all channels present in a filter are trying
to learn the same information from the input image.

Deeper layers:
As we go deeper and deeper into the network, the number of filters
used for convolution increases.

The second convolution layer of Alexnet has 192 filters, so we
would get 192*64 = 12,288 individual filter channel plots.

It is not practical to visualize all these filter channels individually
either as a single image or each channel separately because of the
large number of such filters. A way to plot these filters is to
concatenate all the images into a single heatmap using greyscale.

As we go deeper into the network it becomes harder to interpret
the filters.
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Limitations of CNN models - Black box problem

Visualizing Convolution Neural Networks [blog]

”Visualizing and Understanding Convolutional Networks” by Zeiler
and Fergus, 2013 [paper link]
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https://towardsdatascience.com/visualizing-convolution-neural-networks-using-pytorch-3dfa8443e74e
https://arxiv.org/pdf/1311.2901.pdf


Limitations of CNN models

Geoffrey Hinton attributed most CNN drawbacks primarily to the
use of pooling, which is employed to down-sample spatial
information.

Although effective in expanding the network’s field of vision and
retrieving high-level characteristics, the pooling operation
discards important information about hierarchical structures
and geographical relationships in the image.

Hinton: “The pooling operation used in CNNs is a big mistake and
the fact that it works so well is a disaster”
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Limitations of CNN models

Drawbacks of pooling:

▶ It violates biological shape perception in that it has no
intrinsic coordinate frame.

▶ It provides (local) shift-invariance (positional information is
discarded) instead of shift-equivariance (shifted input is
mapped to shifted output).

▶ It ignores the linear variations that underlies many variations
among images;

▶ It routes statically instead of communicating a potential
”find” to the feature that can appreciate it;

▶ It damages nearby feature detectors, by deleting the
information they rely upon.

These drawbacks were taken into consideration and led Hinton to
the idea of Capsule Neural Networks or CapsNets
[Sabour, Frosst, Hinton, 2017].
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CapsNets
CapsNets were introduce to overcome the limitations of CNNs
related to learning hierarchical structures and spatial relationships.

CapsNets are designed to emulate hierarchical relationships,
drawing inspiration from biological neural systems.

Visual fixation and saccades. [Video Lecture on Eye Movements]

▶ Human vision uses saccades, that is quick, simultaneous
movement of both eyes between two or more phases of
fixation to scan a scene.

Trace of saccades of the human eye on a face while scanning
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https://www.youtube.com/watch?v=00eRYdljesQ


CapsNets
Using fixation and saccades, human vision:
▶ ignores irrelevant details by a careful sequence of fixations;
▶ only a tiny fraction of the optic array is processed at the

highest resolution;
▶ this multilayer visual approach creates a parse tree on each

fixation, capturing the hierarchical organization of the scene.
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CapsNets

The fundamental building block of a CapsNet is called a capsule.

▶ A capsule is a group of neurons whose outputs represent
different properties of the same entity.

▶ Capsules are designed to handle hierarchical structures and
pose variations by encapsulating both the activation
information and spatial relationships.
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CapsNets

▶ Each capsule outputs a set of pose parameters, including
orientation and position, in addition to an activation that
represents a particular entity or portion of an object.

▶ Unlike neurons that work with scalars, capsules process inputs
by encapsulating the result in informative vectors through an
affine transformation.
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CapsNets

While neurons in classical neural networks are associated with
pointwise activation, sum computation and weighted connections,
capsules go through more steps:

1. Input vectors multiply with spatial-relationship-encoded
weight matrices;

2. further multiplication with weights;

3. weighted sum of input vectors;

4. activation function application for vector output.

CasNets iteratively refine the coupling coefficients between
capsules based on the agreement of their pose parameters,
capsules enabling dynamic routing.
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CapsNets

▶ 1. Input vectors multiply with
spatial-relationship-encoded weight matrices.
Input vectors (either the initial input or information from a
preceding layer) are transformed via multiplication with weight
matrices.
These weight matrices encode spatial relationships within the
data. For instance, if one object is positioned symmetrically
around another and shares similar proportions, the resulting
product of the input vector and weight matrix encapsulates a
high-level feature indicative of this spatial arrangement.
This process allows the neural network to capture meaningful
relationships and features as it progresses through its layers.
Here, input vector are multiplied by the weight matrix.
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CapsNets

▶ 2. Further multiplication with weights.
A weighted adjustment in a capsule network is applied to the
outputs obtained from the previous step. In contrast to
conventional neural networks which update weights via
error-based backpropagation, Capsule Networks use dynamic
routing to change weights.
CapsNets create robust associations between nearby high-level
and low-level capsules by dynamically adjusting weights.
The computation entails calculating the separation between
dense clusters that represent low-level capsule predictions and
the outputs of the affine transformation. When low-level
capsule predictions are similar, these clusters form and are
positioned closely. The distance metric determines the weight
assignment so that the high-level capsule closest to the
current prediction cluster is given a higher weight and the
other capsules have lower weights according to their distances.
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CapsNets
▶ 3. 3. Weighted sum of input vectors

Calculate the input vectors’ weighted sum.
▶ 4. Activation function application for vector output.

Capsule activation functions guarantee dynamic
representations of vector outputs. The squashing function,
which normalizes the vector length while maintaining its
orientation, is given by

vj =
||sj ||2

1 + ||sj ||2
sj

||sj ||
Where, sj is the sum of the input vectors and vj is the output
obtained after applying non-linearity function.
By compressing the vector sj to a magnitude between 0 and 1,
enables robust hierarchical representations by capturing
intricate interactions among features. Capsules can transmit
subtle information that is essential for complex pattern
identification because of the normalizing property of the
squashing function.
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CapsNets
Dynamic routing involves lower capsules sending data to the
most suitable parent capsule based on dot product.
The parent capsule is chosen through an agreement mechanism,
utilizing the highest dot product between prediction vectors from
lower capsules and the weight matrix.

Example. Suppose we have a picture of a house in different types
of viewpoints. A CNN can recognize the front view of the house
very easily since it is similar to the training set but it will have
serious troubles in identifying the picture of the house from the
top. Capsules on the other hand detect the roof and walls very
easily and analyze the constant part in the image, i.e, the
co-ordinate frame of the house capsule with respect to both roof
and walls. The prediction is done by both the roof and the walls so
as to decide whether the object is a house or not. These
predictions are then sent to the mid-level capsule to check if the
prediction of the roof and the walls matches each other..
This process is called Routing by Agreement.
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CapsuleNet - Architecture

The CapsNet architecture consists of two main blocks, Encoder
and Decoder networks, each one made up of various elements.

Encoding (top) and Decoder unit (bottom) networks
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CapsuleNet - Architecture
The Encoder takes the image input and displays the image as a
vector that contains all the instantiation parameters needed to
render the image.

It contains

1. Convolutional layer to extract low-level input features.

2. PrimaryCaps layer uses capsules to record significant patterns.
Every capsule in the input represents an instantiation
parameter (like posture) of a certain object.

3. DigitCaps layer encode the instantiation parameters and
likelihood that the object exists.
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CapsuleNet - Architecture
The instantiation parameters are encoded using a reconstruction
loss. Every training sample’s loss is computed against every output
class and all of the digit capsules’ losses added together equals the
total loss:

Lk = Tk max(0,m+ − ∥vk∥)2 + λ(1− Tk)max(0, ∥vk∥ −m−)2

where:

Lk is the margin loss for the k-th digit capsule.

Tk is a binary indicator.

vk is the activity vector of the k-th digit capsule.

∥vk∥ is length of the activity vector.

m+ is the positive margin and m− is the negative margin.

λ is a downweighting factor for the loss from incorrect digit capsules.

This loss function promotes the length of the correct digit capsule to be

greater than m+ and the length of the incorrect digit capsules to be less

than m–. The contribution of both accurate and inaccurate predictions to

the total loss is balanced by the down-weighting factor. 45 / 53



CapsuleNet - Architecture
The Decoder recreates input images from the data contained in
the DigitCapsules. The instantiation properties (such pose and
viewpoint) of the DigitCapsules are utilized to rebuild the input
data in the CapsNet following dynamic routing.

To facilitate faithful image reconstruction, the instantiation
parameters are converted to the original input space. To promote
accurate picture recovery, the loss for reconstruction is the
Euclidean distance between the reconstructed image and the
original input. Reconstruction improves classification accuracy and
meaningful picture reconstruction, which furthers the overall
training goal of Capsule Networks
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CapsuleNets

More details on CapsuleNets:

Lecture by Sargur Srihari
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https://cedar.buffalo.edu/~srihari/CSE676/9.12CapsuleNets.pdf


CapsuleNet

Applications of Capsule Networks

▶ Self-supervised learning: Canonical Capsules: Self-Supervised
Capsules in Canonical Pose

▶ Medical Image classification: Fast CapsNet for Lung Cancer
Screening; 3D Res-CapsNet convolutional neural network on
automated breast ultrasound tumor diagnosis

▶ Anomaly Detection: Abnormality detection in musculoskeletal
radiographs using capsule network.

▶ Autonomous Vehicles: Traffic-light sign recognition using
capsule network
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Region Based CNNs

The purpose of Region Based CNNs (R-CNNs) is to solve the
problem of object detection.

The advent of R-CNN has been more impactful than any of the
previous papers on new network architectures [Girshick, Donahue,
Darrell, Malik, 2014], with the original paper being cited over
35,000 times.

The original publications spurred one of the most dramatic
advancements in computer vision and was followed by Fast
R-CNN [ Girshick, 2015] and Faster R-CNN [Ren, He, Girshick,
Su, 2016] to make the model faster and better suited for modern
object detection tasks
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Region Based CNNs

Given a certain image, we want to draw bounding boxes over all
of the objects.

The process can be split into two general components: (i) the
region proposal step and (ii) the classification step.
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Region Based CNNs

The authors note that any class agnostic region proposal method
should fit. Selective Search is used in particular for RCNN.
Selective Search performs the function of generating 2000 different
regions that have the highest probability of containing an object.
After we’ve come up with a set of region proposals, these proposals
are then “warped” into an image size that can be fed into a
trained CNN (AlexNet in this case) that extracts a feature vector
for each region. This vector is then used as the input to a set of
linear SVMs that are trained for each class and output a
classification. The vector also gets fed into a bounding box
regressor to obtain the most accurate coordinates.
As evident by their titles, Fast R-CNN and Faster R-CNN worked
to make the model faster and better suited for modern object
detection tasks.
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Fast R-CNN

Fast R-CNN
Improvements were made to the original model because of 3 main
problems. Training took multiple stages (ConvNets to SVMs to
bounding box regressors), was computationally expensive, and was
extremely slow (RCNN took 53 seconds per image). Fast R-CNN
was able to solve the problem of speed by basically sharing
computation of the conv layers between different proposals and
swapping the order of generating region proposals and running the
CNN. In this model, the image is first fed through a ConvNet,
features of the region proposals are obtained from the last feature
map of the ConvNet (check section 2.1 of the paper for more
details), and lastly we have our fully connected layers as well as our
regression and classification heads.
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Faster R-CNN

Faster R-CNN works to combat the somewhat complex training
pipeline that both R-CNN and Fast R-CNN exhibited. The authors
insert a region proposal network (RPN) after the last convolutional
layer. This network is able to just look at the last convolutional
feature map and produce region proposals from that. From that
stage, the same pipeline as R-CNN is used (ROI pooling, FC, and
then classification and regression heads).
Being able to determine that a specific object is in an image is one
thing, but being able to determine that object’s exact location is a
huge jump in knowledge for the computer. Faster R-CNN has
become the standard for object detection programs today.
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