
Deep Learning and Neural Networks

Demetrio Labate

April 3, 2024

Part 5
Autoencoders

2 / 53

Autoencoders

An autoencoder is a type of neural network architecture designed
to efficiently compress (encode) input data down to its essential
features, then reconstruct (decode) the original input from this
compressed representation.

3 / 53

Autoencoders
An autoencoder typically consists of three blocks

▶ Encoder layer to compress the input data into a compressed
representation.

▶ Bottleneck layer or code to represent the compressed input.

▶ Decoder layer to reconstruct the encoded image back to the
original dimension.

4 / 53

Autoencoders vs Encoder-decoders

Though all autoencoders include both an encoder and a decoder,
not all encoder-decoder models are autoencoders.

Encoder-decoder frameworks are used in a variety of deep learning
models to extracts/encode features of the input data and take the
extracted feature data to the decoder for tasks such as
classification or segmentation. In applications of such
encoder-decoder models, the output of the neural network is
different from its input.

For example, in segmentation models like U-Net, the encoder extracts

features from the input to determine pixel classification; using the feature

map and those pixel-wise classifications, the decoder then constructs

segmentation masks for each object in the image. The goal of these

encoder-decoder models is to label pixels by their semantic class. they

are trained via supervised learning, optimizing the model’s predictions

against ground truth images.

5 / 53

Autoencoders

Autoencoders form a very specific subset of encoder-decoder
architectures that are trained via unsupervised learning to
reconstruct their own input data.
Input and output dimensions are the same.

Using unsupervised machine learning, autoencoders are trained
to discover the latent variables of the input data.

The latent variables are not directly observable but they
fundamentally inform the way data is distributed. Collectively, the
latent variables of a given set of input data are referred to as a
latent space.

6 / 53

Autoencoders - History
▶ Early versions of autoencoders were introduced as a method

for unsupervised pre-training (Ballard, 1986) and to address
the problem of “backpropagation without a teacher”
(Rumelhart, Hinton, and Williams, 1986).

▶ The first formal notion of the autoencoder idea was first
proposed by Kramer (1991) as a nonlinear generalization of
principal components analysis (PCA).

▶ Popularized by paper Autoencoders, Minimum Description
Length and Helmholtz Free Energy, Hinton and Zemel, 1993.

▶ Most traditional applications: dimensionality reduction,
feature learning, learning generative models of data.

▶ More recently, autoencoders have taken center stage in the
deep architecture. Some powerful AIs introduced in the 2010s involve

autoencoders, in the form of Restricted Boltzmann Machines, stacked

and trained bottom up in unsupervised fashion, followed by a supervised

learning phase to train the top layer and fine-tune the entire architecture.

7 / 53

Autoencoders

Autoencoders are flexible neural networks that can be customized
for various tasks. They come in different forms, each with unique
strengths and limitations.

▶ Vanilla Autoencoders: Basic autoencoders that efficiently
encode and decode data.

▶ Denoising Autoencoders: Improved robustness to noise and
irrelevant information.

▶ Sparse Autoencoders: Learn more compact and efficient
data representations.

▶ Contractive Autoencoders: Generate representations less
sensitive to minor data variations.

▶ Variational Autoencoders: Generate new data points that
resemble in some form the training data.

The choice of autoencoder depends on the specific task..

8 / 53

Autoencoders

Auto-Encoders are designed to learn a lower-dimensional
representation for a higher-dimensional data.

Applications include

1. Dimensionality Reduction

2. Feature Extraction

3. Image Denoising

4. Image Compression

5. Image Search

6. Anomaly Detection

7. Missing Value Imputation

9 / 53

Autoencoders - Architecture
An autoencoder has a structure very similar to a feedforward neural
network, the primary difference being that the number of neurons
in the output layer are equal to the number of inputs.

The autoencoder maps the space of decoded messages X to the
space of encoded messages Z.
In most cases, both X and Z are Euclidean spaces, that is,
X = Rm, Z = Rn for some m, n. 10 / 53

Autoencoders - Architecture
We can describe the autoencoder algorithm in two parts:

1. a parametrized family of encoder functions fθ, parametrized by
θ, that maps an input X ∈ X to a code h ∈ Z, that is

fθ(X) = h

2. a parametrized family of decoder functions gϕ, parametrized
by ϕ, that maps h ∈ Z to X ′ ∈ X , that is

gϕ(h) = X ′

The decoder is designed to produces a reconstruction X ′ of
the input X .

Usually, both the encoder and the decoder functions are defined as
MLPs. For example, a one-layer-MLP encoder is a function of the
form

fW ,b(X) = σ(WX + b)

11 / 53

Autoencoders - Loss function
To learn the parameters of the encoder and decoder functions, the
autoencoder seeks to minimize some loss function, such as mean
squared error (MSE).

The loss function penalizes X ′ = gϕ(h) = gϕ(fθ(X)) for being
dissimilar from X .

To define the loss in the continuous setting, let µ be a reference
probability distribution on X and d : X × X → R be a distance
function. Then we can define the loss function for the autoencoder
as

L(θ, ϕ) := Ex∼µref
[d(x , gϕ(fθ(x)))]

The optimal autoencoder is defined by the optimization problem

argmin
θ,ϕ

L(θ, ϕ)

12 / 53

Autoencoders - Loss function
In practical situations, the reference distribution is just the
empirical distribution given by a dataset {X1, . . . ,XN} ⊂ X , so
that the reference probability distribution is the Dirac measure

µref =
1

N

N∑
i=1

δxi

The distance function is typically chosen to be the square L2 loss:

d(x , x ′) = ∥x − x ′∥22

Hence, the problem of searching for the optimal autoencoder is the
least-squares optimization problem:

min
θ,ϕ

L(θ, ϕ) where L(θ, ϕ) =
1

N

N∑
i=1

∥Xi − gϕ(fθ(Xi)∥22

13 / 53

Autoencoders - Loss function
Let us consider, as an example, an autoencoder where both the
encoder and the decoder functions are defined as a one-layer-MLP.

Encoder: fθ = fW ,b : X 7→ Z given by

fW ,b(X) = σ(WX + b) = z

Decoder: gϕ = gW ′,b′ : Z 7→ X given by

gW ′,b′(z) = σ(W ′z + b′) = X ′

14 / 53

Autoencoders - Loss function
Let us consider, as an example, an autoencoder where both the
encoder and the decoder functions are defined as a one-layer-MLP.

To minimize the reconstruction error, we minimize the MSE loss
over the training samples (Xi)

L(W ,W ′, b, b′) =
1

N

N∑
i=1

∥Xi − σ
(
W ′ (σ(WXi + b)) + b′

)
∥22

15 / 53

Autoencoders - Learning

What does an autoencoder learn?

▶ Learning g(f (x)) = x everywhere is not useful

▶ Autoencoders are designed to be unable to copy perfectly.

▶ Autoencoders learn useful properties of the data: can
prioritize which aspects of input should be copied.

▶ Can learn stochastic mappings. they go beyond deterministic
functions to mappings pencoder (x |h) and pencoder (h|x).

16 / 53

Autoencoders - Training
There are 4 hyperparameters that we need to set when training an
autoencoder:

1. Code size: number of nodes in the middle layer. by choosing
smaller size than the input dimension results in compression.
Smaller code size, higher compression.

2. Number of layers: the autoencoder can be as deep as we
like. In the figure below we have 2 layers in both the encoder
and decoder, without considering the input and output.

17 / 53

Autoencoders - Training

3. Number of nodes per layer: the standard autoencoder
architecture we have shown in examples is called a stacked
autoencoder since the layers are stacked one after another.
Usually stacked autoencoders look like a “sandwitch”, with
the number of nodes per layer decreases with each subsequent
layer of the encoder, and increases back in the decoder. Also
the decoder is symmetric to the encoder in terms of layer
structure. This is not necessary and we have total control over
these parameters.

4. Loss function: Usual choices are the mean squared error
(MSE) or binary crossentropy. If the input values are in the
range [0, 1] then we typically use crossentropy, otherwise we
use the mean squared error.

Autoencoders are typically trained via backpropagation combined
with minibatch gradient descent.

18 / 53

Autoencoders - Interpretation
An autoencoder is optimized to perform as close to perfect
reconstruction as possible.

In many applications, the goal is to create a reduced set of codings
that adequately represents the inputs X ∈ X . Consequently, we
constrain the hidden layers so that the number of neurons is less
than the number of inputs.

An autoencoder whose internal representation has a smaller
dimensionality than the input data is an undercomplete
autoencoder. 19 / 53

Autoencoders - Interpretation

In an undercomplete autoencoder, the compression of the hidden
layers forces the autoencoder to capture the most dominant
features of the input data and the representation of these signals
are captured in the codings.

Remark: When the autoencoder uses only linear activation
functions and the loss function is MSE, then the autoencoder
learns to span the same subspace as Principal Component
Analysis (PCA).

When nonlinear activation functions are used, autoencoders
provide nonlinear generalizations of PCA

The reduced codings we extract using an undercomplete
autoencoder are sometimes referred to as deep features (DF) and
they are similar in nature to the principal components for PCA.

20 / 53

Autoencoders - Interpretation
Example. The following example demonstrates an implementation
of a basic undercomplete autoencoder with three fully connected
hidden layers that we apply to find a reduced representation of the
MNIST dataset.

We use a single hidden layer with only two codings. This is
reducing 784 features down to two dimensions; although not very
realistic, it allows us to visualize the results and gain some intuition
on the algorithm

21 / 53

Autoencoders - Interpretation

We project the MNIST response variable onto the reduced feature
space and compare our autoencoder to PCA.

Figure shows that the nonlinear dimensionality reduction of the
autoencoder can help to isolate the signals in the features better
than PCA.

22 / 53

Undercomplete Autoencoders

The goal of the bottleneck is to prevent the autoencoder from
overfitting to its training data.

Without sufficiently limiting the capacity of the bottleneck, the
network tends toward learning the identity function between the
input and output: in other words, it may learn to minimize
reconstruction loss by simply copying the input directly. By forcing
the data to be significantly compressed, the neural network must
learn to retain only the features most essential to reconstruction.

If the encoder and decoder have a high enough capacity—that is,
if they are processing large or complex data inputs, then the
autoencoder (even with a bottleneck) may still learn the identity
function anyway, making it useless.
This makes undercomplete autoencoders inflexible and limits their
capacity

23 / 53

Autoencoder failings

Autoencoders may fail to learn anything useful in the following
cases.

1. Hidden code h has dimension equal to input X .

2. Even in the case of an undercomplete autoencoder, the
capacity of encoder/decoder is too high.
▶ Capacity controlled by depth

3. Overcomplete case: hidden code h has dimension greater than
input X .
▶ Notice that even in the overcomplete case the autoencoder

may learn useful features from the data.

24 / 53

Regularized Autoencoders

Regularized autoencoders address the shortcomings of
undercomplete autoencoders by introducing regularization.

Various techniques exist to prevent autoencoders from learning the
identity function, to reduce overfitting and to improve their ability
to learn useful features or functions.

▶ Denoising Autoencoders

▶ Sparse Autoencoders

▶ Contractive Autoencoders

25 / 53

Denoising Autoencoders

The Denoising AutoEncoder (DAE) is a stochastic version of
the autoencoder in which we train the autoencoder to reconstruct
the input from a corrupted copy of the inputs.

This forces the codings to learn more robust features of the inputs
and prevents them from merely learning the identity function; even
if the number of codings is greater than the number of inputs.

We can think of a denoising autoencoder as having two objectives:

1. try to encode the inputs to preserve the essential signals;

2. try to undo the effects of a corruption process stochastically
applied to the inputs of the autoencoder.

The latter can only be done by capturing the statistical
dependencies between the inputs. Combined, this denoising
procedure allows us to implicitly learn useful properties of the
inputs

26 / 53

Denoising Autoencoders

The corruption process typically follows one of the following
approaches:

▶ additive Gaussian noise;

▶ masking noise: a fraction of the input is randomly chosen and
set to 0; this can be done by manually imputing zeros or ones
into the inputs or adding a dropout layer between the inputs
and first hidden layer;

▶ salt-and-pepper noise: a fraction of the input is randomly
chosen and randomly set to its minimum or maximum value;

27 / 53

Denoising Autoencoders
Training a denoising autoencoder is nearly the same process as
training a regular autoencoder.

The only difference is we supply our corrupted inputs as training
set and supply the non-corrupted inputs as ground truth.

Formally, the DAE is associated to a different loss function as
compared to a ”vanilla” autoencoder.

Letting the noise process be defined by a probability distribution
µT over functions T : X → X , the problem of training a DAE is
the optimization problem

min
θ,ϕ

L(θ, ϕ) := Ex∼µX ,T∼µT
[d(x , gϕ(fθ(Tx)))]

28 / 53

Denoising Autoencoders
The figure below shows an application of a DAE.
The first row shows a sample of the original digits, which are used
as the validation data set; the second row shows the Gaussian
corrupted inputs used to train the model; the third row shows the
reconstructed digits after denoising.

29 / 53

Sparse Autoencoders

Sparse autoencoders are designed to pull out the most influential
feature representations of the input data by using a sparsity
constraint such that only a fraction of the nodes would have
nonzero values.

Since it is impossible to design a neural network with a flexible
number of nodes at its hidden layers, sparse autoencoders work by
penalizing the activation of some neurons in hidden layers.
It means that a penalty directly proportional to the number of
neurons activated is applied to the loss function.

The codes fθ(X) for messages tend to be sparse codes, that is,
fθ(X) is close to zero in most entries. Sparse autoencoders may
include more (rather than fewer) hidden units than inputs, but only
a small number of the hidden units are allowed to be active at the
same time.

30 / 53

Sparse Autoencoders

There are two main ways to enforce sparsity.

The k-sparse autoencoder clamps all but the highest-k
activations of the latent code to zero.

The k-sparse autoencoder inserts the following ”k-sparse function”
in the latent layer of a standard autoencoder:

fk(x1, ..., xn) = (x1b1, ..., xnbn)

where bi = 1 if |xi | ranks in the top k, and 0 otherwise.

Backpropagating through fk is simple: set gradient to 0 for bi = 0
entries, and keep gradient for bi = 1 entries.

This is essentially a generalized ReLU function.

31 / 53

Sparse Autoencoders

Single-layer sparse autoencoder.

The hidden nodes in bright yellow are activated, while the light
yellow ones are inactive. The activation depends on the input.

32 / 53

Sparse Autoencoders
Another way to enforce sparsity is, rather than forcing sparsity, to
add a sparsity regularization loss term.

In this case, we optimize for

min
θ,ϕ

L(θ, ϕ) + λLsparsity (θ, ϕ)

where λ > 0 measures how much sparsity we want to enforce.

To define a sparsity regularization loss, we need a ”desired”
sparsity ρ̂k for each layer k , a weight wk for how much to enforce
each sparsity, and a function s : [0, 1]× [0, 1] → R to measure how
much two sparsities differ. For each input x let the actual sparsity
of activation in each layer k be

ρk(x) =
1

n

n∑
i=1

ak,i (x)

where ak,i (x) is the activation in the i-th neuron of the k-th layer
upon input x .

33 / 53

Sparse Autoencoders
The sparsity loss upon input x for one layer is s(ρ̂k , ρk(x)); hence
the sparsity loss for the entire autoencoder is the expected
weighted sum of sparsity losses over all K layers:

Lsparsity (θ, ϕ) = Ex∼µX

[
K∑

k=1

wks(ρ̂k , ρk(x))

]
There are different choices for the function s. Common choices
are:

▶ the Kullback-Leibler divergence,

s(ρ, ρ̂) = KL(ρ||ρ̂) = ρ log
ρ

ρ̂
+ (1− ρ) log

1− ρ

1− ρ̂

▶ the L1 loss
s(ρ, ρ̂) = |ρ− ρ̂|

▶ the L2 loss
s(ρ, ρ̂) = |ρ− ρ̂|2

34 / 53

Contractive Autoencoders
A Contractive AutoEncoder (CAE) adds a contractive
regularization loss to the standard autoencoder loss that penalizes
the network for changing the output in response to
insufficiently large changes in the input:

min
θ,ϕ

L(θ, ϕ) + λLcontractive(θ, ϕ)

where λ > 0 measures how much contractive-ness we want to
enforce.

This penalty term is calculated using the Frobenius norm of the
Jacobian matrix of neuron activations in the encoder network with
respect to the input.

Recall that the Jacobian matrix contains the first-order derivates of
a function and that the Frobenius norm of a matrix is calculated as
the square root of the sum of the absolute squares of its elements;
it measures the average gain of the matrix along each orthogonal
direction in space.

35 / 53

Contractive Autoencoders

Formally, the contractive regularization loss is defined as:

Lcontractive(θ, ϕ) = Ex∼µref
∥∇x fθ(x)∥2F

where fθ is the encoder function.
To understand what Lcontractive measures, note that

∥fθ(x + δx)− fθ(x)∥2 ≤ ∥∇x fθ(x)∥F∥δx∥2

for any input x ∈ X and small variation δx in it.

Thus, if the Frobenius norm of the gradient ∥∇x fθ(x)∥2F is small, it
means that a small neighborhood of the input maps to a small
neighborhood of its code.

This is a desired property, as it means small variation in the input
leads to small variation in its code.

36 / 53

Autoencoders - Manifold Learning

Lecture by Sargur Srihari

37 / 53

https://cedar.buffalo.edu/~srihari/CSE676/14.3 Learning Manifolds.pdf

Variational autoencoder
Variational AutoEncoders (VAEs) belong to the families of
variational Bayesian methods.

Despite the architectural similarities with basic autoencoders, VAEs
have different goals and a different mathematical formulation.

The fundamental difference between VAEs and other types of
autoencoders is that while most autoencoders learn discrete latent
space models, VAEs learn continuous latent variable models.
The latent space of a VAE is typically composed by a mixture of
distributions instead of a fixed vector.

Given an input dataset x characterized by an unknown probability
function P(x) and a multivariate latent encoding vector z , the
objective is to model the data as a distribution pθ(x), with θ
defined as the set of the network parameters so that

pθ(x) =

∫
z
pθ(x , z)dz

38 / 53

Variational autoencoder
VAEs are trained to learn the probability distribution that
models the input-data and not the function that maps the input
and the output.

39 / 53

Variational autoencoder

Because the latent variables of the VAE capture attributes as a
probability distribution — learning the latent distribution — the
VAE is generative AI models.

By learning to encode important features from the inputs in the
datasets, VAEs can samples points from the latent distribution and
feed them to the decoder to generate new samples that
resemble the original training data.

40 / 53

Variational autoencoder
Due to these properties, VAEs are useful in applications such as

▶ Image Generation and Synthesis. VAEs allow for image generation
by learning rich latent representations, enabling the creation of
high-quality, diverse, and realistic images. Applications range from
generating art and photorealistic images to enhancing image quality
and data augmentation for computer vision tasks.

▶ Anomaly Detection. In anomaly detection, VAEs excel at learning
the underlying structure of normal data, enabling the identification
of anomalies as deviations from known patterns.

▶ Representation Learning. VAEs facilitate unsupervised learning of
meaningful representations from data. They extract essential
features and capture latent relationships within complex datasets,
aiding downstream tasks like classification, clustering, and
recommendation systems.

▶ Molecular Design. In drug discovery, VAEs assist in generating novel
molecular structures by navigating the chemical space. They aid in
molecule generation, optimization, and de novo molecular design,
accelerating drug development processes.

41 / 53

Variational autoencoder - Loss function
One of the key aspects of VAE is the loss function.

Most commonly, it consists of two components:

▶ The reconstruction loss measures how different the
reconstructed data are from the original data. As
reconstruction loss, mean squared error and cross entropy are
often used.

▶ The KL-divergence tries to regularize the process and keep
the reconstructed data as diverse as possible. The KL
divergence is measured between the probability distribution of
training data (the prior distribution) and the distribution of
latent variables learned by the VAE (the posterior distribution)

Loss:

Lθ,ϕ(x) = −Ez∼qϕ [ln pθ(x |z)] + DKL(qϕ(z |x) ∥ pθ(z))

The first term is the reconstruction loss or expected negative
log-likelihood of x

42 / 53

Variational autoencoder - Mathematical formulation

Mathematical formulation
From the point of view of probabilistic modeling, one wants to
maximize the likelihood of the data x by their chosen
parameterized probability distribution pθ(x).

This distribution is usually chosen to be a Gaussian N(x |µ, σ)
which is parameterized by µ and σ respectively,

We can find pθ(x) via marginalizing over z :

pθ(x) =

∫
z
pθ(x , z) dz ,

where pθ(x , z) represents the joint distribution under pθ of the
observable data x and its latent representation or encoding z .

43 / 53

Variational autoencoder - Mathematical formulation
By the chain rule, the last equation can be rewritten as

pθ(x) =

∫
z
pθ(x |z) pθ(z) dz

where
▶ pθ(z) is the prior, encoding the representations in the latent

space.
▶ pθ(x |z) is the likelihood. This is the probabilistic decoder

describing the distribution of the decoded variable given the
encoded one.

▶ pθ(z |x) is the posterior. This is the probabilistic encoder,
describing the distribution of the encoded variable given the
decoded one.

Notice that the regularization of the latent space that is missing in
simple autoencoders appears here in the definition of the data
generation process as the encoded representations in the latent
space are assumed to follow the prior distribution.

44 / 53

Variational autoencoder - Mathematical formulation

It is commonly assumption that pθ(z) is a standard Gaussian
distribution

pθ(z) ∼ N(0, I)

and that pθ(x |z) is a Gaussian distribution whose mean is defined
by a deterministic function f ∈ F of the variable of z and whose
covariance matrix has the form of a positive constant c that
multiplies the identity matrix I ; here F is a fixed function class

pθ(x |z) ∼ N(f (z), cI), f ∈ F , c > 0

In theory, as we know pθ(z) and pθ(x |z), we can use the Bayes
theorem to compute pθ(z |x).

However, this Bayesian inference problem is often intractable.

45 / 53

Variational autoencoder - Mathematical formulation

To approximate pθ(z |x), we will use variational inference.

The idea is to set a parametrized family of distribution - for
example the family of Gaussians, whose parameters are the mean
and the covariance - and to look for the best approximation of our
target distribution among this family.

The best element in the family is one that minimize a given
approximation error measurement. This can be found using the
Kullback-Leibler divergence between approximation and target.

This is found computationally by gradient descent over the
parameters that describe the family.

46 / 53

Variational autoencoder - Mathematical formulation

Thus, we are going to approximate pθ(z |x) by a Gaussian
distribution qϕ(z |x) whose mean and covariance are defined by two
functions, g and h, of a parameter ϕ.

These two functions are supposed to belong, respectively, to the
parametrized families of functions G and H. Thus we can denote

qϕ(z |x) = N(gϕ(x), hϕ(x)), gϕ ∈ G , hϕ ∈ H

To ensure that our variational posterior qϕ(z |x) approximates the
true posterior pθ(z |x) We use the Kullback-Leibler divergence,
which measures the information lost.

47 / 53

Variational autoencoder - Mathematical formulation

The Kullback-Leibler divergence between qϕ(z |x) and pθ(z |x) is
expanded as

DKL(qϕ(z |x) ∥ pθ(z |x)) = Ez∼qϕ(·|x)

[
ln

qϕ(z |x)
pθ(z |x)

]
= Ez∼qϕ(·|x)

[
ln

qϕ(z |x)pθ(x)
pθ(x , z)

]
= ln pθ(x) + Ez∼qϕ(·|x)

[
ln

qϕ(z |x)
pθ(x , z)

]

We parametrize the encoder as Eϕ, and the decoder as Dθ.

48 / 53

Variational autoencoder - Mathematical formulation

Next we define the evidence lower bound (ELBO):

Lθ,ϕ(x) := Ez∼qϕ(·|x)

[
ln

pθ(x , z)

qϕ(z |x)

]
= ln pθ(x)− DKL(qϕ(·|x) ∥ pθ(·|x))

Maximizing the ELBO

θ∗, ϕ∗ = argmax
θ,ϕ

Lθ,ϕ(x)

is equivalent to simultaneously maximizing ln pθ(x) and minimizing
DKL(qϕ(z |x) ∥ pθ(z |x)).

That is, maximizing the log-likelihood of the observed data and
minimizing the divergence of the approximate posterior qϕ(·|x)
from the exact posterior pθ(·|x).

49 / 53

Variational autoencoder - Mathematical formulation
The form given is not very convenient for maximization, but the
following, equivalent form, is:

Lθ,ϕ(x) = Ez∼qϕ(·|x) [ln pθ(x |z)]− DKL(qϕ(·|x) ∥ pθ(·)).

Under the assumption that x ∼ N (Dθ(z), I), that is, if we model
the distribution of x on z to be a Gaussian distribution centered on
Dθ(z) then ln pθ(x |z) is implemented as −1

2∥x − Dθ(z)∥22
The distribution of qϕ(z |x) and pθ(z) are chosen to be Gaussians
as z |x ∼ N (Eϕ(x), σϕ(x)

2I) and z ∼ N (0, I). Hence we can aply
the formula for KL divergence of Gaussians to conclude

Lθ,ϕ(x) = −1

2
Ez∼qϕ(·|x)

[
∥x − Dθ(z)∥22

]
− 1

2

(
Nσϕ(x)

2 + ∥Eϕ(x)∥22 − 2N lnσϕ(x)
)
+ Const,

where N is the dimension of z .
50 / 53

Variational autoencoder

The regularized loss function enables VAEs to generate new
samples that resemble the data it was trained on.

To generate a new sample, the VAE samples a random latent
vector from within the unit Gaussian — in other words, selects a
random starting point from within the normal distribution — shifts
it by the mean of the latent distribution and scales it by the
variance of the latent distribution.

This process, called the reparameterization trick, avoids direct
sampling of the variational distribution: because the process is
random, it has no derivative, hence eliminates the need for
backpropagation.

51 / 53

Variational Autoencoders

Example. We train a VAE to be used as a generative model for
generating digits. This means that we use the decoder to generate
data similar to the data used determine the latent space.

We design it using fully-connected encoders and decoders and we
train it using some images from the MNIST dataset.

The input dimension is 784 which is the flattened dimension of
MNIST images (28×28).

In the encoder, the mean µ and variance σ2 vectors are our
variational representation vectors.

The final encoder dimension has dimension 2 which are the µ and
σ2 vectors. These continuous vectors define our latent space
distribution that allows us to sample images in VAE.

Variational Autoencoder (VAE) — PyTorch Tutorial

52 / 53

https://medium.com/@rekalantar/variational-auto-encoder-vae-pytorch-tutorial-dce2d2fe0f5f

Variational Autoencoders - Generative models

53 / 53

	Autoencoders

