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Abstract. Over the last 20 years, multiscale methods and wavelets have rev-
olutionized the field of applied mathematics by providing an efficient means
for encoding isotropic phenomena. Directional multiscale systems, particu-
larly shearlets, are now having the same dramatic impact on the encoding of
multivariate signals. Since its introduction about five years ago, the theory of
shearlets has rapidly developed and gained wide recognition as the superior
way of achieving a truly unified treatment in both the continuum and digital
setting. By now, shearlet analysis has reached maturity as a research field,
with deep mathematical results, efficient numerical methods, and a variety of
high-impact applications. The main goal of the Mini-Workshop Shearlets was
to gather the world’s experts in this field in order to foster closer interaction,
attack challenging open problems, and identify future research directions.
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Introduction by the Organisers

Shearlets: The First Five Years

The Mini-Workshop Shearlets, organized by Gitta Kutyniok (Osnabrück) and
Demetrio Labate (Houston) was held October 4th–October 8th, 2010. This meet-
ing was attended by 16 participants whose background ranged from the theory of
group representations over approximation theory to image analysis. This unique
selection provided the ideal setting for a vivid and fertile discussion of the theory
and applications of shearlets, a novel multiscale approach particularly designed for
multivariate problems.

Multivariate problems in applied mathematics are typically governed by an-
isotropic phenomena such as singularities concentrated on lower dimensional em-
bedded manifolds or edges in digital images. Wavelets and multiscale methods,
which were extensively exploited during the past 25 years for a wide range of both
theoretical and applied problems, have been shown to be suboptimal for the en-
coding of anisotropic features. To overcome these limitations, several intriguing
approaches such as ridgelets, contourlets, and curvelets, have since then been pro-
posed, which all provide optimally sparse approximations of anisotropic features.
Among those, shearlets are unique in encompassing the mathematical framework
of affine systems and are, to date, the only approach capable of achieving a truly
unified treatment in both the continuum and digital setting. This includes a pre-
cise mathematical analysis of sparse approximation properties in both settings as
well as numerically efficient discrete transforms. Therefore shearlets are regarded
as having the same potential impact on the encoding of multivariate signals as
traditional wavelets did about 20 years ago for univariate problems.

Shearlet systems are designed to efficiently encode anisotropic features such as
singularities concentrated on lower dimensional embedded manifolds. To achieve
optimal sparsity, shearlets are scaled according to a parabolic scaling law encoded
in the parabolic scaling matrix Aa, a > 0, and exhibit directionality by parameter-
izing slope encoded in the shear matrix Ss, s ∈ R, defined by

Aa =

(
a 0
0

√
a

)

and Ss =

(
1 s
0 1

)

,

respectively. Hence, shearlet systems are based on three parameters: a > 0 being
the scale parametermeasuring the resolution level, s ∈ R being the shear parameter
measuring the directionality, and t ∈ R2 being the translation parametermeasuring
the position. This parameter space R+ × R× R2 can be endowed with the group
operation

(a, s, t) · (a′, s′, t′) = (aa′, s+ s′
√
a, t+ SsAat

′),

leading to the so-called shearlet group S, which can be regarded as a special case of
the general affine group. The continuous shearlet systems arise from the unitary
group representation

σ : S → U(L2(R2)), (σ(a, s, t)ψ)(x) = a−3/4ψ(A−1
a S−1

s (x− t))
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Figure 1. Left to Right: Frequency tiling of a discrete shearlet
system; Frequency tiling of a cone-adapted discrete shearlet sys-
tem.

and are defined by

{ψa,s,t = σ(a, s, t)ψ = a−3/4ψ(A−1
a S−1

s ( · − t)) : (a, s, t) ∈ S}.
For appropriate choices of the shearlet ψ ∈ L2(R2), the Continuous Shearlet Trans-
form

SHψ : f → SHψf(a, s, t) = 〈f, ψast〉,
is a linear isometry from L2(R2) to L2(S). Alternatively, rather than defining the
shearing parameter s on R, the domain can be restricted to, say, |s| ≤ 1. This gives
rise to the so-called Cone-adapted Continuous Shearlet Transform, which allows
an equal treatment of all directions in contrast to a slightly biased treatment by
the Continuous Shearlet Transform. In fact, it could be proven that the Cone-
adapted Continuous Shearlet Transform resolves the wavefront set of distributions
and can be applied to precisely characterize edges in images. Notice that, although
directions are treated slightly biased, the Continuous Shearlet Transform has the
advantage of being equipped with a simpler mathematical structure. This allows
the application of group theoretic methodologies to, for instance, discretize the set
of parameters through coorbit theory.

Discrete shearlet system are obtained by appropriate sampling of the continuous
shearlet systems presented above. Specifically, for ψ ∈ L2(R2), a (discrete) shearlet
system is a collection of functions of the form

(1) {ψj,k,m = 23j/4ψ(SkA2j · −m) : j ∈ Z, k ∈ K ⊂ Z,m ∈ Z
2},

where K is a carefully chosen indexing set of shears. Notice that the shearing
matrix Sk maps the digital grid Z

2 onto itself, which is the key idea for deriving a
unified treatment of the continuum and digital setting. The discrete shearlet sys-
tem defines a collection of waveforms at various scales j, orientations controlled
by k, and locations dependent on m. In particular, if K = Z in (1), the shearlet
system contains elements oriented along all possible slopes as illustrated in Fig-
ure 1. This particular choice is in accordance with the continuous shearlet systems
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generated by a group action. To avoid the already mentioned biased treatment
of directions which the discrete systems inherit, the cone-adapted discrete shearlet
systems were introduced as

{φ(· −m) : m ∈ Z
2} ∪ {ψj,k,m, ψ̃j,k,m : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z

2},

where ψ̃j,k,m is generated from ψj,k,m by interchanging both variables, and ψ, ψ̃,
and φ are L2 functions. Figure 1 illustrates a typical frequency tiling associated
with a cone-adapted shearlet system. A suitable choice of the shearlets ψ and
ψ̃ generates well-localized shearlet systems which form frames or even Parseval
frames.

Over the last years, an abundance of results on the theory and applications
of shearlets have been derived by a constantly growing community of researchers.
One main goal of this workshop was to discuss the state of the art of this vivid
research area. The talks which were delivered by the participants covered the
following topics:

(1) (Cone-adapted) Continuous Shearlet Systems. Novel results for continu-
ous shearlet systems were presented by S. Dahlke and G. Teschke, who
exploited their group structure through a coorbit theory approach to de-
rive feasible discretization of the shearlet parameters as well as associated
function spaces even for the 3D setting. F. DeMari’s talk then revealed
intriguing properties of the set of groups the shearlet group belongs to.
Focusing on cone-adapted continuous shearlet systems instead, the mi-
crolocal properties of such systems were presented by P. Grohs, and their
application to the characterization of edges for 2D and 3D data was dis-
cussed by K. Guo.

(2) (Cone-adapted) Discrete Shearlet Systems. Recently, compactly supported
discrete shearlet systems which provide optimally sparse approximations
of anisotropic features were introduced for both 2D and 3D signals to
allow superior spatial localization. These novel results were presented by
J. Lemvig and W. Lim.

(3) Numerical Implementations and Applications. Different efficient numeri-
cal implementations of the shearlet transform have been proposed in the
past, but further improvements are desirable to achieve additional compu-
tational efficiency and features such as locality. W. Lim presented a new
fast shearlet transform in his talk which is extremely competitive for ap-
plications such as denoising and data separation. A subdivision approach
towards a shearlet multiresolution analysis with associated fast decompo-
sition algorithm was discussed by T. Sauer. G. Easley and V. Patel then
showed that the shearlet approach is extremely competitive in a wide range
of applications from signal and image processing including edge detection,
halftoning and image deconvolution.

A further main objective of the workshop was to foster interaction in order to
attack a number of open problems and identify future directions of this area of
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research. During our discussions, the following topics and problems have emerged
as main themes to be investigated within the next five years:

• Shearlet Smoothness Spaces. For problems arising in the theory of par-
tial differential equations and in approximation theory, it is essential to
precisely understand the nature of the spaces defined using shearlets as
building blocks and their relation to classical function spaces.

• Shearlet Constructions and Applications in 3D. While the theory of shear-
lets is well understood in the bivariate case, the extension to higher di-
mensions is still far from being complete. Open problems in this direction
include, in particular, the analysis of corner and irregular surface points
using shearlets.

• Construction of “good” Shearlet Systems. Several results are known, by
now, for compactly supported shearlet systems, which though do not form
tight frames. Thus, it would be highly desirable to construct well local-
ized shearlet systems which are compactly supported, form a tight frame
or even an orthonormal system, and provide provably optimal sparse ap-
proximations of anisotropic features.

• Numerical Implementations. Starting with the bivariate situation, one
main goal is to derive a complete analog of the fast wavelet transform
in the sense of a fast algorithm with associated multiresolution structure
paralleling the continuum setting. Furthermore, as the theory for sparse
3D shearlet representations is emerging, numerical implementations for
the trivariate case are also in demand. The higher complexity of such
data poses a particular difficulty.

The organizers:

G. Kutyniok and D. Labate


