
Deep Learning and Neural Networks

Demetrio Labate

April 6, 2024



Part 6
Recurrent Neural Networks

2 / 70



Analysis of data with temporal dependencies

Several applications involve sequences of data with temporal
dependencies:

▶ Time series forecasting (Healthcare, Finance, etc.)

▶ Natural Language Processing (NLP)

▶ Speech recognition

Common tasks:

▶ Predicting the next value in a sequence

▶ Converting data sequence to equivalent sequence in another
space (translation)

▶ Classifying the entire sequence into specific class.

3 / 70



Analysis of data with temporal dependencies

The discipline of dynamical systems is concerned with developing
tools used to model dynamic datasets, by which we mean
ordered data, where often (but not always) ordering refers to the
time variable.

Definition.
A dynamical system with fixed order consists of a function f
and a sequence (x1, x1, . . . ) determined by the recursive equation

xt = γt , t = 1, . . . ,W ,

xt = f (xt−1, . . . , xt−W ), t > W

where γt , for t = 1, . . . ,W are called the initial conditions of the
system.

4 / 70



Analysis of data with temporal dependencies
Example: The moving average. We take a window and slide it
along the time series from its start to finish and average the values
inside.

We consider a time series x1, x2, . . . , xN
Note that it is a set of ordered points (where x1 comes before x2,
x2 comes before x3, and so forth).
Choosing window size W = 15, the values of the moving average
are simply set to the values of the input series itself for the first 15
values

ht = xt , t = 1, . . . 15

After these first initial values we create those that follow by
averaging the preceeding 15 elements of the input series

ht =
1

15

15∑
i=1

xt−i

5 / 70



Analysis of data with temporal dependencies

The moving average process is an example of what are called
dynamic systems with fixed order.

The ’dynamic systems’ part of this jargon-phrase smeans that the
system - here defined by the set of moving average values
h1, h2, . . . , hN - is defined in terms of recent values of the input
sequence x1, x2, . . . , xN .

The ’fixed order’ part refers to just how many preceeding elements
of input each value ht is based on - here this value was 15 - and
this value is fixed for each value of ht created.

6 / 70



Analysis of data with temporal dependencies
Below we show an input sequence (in black) and a set of moving
average sequences with W = 5, 15, 30

As the order increases, the moving average gets smoother, but mirrors

the structure of the original input sequence less and less. The delay of

the moving average - its values trail those of the original series - increases

with the order of the system and is an artifact of using a large history of

equally weighted examples of the series as a predictor of its next values.
7 / 70



Analysis of data with temporal dependencies
Below we show an input sequence (in black) and a set of moving
average sequences with W = 5, 15, 30

As the order increases, the moving average gets smoother, but mirrors

the structure of the original input sequence less and less. The delay of

the moving average - its values trail those of the original series - increases

with the order of the system and is an artifact of using a large history of

equally weighted examples of the series as a predictor of its next values.
8 / 70



Analysis of data with temporal dependencies
Below we show an input sequence (in black) and a set of moving
average sequences with W = 5, 15, 30

As the order increases, the moving average gets smoother, but mirrors

the structure of the original input sequence less and less. The delay of

the moving average - its values trail those of the original series - increases

with the order of the system and is an artifact of using a large history of

equally weighted examples of the series as a predictor of its next values.
9 / 70



Analysis of data with temporal dependencies
Using fixed order dynamic systems with input/output data we can
choose order W = 0 where each element of the output sequence is
dependent on only the current input point as ht = f (xt).

These kind of systems are called memoryless since the dynamic
system (here, in particular, the output sequence) is constructed
without any knowledge of the past input values.

For example, the sequence ht = sin(xt) below is memoryless.

10 / 70



Recurrence relations

A recurrence relation defines an input sequence in terms of itself
as

xt = f (xt−1, . . . , xt−W ), t = W + 1, . . . ,T

In other words, we do not begin with an input sequence, instead we
generate one by recursing on a set of formulae of the form above.

To solve the equation, we need to set initial conditions, consisting
here of the first W entries of the generated input sequence

xt = γt , t = 1, . . . ,W

11 / 70



Recurrence relations

Example: Exponential growth modeling
The recurrence relation of order W = 1

x1 = γ

xt = w0 + w1xt−1, t > 1,

generates a sequence that exhibits exponential growth.

Here γ, w0, and w1 are constants which we can set to any values
we please, and the function f is obviously linear.

The setting of this initial condition can significantly alter the
trajectory of a sequence generated by such a system, as can the
parameters of the update formula.

12 / 70



Recurrence relations

Below we show two example sequences of length T = 10

In the left panel, we set the initial condition x1 = 2 and
w0 = 0,w1 = 2. Note while each point in the sequence increases
linearly from step to step, the data overall is increasing
exponentially upwards.
In the right panel, we use an initial condition of x1 = 1 with
w0 = −2,w1 = 2. This data, while decreasing linearly at each step,
globally is decreasing exponentially.

13 / 70



Recurrence relations
You can see algebraically how the update step above leads to
exponential behavior by ’rolling back’ the formula to its initial
condition at a given value of t.

For example, say w0 = 0 in the general exponential growth model
above i.e., that our system takes the form

x1 = γ

xt = w1xt−1, t > 1,

Then if we roll back the update step, replacing xt−1 with its
update, we can write the update step above as

xt = w1xt−1 = w2
1 xt−2 = · · · = w t

1x1

This does how how the sequence behaves exponentially depending
on the coefficient value w1.
Setting w0 ̸= 0, one can show a similar exponential relationship
throughout the sequence by similarly rolling back to the initial
condition

14 / 70



Recurrence relations

Example: Autoregressive models
One generalization of the exponential growth model in the previous
example is the so-called autoregressive system.
The general order W autoregressive system takes the form

xt = γt , 1 ≤ t ≤ W

xt = w1xt−1 + w2xt−2 + · · ·+ wkxt−k + ϵt , t > W ,

where ϵt denotes the small amount of noise introduced at each
step.

Sequences generated via this dynamic system tend to look like the
sort of noisy financial time series commonly seen in practice after a
centering procedure has been used to ’detrend’ the data

15 / 70



Recurrence relations

Examples of autoregressive models of order W = 4.

Initial conditions and weights are chosen at random, with standard
normal noise used at each step.

16 / 70



Recurrence relations

Other examples of recurrence relations are:

▶ The Fibonacci Sequence.

x1 = 0, x2 = 1

xt = xt−1 + xt−2, t > 2.

It is a classic example of a dynamic system of order W = 2.

▶ Logistic system.

x1 = γ

xt = w1xt−1(1− xt−1), t > 1,

where the update function has the form f (x) = wx(1− x).
Hence is a non-linear function.

17 / 70



Markov chains

There is another important class of dynamic systems described by
stochastic recurrence relations; they are also called Markov
chains.

They are defined formally as recurrence equation of the form

xt = γt , 1 ≤ t ≤ W

xt = f (xt−1, . . . , xt−W ), t > W ,

where the update function f is a stochastic function.

18 / 70



Markov chains

Motivation: Text analysis and generation.

Written text is commonly modeled as a recurrence relation.
For example, take the simple sentence

”my dog runs”

Each word in this sentence does - intuitively - seem to follow its
predecessor in an orderly, functional, and predictable way.

Each word follows its immediate predecessor just like a W = 1
dynamic system.

19 / 70



Markov chains

We can think of each word in a sentence following logically based
not just on its immediate predecessor but on several preceding
words, like an order W dynamic system.

However while text seems to have the structure of a dynamic
system like the ones we have seen above, it does have one
attribute that we have not seen thus far: choice. A given word
does not always completely determine the word that follows it

That is, while a valid sentence of English words clearly has
ordered structure like a dynamic system, with each word
following its predecessor, there are often many choices for
subsequent words. Moreover of the choices following a particular
word we can reasonably say that some are more likely to occur
than others. In other words, these choices are stochastic in nature
- with each having a different probability of occurring.

20 / 70



Markov chains

Example: we show four choices of words following “dog” in the
sentence above assigning a probability of occurring to each.

The probabilities shown do not add up to 1 because there could be
other reasonable words that could follow “dog” other than those
shown here.

21 / 70



Markov chains
Irregardless of how we compute the probabilities, mathematically
we can codify the list possible outputs and their probability of
occurrence - like the list of possible words shown above following
“dog” - as a probability mass function (pmf) or a histogram.

For example,

Pr(word after “dog”) :



Pr(“runs”|“dog”) = 0.4

Pr(“eats”|“dog”) = 0.2

Pr(“sighs”|“dog”) = 0.05

Pr(“dracula”|“dog”) = 0.001
...

More formally, the choice of the word xt can be written as

xt = argmax
p

pmf (xt−1) := f (xt−1)

Our prediction for the next word in the sentence (in an order-1
model) is the one with the largest probability.

22 / 70



Markov chains

Example: Generating text word-by-word via a Markov chain.

In this example we generate a Markov chain model of text using
the classic novel War of the Worlds by H.G. Wells to define our
transition probabilities. we consider models with increasing order
W = 1, W = 2, . . .

Using an order W model we pick a word randomly from the text,
and start generating the following text using a Markov chain
model.
We will display a chunk of 30 words from the text following our
initial input, followed by the result of the Markov model.
In the result, the input words x1 = γ1, . . . , xW = γW is colored red,
and the 30 words generated using it are colored blue.

23 / 70



Markov chains

The Markov model of order 1 does not generate anything
meaningful.

As we increase the order to W = 2, the generated sentence starts
to make more sense, matching the following 3 words of the original
text.

24 / 70



Markov chains

As we increase the order of the model the generated text will begin
to match the original more and more. By the time we reach the
order W = 10 the text generated by the model is identical to the
original.

When we increase the order enough, there remains only a single
exemplar in the text to construct each associated histogram, that
is, every input sequence used to determine the transition
probabilities is unique.

25 / 70



Fixed order and limited memory

▶ Markov chains have fixed order.

▶ An order W system with generic update steps

xt = f (xt−1, . . . , xt−W )

has the property that the update for any xt is only on
dependent xt−1 through xt−W and no point coming before
xt−W . So the range of values used to build each subsequent
step is limited by the order of the system and cannot use
any information from earlier in a sequence.

26 / 70



Fixed order and limited memory

The main shortcoming of fixed order systems is exemplified in this
toy example.

Let us consider an order-1 model whose transition probabilities
have been determined on a large training corpus. Here we use our
order-1 to predict the next word of each sentence, following the
word “is”.
However since the model is order-1 the same word will be predicted
for each sentence. Given the different context of each, this will
likely mean that at least one of the sentences will not make sense.

27 / 70



Analysis of data with temporal dependencies

Definition. A dynamical system with variable order is defined
formally as recurrence equation of the form

h1 = γ1,

ht = f (ht−1, xt), t > 1.

The variable ht is often referred to as the state variable. It
provides a sort of summary of the corresponding input sequence at
each step of the system

Note that, in this formulation, the order of the dynamical system
increases from iteration-to-iteration.

28 / 70



Dynamical system with variable order

Example: the exponential average
The exponential average is another smoothing technique applied to
time series data as a preprocessing step to remove high-frequency
oscillations.

Instead of taking a sliding window and averaging the input series
inside of it, we compute the average of the entire input sequence in
an online fashion, adding the contribution of each input one
element at-a-time.

To do this we form an average of the first two points x1 and x2; we
next take this result and make a weighted combination of it and
the third point x3 giving an average of the first three points. We
continue in this fashion until the final element of the sequence is
reached.

29 / 70



Dynamical system with variable order

We could write down this running average as

h1 = x1

h2 = x1+x2
2

h3 = x1+x2+x3
3

...
...

Notice how at each step here the average computation ht
summarizes the input points via a simple summary statistic, i.e.,
their sample mean.

Also note that this dynamic system does not have a fixed order: at
each step the order of the dynamic system increases by 1.

30 / 70



Dynamical system with variable order

Illustration of a a time series with the resulting exponential average
shown as a pink curve.

31 / 70



Dynamical system with variable order

We can write this running average more efficiently as

h2 =
x1+x2

2 = h1+x2
2 = h1

2 + x2
2

h3 =
x1+x2+x3

3 =
2
x1+x2

2 +x3
3 = 2h2+x3

3 = 2h2
3 + x3

3

In general we have that

ht =
(t−1)ht−1

t + xt
t

From a computational perspective, this representation is far more
memory efficient since at the t step we only need to store and
deal with two values as opposed to t values.

32 / 70



Dynamical system with variable order
Using the same initial value h1 = x1 and taking a value α ∈ [0, 1]
we can define a running exponential average via the formula

h1 = x1

ht = αht−1 + (1− α)xt , t > 1.

Why is this recurrent relation called an exponential average?

ht = αht−1 + (1− α)xt

= α(αht−2 + (1− α)xt−1) + (1− α)xt

= α2ht−2 + α(1− α)xt−1 + (1− α)xt

= . . .

= αtx1 + αt−1(1− α)x2 + · · ·+ (1− α)xt

This shows that ht summarizes the inputs x1 through xt via its
exponential mean.
The exponential average is a dynamic system whose order changes
at each step; it increases by 1 element at each step.

33 / 70



Dynamical system with variable order
Other examples of dynamical system with variable order are the
following:

Example: The running sum.

h1 = x1

ht = ht−1 + xt , t > 1.

Example: The running product.

h1 = x1

ht = ht−1xt , t > 1.

Example: Historical maximum.

h1 = x1

ht = max(ht−1, xt), t > 1.

34 / 70



Dynamical system with variable order

In the graphical model representations of the fixed order
dynamic system, when we ‘roll back’ the recursion we see - in the
end - that every point in the system depends entirely on the
system’s initial condition(s).

35 / 70



Dynamical system with variable order

In the graphical model representations of the variable order
dynamic system, when we ‘roll back’ the recursion we see that
every preceding input plays a role in the value of its next step, and
is embedded in the system.

36 / 70



Dynamical system with variable order

Hidden Markov Models. They use a hidden state to represent
higher level information about sequence:

Example: we model a sequence of temperature measurements and
attempt to encode information about season into hidden state.

Limitations:

▶ Updates between hidden states generally have to be linear

▶ Markov assumption: no long term dependencies possible

37 / 70



Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) offer several advantages
with respect to classical methods:

▶ Non-linear hidden state updates allow for high
representational power.

▶ They can represent long term dependencies in hidden state
(theoretically).

▶ Shared weights can be used on sequences of arbitrary length

Historica note.
• The first recurrent neural network was propsed by Shunichi
Amari in 1972.
• The popularity and success of these types of networks started
with the Long short-term memory (LSTM) networks invented by
Hochreiter and Schmidhuber in 1997.

38 / 70



Recurrent Neural Networks (RNNs)

In contrast to the feedforward neural network, it is a bi-directional
artificial neural network, meaning that it allows the output from
some nodes to affect subsequent input to the same nodes.
They have the ability to use an internal state or memory to
process arbitrary sequences of input.

Scheme of a Simple Recurent Network (SRN)

39 / 70



Recurrent Neural Networks (RNNs)
Scheme of a Simple Recurrent Network (SRN), also called
Jordan Network [Jordan, 1997] (similar to the Elman Network,
1990)

ht = σ (Wih xt +Whh ht−1 + bih + bhh)

ot = softmax(Who ht + bho)

In the original implementation, σ = tanh.
40 / 70



Recurrent Neural Networks (RNNs)

ht = σ (Wih xt +Whh ht−1 + bih + bhh)

ot = softmax(Who ht + bho)

RNN learns weights and biases through training using back
propagation.

These weights decide the importance of hidden state of previous
timestamp and the importance of the current input. Essentially,
they decide how much value from the hidden state and the current
input should be used to generate the current input. The activation
function σ adds non-linearity to RNN, thus simplifying the
calculation of gradients for performing back propagation

41 / 70



Recurrent Neural Networks (RNNs)

Remark. The SNR illustration may be misleading because what
appears to be layers are, in fact, different steps in time of the
same fully recurrent neural network. The drawing unfolds the
time steps to create the appearance of a multi-layer architecture.

The left-most item in the illustration above shows the recurrent
connections as the arc labeled ’v’. It is ”unfolded” in time to
produce the appearance of layers.

42 / 70



Recurrent Neural Networks (RNNs)

Example. This SRN sums its inputs.

43 / 70



Recurrent Neural Networks (RNNs)

Example. This SRN determines if the aggregated values of the
first or second input are larger.

44 / 70



Recurrent Neural Networks (RNNs)

Example: Parity Check

Assume we have a sequence of binary inputs. We want to
determine the parity incrementally i.e., to keep track whether the
number of 1’s is even or odd.

Parity bits: 0 1 1 0 1 1 ...
Input: 0 1 0 1 1 0 1 0 1 1

Note that each parity bit is the XOR of the input and the
previous parity bit

ht = XOR(ht−1, xt)

Parity is a classic example of a problem that is hard to solve with a
shallow feed-forward net, but easy to solve with an RNN.

45 / 70



Recurrent Neural Networks (RNNs)

Example: Language Modeling

RNNs are used for language models.

Each word is represented as an indicator vector and the model
predicts a distribution that we can train it with cross-entropy loss.
This model can learn long-distance dependencies.

46 / 70



Recurrent Neural Networks (RNNs)

RNN Limitations.

Simple Recurrent Networks suffers from a major drawback, known
as the vanishing gradient problem, which prevents it from high
accuracy.

As the context length increases, layers in the unrolled RNN also
increase. Consequently, the network becomes deeper and the
gradients flowing back in the back propagation step becomes
smaller.

As a result, the learning rate becomes really slow and makes it
infeasible to expect long-term dependencies of the language.

In other words, RNNs experience difficulty in memorizing previous
words very far away in the sequence and can only make predictions
based on the most recent words.

47 / 70



Recurrent Neural Networks (RNNs)

More sophisticated types of RNNs have been developed to deal
with this shortcoming of the standard RNN model.

▶ Bidirectional RNNs are composed of 2 RNNs stacking on
top of each other. The output is then composed based on the
hidden state of both RNNs. The idea is that the output may
not only depend on previous elements in the sequence but also
on future elements.

▶ Long Short-Term Memory Networks (LSTM). They
inherit the architecture from standard RNNs, with the
exception of the hidden state. The memory in LSTMs (called
cells) take as input the previous state and the current input.
Internally, these cells decide what to keep in and what to
eliminate from the memory. Next, they combine the previous
state, the current memory, and the input. This process
efficiently solves the vanishing gradient problem.

48 / 70



Recurrent Neural Networks (RNNs)

▶ Gated Recurrent Unit Networks extends LSTM with a
gating network generating signals that act to control how the
present input and previous memory work to update the
current activation, and thereby the current network state.
Gates are themselves weighted and are selectively updated
according to an algorithm.

▶ Neural Turing Machines extend the capabilities of standard
RNNs by coupling them to external memory resources, which
they can interact with through attention processes. The
analogy is that of Alan Turing’s enrichment of finite-state
machines by an infinite memory tape.

49 / 70



Long short-term memory (LSTM)

Long short-term memory (LSTM) [Hochreiter, Schmidhuber
1995] is a deep learning system that was introduced to avoid the
vanishing gradient problem of RNN.

Motivationi. In theory, (classic) RNNs can keep track of arbitrary
long-term dependencies in the input sequences. However, when
training a classic RNN using back-propagation, the long-term
gradients which are back-propagated can vanish or explode
because of the computations involved in the process.

The intuition behind the LSTM architecture is to create an
additional module in a neural network that learns when to
remember and when to forget pertinent information. That is, the
network effectively learns which information might be needed later
on in a sequence and when that information is no longer needed.
This creates a short-term memory that can last thousands of
timesteps, hence the name ”long short-term memory”.

50 / 70



Long short-term memory (LSTM)
A common LSTM unit is composed of a cell and 3 gates regulating
the flow of information into and out of the cell.

1. The cell remembers values over arbitrary time intervals.
2. Forget gates decide what information to discard from a

previous state by assigning a previous state, compared to a
current input, a value between 0 and 1. A (rounded) value of
1 means to keep the information, and a value of 0 means to
discard it. They prevent backpropagated errors from vanishing
or exploding.

3. Input gates decide which pieces of new information to store
in the current state, using the same system as forget gates.

4. Output gates control which pieces of information in the
current state to output by assigning a value from 0 to 1 to the
information, considering the previous and current states.

Selectively outputting relevant information from the current state
allows the LSTM network to maintain useful, long-term
dependencies to make predictions, both in current and future
time-steps. 51 / 70



LSTM Architecture
RNNs have the form of a chain of repeating modules of neural
network

LSTMs also have this chain like structure, but the repeating
module has a different structure

52 / 70



LSTM Architecture

The key to LSTMs is the cell state, the horizontal line running
through the top of the diagram.

The cell state acts like a conveyor belt. It runs straight down the
entire chain, with only some minor linear interactions.

The LSTM does have the ability to remove or add information to
the cell state by the action of regulated structures called gates.

53 / 70



LSTM Architecture

Gates are composed out of a sigmoid neural net layer and a
pointwise multiplication operation.

The sigmoid layer outputs numbers between zero and one,
describing how much of each component should be let through.

A value of zero means “let nothing through,” while a value of one
means “let everything through!”

As we indicated above, LSTM has three of these gates, to regulate
the flow of information into and out of the cell.

54 / 70



LSTM Architecture

The first step in the LSTM is to decide what information we are
going to throw away from the cell state. This decision is made by a
sigmoid layer called the forget gate layer.

It looks at ht−1 and xt , and outputs a number between 0 and 1 for
each number in the cell state Ct−1. A 1 represents “completely
keep this” while a 0 represents “completely get rid of this.”

55 / 70



LSTM Architecture
The next step is to decide what new information we are going to
store in the cell state. This has two parts.

1. First, a sigmoid layer called the input gate layer decides
which values to update.

2. Next, a tanh layer creates a vector of new candidate values,
C̃t , that could be added to the state.

In the next step, we will combine these two vectors to create an
update to the state.

56 / 70



LSTM Architecture

We now update the old cell state, Ct−1, into the new cell state Ct

based on the information from the previous steps.

We multiply the old state by ft , forgetting the things we decided to
forget earlier. Then we add it ∗ C̃t . This is the new candidate
values, scaled by how much we decided to update each state value.

57 / 70



LSTM Architecture
Finally, we need to decide what we are going to output. This
output will be based on our cell state, but will be a filtered version.

1. First, we run a sigmoid layer which decides what parts of the
cell state we are going to output.

2. Next we put the cell state through tanh (to set the values to
be between -1 and 1) and multiply it by the output of the
sigmoid gate, so that we only output the parts we decided to.

58 / 70



LSTM Architecture

All together, here is the LSTM cell with a forget gate.

59 / 70



LSTM Architecture

What was described above is the basic LSTM cell but not all
LSTMs are the same. In fact, there are many variants.

One popular LSTM variant, introduced by Gers & Schmidhuber
(2000), is adding peephole connections.
This means that we let the gate layers look at the cell state.

60 / 70



LSTM Architecture

Another variation is to use coupled forget and input gates.

Instead of separately deciding what to forget and what we should
add new information to, we make those decisions together. We
only forget when we are going to input something in its place. We
only input new values to the state when we forget something older.

61 / 70



LSTM Architecture

Yet another variation on the LSTM is the Gated Recurrent Unit,
or GRU, introduced by Cho, et al. (2014).

It combines the forget and input gates into a single “update gate.”
It also merges the cell state and hidden state, and makes some
other changes. The resulting model is simpler than standard
LSTM models, and has been growing increasingly popular.

62 / 70



Long short-term memory (LSTM)

LSTMs were a big step in what can be accomplished with RNNs.

▶ 2009: A method based on LSTM won the ICDAR connected
handwriting recognition competition [Graves et al, 2009].

▶ 2015: Google started using an LSTM for speech recognition
on Google Voice.

▶ 2016: Google released the Google Neural Machine Translation
system for Google Translate which used LSTMs.

▶ 2016: Amazon released Polly, which generates the voices
behind Alexa, using a bidirectional LSTM for the
text-to-speech technology.

▶ 2018: OpenAI used LSTM trained by policy gradients to beat
humans in the complex video game of Dota 2.

▶ 2019: DeepMind used LSTM trained by policy gradients to
excel at the complex video game of Starcraft II.

63 / 70



Recurrent Neural Networks (RNNs)
Examples of Generating Text with RNN Language Model

▶ Machine Generated Political Speeches. Here the author
used RNN to generate hypothetical political speeches given by
former president Barrack Obama. Taking in over 4.3 MB /
730,895 words of text written by Obama’s speech writers as
input, the model generates multiple versions with a wide range
of topics including jobs, war on terrorism, democracy, China.

▶ Machine Generated Harry Potter. Here the author trained
an LSTM Recurrent Neural Network on the first 4 Harry
Potter books. Then he asked it to produce a chapter based on
what it learned.

▶ Machine Generated Seinfeld Scripts. A cohort of comedy
writers fed individual libraries of text (scripts of Seinfeld
Season 3) into predictive keyboards for the main characters in
the show. The result is a 3-page script with uncanny tone,
rhetorical questions, stand-up jargons that match the rhythms
and diction of the show.

64 / 70

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
https://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-1818633242


RNNs: Neural Machine Translation

The Neural Machine Translation (also Neural MT or NMT) is
an approach for modeling language translation by predicting the
likelihood of a sequence of words, typically modeling entire
sentences in a single integrated model.
▶ End-to-end neural machine translation had their breakthrough

with Kalchbrenner & Blunsom (2013) who introduced
Recurrent Continuous Translation Models designed to
map a sentence from the source language to a probability
distribution over the sentences in the target language.
▶ The generation of the translation employs a target Recurrent

Language Model, whereas the conditioning on the source
sentence is modelled with a Convolutional Sentence Model.

▶ The convolutional sentence model transforms the source word
representations into a representation for the source sentence.

65 / 70



RNNs: Neural Machine Translation
▶ Cho et al. (2014) and Sutskever et al. (2014) introduced a

method based on RNN Encoder–Decoder pair.
▶ An encoder network reads and encodes a source sentence into

a fixed-length vector.
▶ A decoder then outputs a translation from the encoded vector.
▶ The whole encoder–decoder system is jointly trained to

maximize the probability of a correct translation given a source
sentence.

66 / 70



RNNs: Neural Machine Translation

▶ The original RNN Encoder–Decoder pair performed poorly on
longer sentences. This problem was addressed when
Bahdanau et al. (2014) introduced an attention mechanism
to their encoder-decoder architecture.
▶ The new architecture consists of a bidirectional RNN as an

encoder and a decoder that emulates searching through a
source sentence during decoding a translation.

▶ At each decoding step, the state of the decoder is used to
calculate a source representation that focuses on different
parts of the source and uses that representation in the
calculation of the probabilities for the next token.

▶ The decoder (soft-)search for a set of input words, or their
annotations computed by an encoder, when generating each
target word. This frees the model from having to encode a
whole source sentence into a fixed-length vector and lets the
model focus only on information relevant to the generation of
the next target word.

67 / 70



RNNs: Neural Machine Translation

▶ Based on the idea of encoder-decoder RNN-based
architectures, Baidu launched the “first large-scale NMT
system” in 2015, followed by Google in 2016 with the
Google‘s Neural Machine Translation System.

PBST = phrase-based machine translation

▶ Starting 2016, neural models became the prevailing choice in
the translation conference on Statistical Machine Translation.

▶ DeepL Translator, launched in 2017, uses a proprietary
algorithm with CNNs.

68 / 70



Google‘s Neural Machine Translation (GNMT) System
The GNMT network architecture includes a encoder, an attention
module and a decoder.

Review — Google’s Neural Machine Translation System
69 / 70

https://sh-tsang.medium.com/review-googles-neural-machine-translation-system-bridging-the-gap-between-human-and-machine-518595d87226


Recurrent Neural Networks (RNNs)
Besides Machine Translation, RNNs have shown great success in
are other major Natural Language Processing tasks:
▶ Sentiment Analysis. An example is to classify Twitter tweets

into positive and negative sentiments. The input would be a
tweet of different lengths, and the output would be a fixed
type and size.

▶ Image Captioning. Together with CNNs, RNNs have been
used in models that can generate descriptions for unlabeled
images. Given an image in need of textual descriptions, the
output would be a series or sequence of words. While the
input might be of a fixed size, the output can be of varying
lengths.

▶ Speech Recognition. An example is that given an input
sequence of electronic signals we can predict a sequence of
phonetic segments together with their probabilities. Think
applications such as SoundHound (voice-enabled digital
assistant, music recognition ) and Shazam (music
identification from a short sample). 70 / 70


	Recurrent Neural Networks

