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Abstract— This paper presents an improved approach to 

face recognition, called Regularized Shearlet Network (RSN), 

that takes advantage of the sparse representation properties 

of shearlets in biometric applications. The main novelty of 

our approach is the efficient extraction of geometric features 

based on the properties of the shearlet decomposition, a 

multiscale directional method which is especially designed to 

capture directional and anisotropic information in 

multidimensional data. To further improve the performance 

of our face recognition algorithm, we include a regularization 

step to control the trade-off between the fidelity to the data 

(gallery) and smoothness of the solution (probe). In this work, 

we focus on the challenging problem of the single training 

sample per subject (STSS). We compare our new algorithm 

against different state-of-the-arts method using several facial 

databases including AR, FERET, FRGC, FEI and CK. Our 

tests show that our RSN algorithm is very competitive and 

outperforms several state-of-the-art face recognition 

methods. 

 Keywords— Shearlet, Regularized Shearlets Network, 

Face Recognition. 

I. INTRODUCTION  

Face recognition (FR) is a classical problem in computer 
vision and pattern recognition and many methods, such as 
Eigenfaces [1], Fisherfaces [2], SVM [3] and Metaface [4] 
have been proposed during the past two decades.  

One of the standard statistical methods for FR is subset 

selection ( 0L regularization) [19], which consists in 

computing the following estimator: 
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where  is a tuning parameter, y  is a normalized test 

face and X  is a matrix representing a gallery of faces. This 
statistical approach has received renewed interest in recent 
years due to the notion of sparse representations, which offers 
the possibility of recasting the face recognition problem as a 
minimization problem. For example, the recently proposed 
Sparse Representation Classification (SRC) scheme [5] casts 
the recognition problem as one of classifying among multiple 
linear regression and uses sparse representations computed via 
l1 minimization for efficient feature extraction. By coding a 
query image as a sparse linear combination of all the training 

samples, SRC classifies the query image by evaluating which 
class would result in the minimal reconstruction error. 
However, it was shown in [6] that SRC actually owes its 
success to the use of collaborative representation on the query 
image rather than the l1-norm sparsity constraint on coding 
coefficient. Besides SRC, another powerful method recently 
proposed is the Regularized Robust Coding (RRC) approach 
[7] [8] that robustly regresses a given signal with regularized 
regression coefficients. By assuming that the coding residual 
and the coding coefficient are respectively independent and 
identically distributed, the RRC seeks for a maximum a 
posterior solution of the coding problem. An iteratively 
reweighted regularized robust coding algorithm was proposed 
to solve the RRC model efficiently   

In this paper, we propose a method called Regularized 
Shearlets Network (RSN), which combines sparsity and 
regularization theory. Sparsity, in particular, will be based on 
the use of the shearlet representation, an innovative multiscale 
framework which combines the classical multiresolution 
analysis with high directional sensitivity and provides 
optimally sparse approximations for a large class of images. 
Indeed, despite their extensive use in image processing, 
traditional wavelets are known to have a limited ability to deal 
with directional information. By contrast, shearlets are 
especially effective to capture directional and anisotropic 
features with high efficiency. Furthermore, they have a well 
understood mathematical theory and fast numerical 
implementations [9]. Regularization theory is another 
important component of our approach, that allows us to 
control the trade-off between fidelity to the data and 
smoothness of the solution.  

The rest of this paper is organized as follows. In Sec. 2, we 
briefly describe the necessary background on shearlets. In Sec. 
3, we describe our Regularized Shearlet Network algorithm. In 
Sec. 4, we present several numerical experiments to 
demonstrate the efficacy of the proposed algorithm and 
compare it against competing algorithms. Finally, we make 
some concluding remarks in Sec. 5. 

II. THE SHEARLET TRANSFORM 

The shearlet transform, introduced by one of the authors 
and his collaborators in [10], is a genuinely multidimensional 
version of the traditional wavelet transform, and is especially 
designed to represent data containing anisotropic and 



directional features with very high efficiency. As a result, this 
approach provides optimally sparse approximations for images 
with edges, outperforming traditional wavelets. Thanks to 
their properties, shearlets have been successfully employed in 
a number of image processing application including denoising, 
edge detection and feature extraction [11][12][13]. Formally, 
the Continuous Shearlet Transform [14] is defined as the 
mapping: 
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 is an anisotropic dilation matrix. Thus, the 

shearlet transform is a function of three variables: the scale a, 
the shear s and the translation t. One of the main properties of 
the Continuous Shearlet Transform is its ability to detect very 
precisely the geometry of the singularities of a 2-dimensional 

function f . This property is going far beyond the properties of 

the wavelet transform and explains why shearlets are so 
effective at capturing edges and other directional information 
in images.  

By sampling the Continuous Shearlet Transform 

( , , )SH a s t  on an appropriate discrete set, we obtain the 

corresponding Discrete Shearlet Transform. Specifically, asM  

is discretized as 
j

jl lM B A , where 
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A  are the shear matrix and the anisotropic 

dilation matrix, respectively. Hence, the discrete shearlets are 
the waveforms:  
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Fig. 1.  (a) Spatial-frequency plane of the shearlets, (b) Frequency support.  

By choosing the generator function ψ appropriately, the 
discrete shearlets form a tight frame of well-localized 
waveforms defined at various scales, orientations and 
locations. 

III. THE PROPOSED APPROACH 

 
Our novel approach for FR that we call Regularized 

Shearlet Network (RSN) is defined as a cascade of a feature 
extraction module followed by a recognition (or verification) 
module. We handle the extraction of the features using the 
Shearlet Network (SN). Thanks to the properties of shearlets, 
this step is very efficient to capture the essential geometry of 
the image. We implement the recognition step by the use of 
regularization theory which allows us to satisfy both  fidelity 
to the solution (Probe or Test) and closeness to the data 
(Gallery) [36].  The structure of our algorithm is shown in 
Figure 3. 

 

 
 

Fig. 2. Augmented face recognition schema. 

Analytically, the FR problem can be casted as a regression 
problem of approximating a multivariate function from sparse 
data. This is an ill-posed problem and a classical way to solve 
it is though regularization theory [15, 16, 17]. In practice, 
rather than looking for the exact solution, we settle for an 
approximate one which satisfies some type of regularity. One 
of the most popular and effective approximation methods is 

the 1L regularization method which is often referred to as 

Lasso [32] and is given by: 
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where 0 is an appropriately chosen regularization 

parameter, y is a normalized test face and X is an n × d 

matrix representing a gallery of faces. 
The global optimum of (4) can be easily computed using 

standard convex programming techniques. It is known that, in 

practice, 1L  regularization often leads to sparse solutions, 

although they are often suboptimal. The theoretical 
performance of this method has been analyzed recently 
[18][19]. 

A. SN for Modeling and Features Extraction 

Our proposed RSN approach is initialized by training a 
shearlet network (SN) [20] to models the faces. The Gallery 
faces are approximated by a shearlet network to produce a 
compact biometric signature as wavelet network [38]. One 



main feature of this approach is that this signature, constituted 
the shearlets and their weights, will be used to match a Probe 
with all faces in the Gallery. The test (Probe) face is projected 
on the shearlet network of the Gallery face and new weights 
specific to this face are produced. The family of shearlets 
remains then unchanged (this is the Gallery face). 

 

 
 

Fig. 3. Overview of SN Architecture. 

Recall that the shearlets form a tight frame, meaning that, 
for any image in the space of square integrable functions we 
have the reproducing formula: 

                  , , , ,
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We will use this formula to define the Shearlet Network 
approach, similar to the wavelet network [33] [39] [40] [41], 
as a combination of the RBF neural network and the shearlet 
decomposition. In the optimization stage, the calculation of 
the weights connection in every stage is obtained by projecting 
the signal to be analyzed on a family of shearlets. We need the 
dual family of the shearlets forming our shearlet network, 
which is calculated by the formula: 
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In our approach, the mother shearlet that we use to 

construct the family , ,j l k is the second derived of the Beta 

function [31] [37] which has the advantage of being well 
localized. Note that the number of shearlets may be chosen by 
the user.  

Algorithm 1: Training SN 
 

Input: image f  

Output: reconstructed image recf  

1. Select a shearlet , ,j l k  as activation function of the 

shearlet network:  

a. Choose the mother shearlet. 

b. Build a library formed by the shearlets which form 

a shearlet frame.  
c. Set as a stop learning condition based on the 

difference of  input and the output network and 

iterate the following steps:  

2. If frame is not tight: Calculate the dual basis 
~

, ,

i

j l k formed 

by the shearlets of the network and the new selected shearlet 

according (6);  else 
~

, ,, ,

i

j l kj l k .  

3. Calculate the weights by direct projection of the image on 

the dual shearlet 
~

, ,,

i

j l kw f
i

. 

4. Calculate the output of the network recf .  

5. If the number of shearlets is reached then learning stops; 

otherwise another shearlet is selected and we return to 2. 

 

B. RSN Algorithm 

Below we present the algorithm of RSN, where X   
represents the reconstructed gallery faces after extraction of 

the features by training SN and y is the reconstruct test face 

with the features extracted after projection of the real test face 
on the frame of shearlets produced by the gallery faces. 

Algorithm 2: RSN  

Input: - y : normalized test face f : /  ( ,2)y f norm f   

           - X : aligned gallery faces: / *X X X X  

           - Iter: max of iteration; _w thre  ; ]0 .. 1[ 

Output: w ; ( )Identity y  

1. Choose initw  (refer to [35]) 

2. Diagonalizable  X ; '* ; '*t tX X X y X y  

3. For   j = 1 … Iter 
- Calculate 
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End  

*rec iy X w ; iw w  

4. For  k = 1,…, Classnum 
2

1/2

2
( ) ( )k kerror k w y X w  

 End 

If we consider here a class h then the identity is: 

( ) arg min ( )hIdentity y error  

 
In the algorithm above: Classnum is the classes’ number of

X , where Classnum d ; if Classnum d  then we 
consider the case of Single Training Sample per Subject 
(STSS). 



IV. EXPERIMENTAL RESULTS 

In this paper, we focus on the problem called Single 
Training Sample per Subject (STSS) that is receiving 
considerable attention in FR [21]. For our experiments, we 
have used several standard benchmark face databases to 
evaluate the performance of our approach.  

A. Datasets 

We have used the Extended Cohn-Kanade (CK+) [22] 
(123 images), Georgia Tech (GT) [23] (50 images), FEI [24] 
(200 images), AR [25] (100 images), FRGC v1 [26] (152 
images), FERET [27] (with different dimension 100, 150 and 
200 images) and ORL (40 images) face databases. All the 
images are resized to 27×32. 

In this paper, we chose to select randomly the face image 
both for Gallery and Probe dataset.  

 

 

Fig. 4. A subject from Gallery and Probe with different face databases. (a) 

FRGC. (b) ORL. (c) FEI. (d) CK+. 

 

Fig. 5. A subject from Gallery and Probe with different face databases. (a) 

GT. (b) AR. (c) FERET. 

We have compared our approach with NN (nearest 
neighbor) SVM_OAA (one against all), SVM_DAG (Directed 
Acyclic Graph) [28], BHDT [29], MetaFace [4], RKR [30], 
RRC [8], CRC [6]. 

B. Recognition  accuracy  

Table I shows that RSN (our method) and RRC are the 
best performing methods in terms of FR rate when compared 
with many other classical and state-of-the-art methods using 
the FRGC v1, ORL and CK+ databases. 

TABLE I.  RECOGNITION ACCURACY ON THE FRGC V1, ORL & CK+ 

DATABASES. 

 Database  

Method FRGC v1 ORL CK+ 

NN - 0.6994 - 

SVM_OAA 0.5921 0.8750 0.9837 

SVM_DAG[28] 0.6053 0.8750 0.9837 

BHDT [29] 0.2697 0.7500 0.9187 

MetaFace [4] 0.6842 0.8750 0.9837 

RKR [30] 0.6316 0.8250 0.9837 

RRC [8] 0.7105 0.8500 1 

CRC [6] 0.6316 0.8500 0.9837 

RSN (our) 0.7171 0.8750 0.9919 

 
Table II shows that, also using the FEI, GT and AR 

databases, the RSN and RRC methods are the top performers. 

TABLE II.  RECOGNITION ACCURACY ON THE FEI, GT & AR 

DATABASES. 

 Database  

Method  FEI GT AR 

NN - - 0.4810 

SVM_OAA 0.9600 0.2800 0.8800 

SVM_DAG[28] 0.9600 0.2800 0.8200 

BHDT [29] 0.6250 0.2000 0.6371 

MetaFace [4] 0.9700 0.2800 0.8528 

RKR [30] 0.9750 0.2400 0.9286 

RRC [8] 0.9800 0.2800 0.9571 

CRC [6] 0.9750 0.2800 0.8900 

RSN (our) 0.9750 0.3800 0.9500 

 

In Table III, we test FR using the FERET database, with 
100, 150 and 200 images. Also in this case, our method is 
among the top performers. 

TABLE III.  RECOGNITION ACCURACY ON THE FERET DATABASE. 

 FERET Database 

Method  100 150 200 

NN - - - 

SVM_OAA 0.7700 0.7200 0.6850 

SVM_DAG[28] 0.7700 0.7333 0.7150 

BHDT [29] 0.5000 0.4200 0.3350 

MetaFace [4] 0.8900 0.8933 0.8950 

RKR [30] 0.8900 0.8533 0.8500 

RRC [8] 0.8800 0.8800 0.9050 

CRC [6] 0.8700 0.8400 0.8750 

RSN (our) 0.9000 0.8733 0.8950 

C.  Runing Time Comparison  

For a fair comparison, we have measured the average 
running time of all methods. For all our experiments, we have 
used Matlab version 7.0.1 environment with Intel core 2 duo 
2.10 GHz CPU and with 2.87Go RAM. For all methods cited 
from the literature, we have applied the implemented codes as 
provided by the authors in the case of STSS. The tables below 
report the average running times for the various methods 
considered. Note that the algorithms RKR [30] and CRC [6] 
are overall the least computationally intensive. Our approach 
requires a computational time comparable to CRC in many 
case, even though the performance in terms of running times 
depends on the database considered. 



TABLE IV.  THE AVERAGE RUNING TIME (SECONDS) ON FRGC V1, ORL & 

CK+  DATABASES. 

 Database 

Method  FRGC v1 ORL CK+ 

NN - 0.7703 - 

SVM_OAA 0.6415 0.0133 0.1146 

SVM_DAG[28] 0.0610 0.0113 0.0473 

BHDT [29] 0.0109 0.0019 0.0046 

MetaFace [4] 0.5042 0.6500 0.5238 

RKR [30] 0.0160 0.0160 1.2e-004 

RRC [8] 0.0867 0.0102 0.1443 

CRC [6] 0.0027 7.7e-04 0.0017 

RSN (our) 0.0784 0.0094 0.1954 

TABLE V.  THE AVERAGE RUNING TIME (SECONDS) ON FEI, GT & AR  

DATABASES. 

 Database 

Method  FEI GT AR 

NN - - - 

SVM_OAA 0.1516 0.0212 0.1680 

SVM_DAG[28] 0.0786 0.0138 0.0433 

BHDT [29] 0.0057 0.0022 0.0055 

MetaFace [4] 1.0325 1.0684 0.3153 

RKR [30] 7.5e-005 0 0.0150 

RRC [8] 0.1758 0.1178 0.0405 

CRC [6] 0.0031 0.0012 0.0038 

RSN (our) 0.2341 0.1600 0.0419 

TABLE VI.  T HE AVERAGE RUNING TIME (SECONDS) ON FERET  

DATABASE. 

 FERET Database 

Method  100 150 200 

NN - - - 

SVM_OAA 0.1692 0.6996 0.5001 

SVM_DAG[28] 0.0397 0.0794 0.1074 

BHDT [29] 0.0053 0.0121 0.0120 

MetaFace [4] 0.4781 0.6991 0.9191 

RKR [30] 1.5e-004 1.1e-004 1.6e-004 

RRC [8] 0.1366 0.1564 0.1751 

CRC [6] 0.0014 0.0076 0.0037 

RSN (our) 0.2486 0.2505 0.2519 

 

5. CONCLUSION  

 
The objective of this paper is to present a new method for 

face recognition called Regularized Shearlet Network. This 
approach has the ability to capture face features very 
efficiently thanks to the use of the shearlet representation, a 
method which promotes sparsity and is especially able to 
extract geometric features with high accuracy. In our 
approach, these features are fed into a shearlet network and 
processed through a regularization stage to control the trade-
off between fidelity to the gallery and smoothness of the probe 

faces. The experimental results for FR on the problem of 
Single Training Sample per Subject run on several face 
databases show that our new approach is very competitive 
when compared against several state-of-the-art methods. 
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