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Abstract This paper introduces a new decomposition of the 3D X-ray transform
based on the shearlet representation, a multiscale directional representation which
is optimally efficient in handling 3D data containing edge singularities. Using
this decomposition, we derive a highly effective reconstruction algorithm yield-
ing a near-optimal rate of convergence in estimating piecewise smooth objects
from 3D X-ray tomographic data which are corrupted by white Gaussian noise.
This algorithm is achieved by applying a thresholding scheme on the 3D shearlet
transform coefficients of the noisy data which, for a given noise level ε, can be
tuned so that the estimator attains the essentially optimal mean square error rate
O(log(ε−1)ε2/3), as ε → 0. This is the first published result to achieve this type
of error estimate, outperforming methods based on Wavelet-Vaguelettes decom-
position and on SVD, which can only achieve MSE rates of O(ε1/2) and O(ε1/3),
respectively.
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1 Introduction

The 3D X-ray transform is the mathematical model underlying computed tomogra-
phy (CT) and similar computational methods used in medical imaging (diagnostic
radiology) and in industrial nondestructive testing (quality control) to determine
the structural properties of 3-dimensional objects from their projected information.
In transmission tomography, for example, a solid body is scanned by a narrowly
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focused X-ray beam whose intensity loss is recorded by a detector. Hence, letting
f(x) be the X-ray attenuation coefficient of the body at the point x and denoting
by I0 the initial intensity of the X-ray beam, the fractional decrease of the intensity
I received at the detector can be modelled as

I

I0
= exp

{
−
∫
L

f(y) dy

}
,

where the line integral is define along the line L of propagation of the X-ray beam.
By taking the natural logarithm, we obtain the projection

− ln

(
I

I0

)
=

∫
L

f(y) dy.

It is customarily to parametrize the lines of integration as L = L(Θ, x), where
Θ ∈ S2 and x ∈ R3 correspond to the orientation and point of intersection of the
line L, respectively. This yields the following classical formulation of the X-ray

transform P of f :

P (Θ, x)f =

∫
R
f(tΘ + x) dt,

which is also called the projection of f onto Θ⊥. Notice that this definition is
different from the 3-dimensional Radon transform, which maps a function on R3

into the sets of its integrals over planes in R3, rather than into the set of its line
integrals. However, the two transforms are equivalent in dimension D = 2 [21].

For both the Radon transform and the X-ray transform, the problem of interest
is the reconstruction of f from its projected information and this calls formally for
the inversion of the transforms. This problem has a formal solution and, in the case
of the 2D Radon transform, an inversion formula was proposed by J. Radon already
in 1917 [24]. However, the inversion of the Radon and X-ray transforms is an ill-
posed problem whose computation is very sensitive to small perturbations in the
data. Indeed, in practical situations, the projected information is typically known
on a discrete set only, with a limited accuracy, and is corrupted by noise, so that
the inversion process requires an appropriate regularization to accurately recover
the unknown function f without blowing up the noise during reconstruction.

Starting from the rediscovery of the Radon transform in the 60’s aimed at its
application to computed tomography for medical imaging [4,5], several methods
have been introduced to regularize the inverse problem associated with the Radon
and X-ray transforms, including Fourier methods, backprojection and singular
value decomposition [21]. The main drawback of all these methods is that they
yield reconstructions where the high frequency features of the data are smoothed
away, with the result that the reconstructed images appeared to be blurred versions
of the original ones. While a number of heuristic solutions have been introduced
to deal with the phenomenon of blurring, only the approaches recently introduced
by Candès and Donoho in [2] and by the authors in [3,8] offer the capability to
reconstruction 2D images from their noisy 2D Radon projections with minimal
loss of high-frequency information and with a precise assessment of the method
performance. These new methods exploit the properties of curvelets and shearlets,
a new generation of multiscale representation systems which are especially designed
to handle anisotropic information with optimal efficiency.
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Despite these valuable contributions, no similar results are currently known
in the 3D setting, which is indeed the case of major interest in applications. The
major difficulties in extending these improved reconstruction methods to the case
of noisy 3D X-ray data come from: (i) the need to extend the analysis of the
optimal approximation properties of curvelets/shearlets to the 3D setting; (ii)
the need to establish the optimal theoretical MSE rate in the 3D setting for the
type of data under consideration. Both challenges are addressed in this paper,
leading to the a new highly efficient approach for the regularized reconstruction
of noisy 3D X-ray data. Specifically, our method employs the framework of the
multidimensional shearlet representation introduced by the authors in [12,14] to
obtain a new decomposition of the 3D X-ray transform. Taking advantage of the
special ability of 3D shearlets to sparsely represent piecewise smooth data, we
derive a highly effective algorithm for the reconstruction from noisy X-ray data
whose error rate is near-optimal. This algorithm is based on a thresholding scheme
on the noisy shearlet coefficients associated with the decomposition of the 3D X-
ray transform. For a given noise level ε, the proposed thresholding scheme can be
tuned so that the estimator will attain the essentially optimal mean square error
(MSE) O(log(ε−1)ε2/3), as ε → 0. Our result is the 3D analogue of a similar 2D
estimate derived by the authors in [3] and by Candès and Donoho in [2], and is
the first published result to yield an essentially optimal MSE rate for the recovery
of noisy 3D x-ray data.

1.1 Background and Motivation

It is useful to briefly recall some background on the Wavelet-Vaguelette decom-
position (WVD), introduced by Donoho [6]. This method applies a collection of
functionals called vaguelettes to simultaneously invert an operator and compute
the wavelet coefficients of the noise-corrupted data. Hence the unknown function
is estimated by first applying a nonlinear shrinkage to the wavelet coefficients and
then inverting the wavelet transform. One major benefit of the Wavelet-Vaguelette
decomposition is that it allows one to select a representation that well approximate
the space of solutions and to exploit the estimating capabilities of this represen-
tation. This is in contrast to the Singular Value Decomposition (SVD) that uses
basis functions depending solely on the operator whose inversion one attempts
to compute. Since its appearance, the WVD strategy has received lot of atten-
tion and was applied to a number of inverse problems including the inversion of
the Radon transform (e.g., [20,19,22]). However, as it was observed in [2], even
though the WVD strategy outperforms regularization methods based on SVD and
other traditional methods, it falls short from being optimal in terms of estimation
capabilities, in general.

Indeed, let us consider the problem of recovering a piecewise smooth two-
dimensional image f from the noisy Radon data

Y = Rf + εW,

where εW is white Gaussian noise, and ε measures the noise level. Then an in-
version based on the WVD approach yields a Mean Squared Error (MSE) that is
bounded, within a logarithmic factor, by O(ε2/3) as ε→ 0. This is better than the
MSE rate of O(ε1/2), as ε → 0, which is achieved when the inversion techniques
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are SVD-based [2]. However, if one replaces the wavelet system used in the WVD
with the curvelet or the shearlet systems, which are more efficient than wavelets
in dealing with the class of bivariate piecewise smooth functions, then it is proved
in [2,3] that it possible to recover the function f with an MSE rate

O(log(ε−1)ε4/5) as ε→ 0.

This rate is essentially optimal for this class of functions.
In this paper, we consider the analogous 3D problem and investigate the task

of recovering a piecewise smooth 3D image f from the noisy X-ray data

Y = Pf + εW,

where εW is white Gaussian noise, and ε measures the noise level. In this setting,
a regularized inversion of the 3D X-ray transform based on the WVD approach
yields a Mean Squared Error (MSE) that is bounded, within a logarithmic factor,
by O(ε1/2) as ε→ 0. By contrast, we prove that it possible to improve the recon-
struction performance by using a 3D systems of shearlets to decompose the 3D
X-ray transform. In this case, the function f is recovered with an MSE rate

O(log(ε−1)ε2/3) as ε→ 0.

Similar to the 2D case, the method that we propose adapts the basic ideas of the
WVD framework. In order to establish the new MSE estimation rate, our argument
relies critically on results recently derived from the authors showing that the 3D
shearlet representation exhibits essentially optimal approximation properties in
the class of piecewise functions of 3 variables [12,13]. The optimality of our MSE
estimation rate is also proved in this paper using a new argument extending to
the 3D setting a similar 2D result from [2].

1.2 Paper Organization

The paper is organized as follows. Section 2 provides the background on the 3D
shearlet representation. Section 3 develops a new decomposition of the 3D X-
ray transform based on the shearlet representation. This decomposition is the
analogue of our 2D decomposition from [3]. Section 4 contains the main original
contributions and main results of the paper: the new shearlet-based algorithm
for the recovery of 3D images from X-ray data which are corrupted by additive
Gaussian noise; the analysis of the method’s performance, showing that the method
is nearly optimal in the class of piecewise smooth functions of three variables.

2 The Shearlet Representation

The shearlet representation, originally derived from the framework of wavelets
with composite dilations [15,16], provides a general method for the construction
of function systems made up of waveforms ranging not only at various scales and
locations, as traditional wavelets, but also at various orientations. Thanks to their
ability to deal with directionality and anisotropy, shearlets capture the geomet-
ric content of multivariate functions and data much more efficiently than using
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wavelets or other traditional methods. These properties have made shearlets very
successful in applications such as image and video denoising [9,10,23], deconvolu-
tion [25], edge analsysis and detection [11,26] and sparse decompositions [17].

In dimension D = 3, a shearlet system is obtained by appropriately combining
3 systems of functions associated with the pyramidal regions

P1 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ2ξ1 | ≤ 1, | ξ3ξ1 | ≤ 1

}
,

P2 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ1ξ2 | < 1, | ξ3ξ2 | ≤ 1

}
,

P3 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ1ξ3 | < 1, | ξ2ξ3 | < 1

}
,

in which the 3D Fourier space is partitioned. The construction given below is
similar to the so-called digital curvelets in [1].

To define such systems, let b be a univariate function such that b̂ ∈ C∞,
0 ≤ b̂ ≤ 1, b̂ = 1 on [− 1

16 ,
1
16 ] and ϕ̂ = 0 outside the interval [−1

8 ,
1
8 ]. That is,

b is the scaling function of a Meyer wavelet, rescaled so that its frequency support
is contained the interval [−1

8 ,
1
8 ]. For ξ = (ξ1, ξ2, ξ3) ∈ R3, define ϕ by

ϕ̂(ξ) = ϕ̂(ξ1, ξ2, ξ3) = b̂(ξ1) b̂(ξ2) b̂(ξ3) (1)

and W (ξ) =

√
|ϕ̂(2−2ξ)|2 − |ϕ̂(ξ)|2. It follows that

|ϕ̂(ξ)|2 +
∑
j≥0

|W (2−2jξ)|2 = 1 for ξ ∈ R3.

Notice that each function Wj =W (2−2j ·) has support into the Cartesian corona

Cj = [−2−2j−1, 2−2j−1]3 \ [−2−2j−4, 2−2j−4]3 ⊂ R3, (2)

and the functions W 2
j , j ≥ 0, produce a smooth tiling of the frequency plane into

Cartesian coronae, where∑
j≥0

|W (2−2jξ)|2 = 1 for ξ ∈ R3 \ [−1
8 ,

1
8 ]

3. (3)

Next, let v ∈ C∞(R) be such that supp v ⊂ [−1, 1] and

|v(u− 1)|2 + |v(u)|2 + |v(u+ 1)|2 = 1 for |u| ≤ 1. (4)

In addition, we will assume that v(0) = 1 and that v(n)(0) = 0 for all n ≥ 1.
It was shown in [13] that there are several examples of functions satisfying these
properties.

Hence, for d = 1, 2, 3, ℓ = (ℓ1, ℓ2) ∈ Z2, the 3D shearlet systems associated with

the pyramidal regions Pd are defined as the collections

{ψ(d)
j,ℓ,k : j ≥ 0,−2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z3}, (5)

where

ψ̂
(d)
j,ℓ,k(ξ) = |detA(d)|

−j/2W (2−2jξ)V(d)(ξA
−j
(d)B

[−ℓ]
(d) ) e2πiξA

−j
(d)

B
[−ℓ]
(d)

k
, (6)
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V(1)(ξ1, ξ2, ξ3) = v( ξ2ξ1 )v(
ξ3
ξ1
), V(2)(ξ1, ξ2, ξ3) = v( ξ1ξ2 )v(

ξ3
ξ2
), V(3)(ξ1, ξ2, ξ3) = v( ξ1ξ3 )v(

ξ2
ξ3
),

the anisotropic dilation matrices A(d) are given by

A(1) =

4 0 0
0 2 0
0 0 2

 , A(2) =

2 0 0
0 4 0
0 0 2

 , A(3) =

2 0 0
0 2 0
0 0 4

 ,

and the shearing matrices are defined by

B
[ℓ]
(1)

=

1 ℓ1 ℓ2
0 1 0
0 0 1

 , B
[ℓ]
(2)

=

 1 0 0
ℓ1 1 ℓ2
0 0 1

 , B
[ℓ]
(3)

=

 1 0 0
0 1 0
ℓ1 ℓ2 1

 .

Notice that (B
[ℓ]
(d))

−1 = B
[−ℓ]
(d) .

Due to the support conditions on W and v, the elements of the system of
shearlets (5) have compact support in Fourier domain. In particular, for d = 1,

the shearlets ψ̂
(1)
j,ℓ,k(ξ) can be written more explicitly as

ψ̂
(1)
j,ℓ1,ℓ2,k

(ξ) = 2−2j W (2−2jξ) v
(
2j ξ2

ξ1
− ℓ1

)
v
(
2j ξ3

ξ1
− ℓ2

)
e
2πiξA−j

(1)
B

[−ℓ1,−ℓ2]

(1)
k
, (7)

showing that their supports are contained inside the trapezoidal regions

{(ξ1, ξ2, ξ3) : ξ1 ∈ [−22j−1,−22j−4]∪ [22j−4, 22j−1], | ξ2
ξ1

− ℓ12
−j | ≤ 2−j , | ξ3

ξ1
− ℓ22

−j | ≤ 2−j}.

These support regions become increasingly more elongated at fine scales, with the
orientations controlled by ℓ1, ℓ2, as illustrated in Fig. 1.

A simple computation shows that the elements of the shearlets systems (6) can
be written in space domain as

ψ
(d)
j,ℓ,k(x) = |detA(d)|

j/2 ψ
(d)
j,ℓ (B

[ℓ]
(d)A

j
(d)x− k),

for j ≥ 0, ℓ = (ℓ1, ℓ2) with ℓ1, ℓ2 ≤ 2j , k ∈ Z3, d = 1, 2, 3, where

ψ̂
(d)
j,ℓ (ξ) =W (2−2jξB

[ℓ]
(d)A

j
(d))V(d)(ξ).

The functions ψ
(d)
j,ℓ depend very little on j, ℓ. Indeed, thanks to support and regu-

larity conditions on W and V(d), one can show [14] that for each γ ∈ N3 and each
N ≥ 0 there is a constant Cγ,N,d > 0, independent of j, ℓ, such that,∣∣∣∂γxψ(d)

j,ℓ (x)
∣∣∣ ≤ Cγ,N,d (1 + |x|)−N . (8)

2.1 A smooth Parseval frame of shearlets for L2(R3)

A Parseval frame of shearlets for L2(R3) is obtained from an appropriate com-
bination of the systems of shearlets associated with the 3 pyramidal regions Pd,
d = 1, 2, 3, together with a coarse scale system. To ensure the regularity and decay
of the system, the elements of the shearlet systems overlapping the boundaries of



Optimal Recovery of 3D X-Ray Tomographic Data via Shearlet Decomposition 7

−40
−20

0
20

40
−40

−20

0

20

40

−40

−20

0

20

40

ξ1

ξ2

ξ3

Fig. 1 Frequency support of a representative shearlet function ψ
(1)
j,ℓ,k, inside the pyramidal

region P1. The orientation of the support region is controlled by ℓ = (ℓ1, ℓ2); its shape is
becoming more elongated as j increases (j = 4 in this plot)

the pyramidal regions Pd in the Fourier domain are modified. More precisely, we
define the 3D shearlet systems for L2(R3) as the collections{

ϕk : k ∈ Z3
}∪{

ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| < 2j , |ℓ2| ≤ 2j , k ∈ Z3, d = 1, 2, 3
}

∪{
ψ̃j,ℓ,k : j ≥ 0, ℓ1, ℓ2 = ±2j , k ∈ Z3

}
(9)

consisting of:

– the coarse-scale shearlets {ϕk = ϕ(· − k) : k ∈ Z3}, where ϕ is given by (1);

– the interior shearlets {ψ̃j,ℓ,k,d = ψ
(d)
j,ℓ,k : j ≥ 0, |ℓ1||ℓ2| < 2j , k ∈ Z3, d = 1, 2, 3},

where ψ
(d)
j,ℓ,k are given by (6);

– the boundary shearlets {ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| < 2j , ℓ2 = ±2j , k ∈ Z3, d = 1, 2, 3}
and {ψ̃j,ℓ,k : j ≥ 0, ℓ1, ℓ2 = ±2j , k ∈ Z3}, obtained by joining together slightly

modified versions of ψ
(1)
j,ℓ,k, ψ

(2)
j,ℓ,k and ψ

(3)
j,ℓ,k, for ℓ1, ℓ2 = ±2j . We refer to [?,14]

for detail. Here it suffices to observe that the boundary shearlets are both
compactly supported and smooth in the frequency domain.

For brevity, in the following it will be convenient to denote the system of shearlets
(9) using the compact notation:

{sµ, µ ∈M}, (10)

where M = Z3 ∪MI ∪MB , sµ = ϕµ if µ ∈ Z3 and sµ = ψ̃µ if µ ∈ MI ∪MB , and
MI ,MB are the indices associated with the interior shearlets and the boundary
shearlets, respectively, given by
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– MI = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1|&|ℓ2| < 2j , k ∈ Z3, d = 1, 2, 3} (interior
shearlets)

– MB = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1| < 2j , ℓ2 = ±2j , k ∈ Z3, d = 1, 2, 3} ∪ {µ =
(j, ℓ1, ℓ2, k) : j ≥ 0, ℓ1, ℓ2 = ±2j , k ∈ Z3} (boundary shearlets)

We have the following result, whose proof is found in [14].

Theorem 1 The 3D shearlet system (10) is a Parseval frame for L2(R3). In addition,

the elements of this systems are C∞ and compactly supported in the Fourier domain.

3 3D X-Ray Transform Inversion via Shearlet Representation

In this section, we derive a formula for the decomposition of the 3D X-ray trans-
form based on the shearlet representation. This construction is similar to the 2D
construction in [3].

3.1 Companion Representation

In order to derive our new decomposition, it is useful to introduce the following
companion representation of the 3D shearlet system.

Definition 1 For a rational number α and f ∈ C∞(R3), the Riesz potential Iα in

Rn is defined by Îαf(ξ) = |ξ|−αf̂(ξ), α < n.

Definition 2 For {sµ : µ ∈ M} given by (10), the companion shearlet represen-

tation is the set {s+µ = 2−jI−
1
2 sµ : µ ∈ M}. In particular, we use the notation

ψ̃+
µ = 2−jI−

1
2 ψ̃µ, for µ ∈MI ∪MB , and ϕ+µ = I−

1
2 ϕµ, for µ ∈ Z3.

It is easy to verify that the functions {s+µ : µ ∈M} are smooth and compactly
supported in the frequency domain. In addition, since each element of the fine-scale
shearlet system ψ̃µ, µ ∈MI∪MB , has frequency support inside the compact region
Cj = [−22j−1, 22j−1]3\[−22j−4, 22j−4]3, it follows that, in this region, 2−j |ξ|1/2 ≃ 1

and, thus, ∥ψ̃+
µ ∥ ≃ ∥ψ̃µ∥. This is the key observation which is used in the following

result.

Theorem 2 The system {ψ̃+
µ }µ∈MI∪MB

is a frame for L2(R3 \ [−1
8 ,

1
8 ]

2)∨. That is,
there are positive constants A and B, with 0 < A ≤ B, such that

A ∥f∥2 ≤

∥∥∥∥∥∑
µ

⟨f, ψ̃+
µ ⟩

∥∥∥∥∥
ℓ2

≤ B∥f∥2,

for all functions f such that supp f̂ ⊂ R3 \ [−1
8 ,

1
8 ]

3.

Notice that the larger system {s+µ : µ ∈M} is not a frame for L2(R3) since the

lower frame bound condition is not satisfied. To enlarge {ψ̃+
µ }µ∈M and make it

into a frame for the whole space L2(R3), one can include a “coarse scale” system
of the form {φ(x − k) : k ∈ Z3} similar to what is done for the original shearlet
system.
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Proof. To show that the system {ψ̃+
µ }µ∈MI∪MB

is a frame, we introduce the
following notation. For j ≥ 0, let Mj be the set of indices µ ∈MI ∪MB such that
j is fixed. Explicitly, Mj = {µ = (j, ℓ1, ℓ2, k, d) : |ℓ1| < 2j , |ℓ2| ≤ 2j , k ∈ Z3, d =
1, 2, 3} ∪ {µ = (j, ℓ1, ℓ2, k) : |ℓ1|, |ℓ2| = 2j , k ∈ Z3}. Recall that, for each j ≥ 0, a
function ψ̃µ, µ ∈Mj , has frequency support contained in the set Cj which is given
by (2). Also recall that

∪
j≥0 Cj = R3\ [−1

8 ,
1
8 ]

3. For brevity, we adopt the notation

C = R3 \ [−1
8 ,

1
8 ]

3.

Let ŵj be a smooth window function which is supported in Cj−1 ∪ Cj ∪ Cj+1

and is equal 1 on the set Cj . It follows that ŵj Wj = Wj and that wj ∗ g = g for
each function g such that ĝ is supported on the set Cj . Hence, using the fact that

supp (ψ̃µ)
∧ ⊂ Cj when µ ∈Mj , it follows that for each f ∈ L2(C)∨:

∑
µ∈Mj

|⟨f, ψ̃+
µ ⟩|2 =

∑
µ∈Mj

|⟨f, 2−j I−
1
2 ψ̃µ⟩|2

=
∑

µ∈Mj

|⟨wj ∗ f, 2−j I−
1
2 ψ̃µ⟩|2

=
∑

µ∈Mj

|⟨2−j I−
1
2 (wj ∗ f), ψ̃µ⟩|2

=
∑

µ∈Mj

|⟨hj , ψ̃µ⟩|2,

where hj = 2−j I−
1
2 (wj ∗ f). Notice that the smoothness assumption on wj guar-

antees that hj is well defined. Furthermore hj ∈ L2(C)∨.
Using the properties of the shearlet system (in particular, (??)), a calculation

similar to Theorem 3.2 in [14] gives that, for any h ∈ L2(C)∨ we have the following
equalities:

∑
µ∈Mj

|⟨h, ψ̃µ⟩|2

=
3∑

d=1

∑
|ℓ1|≤2j

∑
|ℓ2|<2j

∑
k∈Z3

|⟨h, ψ̃j,ℓ1,ℓ2,k,d⟩|
2 +

∑
j≥0

∑
ℓ1,ℓ2=±2j

∑
k∈Z3

|⟨h, ψ̃j,ℓ1,ℓ2,k⟩|
2

=

∫
C
|ĥ(ξ)|2 |W (2−2jξ)|2

 ∑
|ℓ1|,|ℓ2|≤2j

|v(2j ξ2
ξ1

− ℓ1)|2|v(2j
ξ3
ξ1

− ℓ2)|2χP1
(ξ)

+
∑

|ℓ1||ℓ2|≤2j

|v(2j ξ1
ξ2

− ℓ1)|2|v(2j
ξ3
ξ2

− ℓ2)|2χP2
(ξ)

+
∑

|ℓ1||ℓ2|≤2j

|v(2j ξ1
ξ3

− ℓ1)|2|v(2j
ξ2
ξ3

− ℓ2)|2χP3
(ξ)

 dξ

=

∫
C
|ĥ(ξ)|2 |W (2−2jξ)|2 dξ, (11)

where Wj =W (2−2j ·) is supported inside the set Cj ⊂ C.
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Using (11) with h = hj it follows that:∑
µ∈Mj

|⟨hj , ψ̃µ⟩|2 =

∫
C
|ĥj(ξ)|2 |W (2−2jξ)|2 dξ

= 2−2j
∫
Cj

|ξ| |f̂(ξ)|2 |W (2−2jξ)|2 dξ.

Notice that, for ξ ∈ Cj , the function 2−2j |ξ| is bounded above and below by positive
constants, independently of j. Hence, from the expression above, we have that∑

µ∈Mj

|⟨hj , ψ̃µ⟩|2 ≃
∫
Cj

|f̂(ξ)|2 |W (2−2jξ)|2 dξ

Adding up over all j ≥ 0 and using (3) we conclude that∑
µ∈M

|⟨f, ψ̃+
µ ⟩|2 =

∑
j≥0

∑
µ∈Mj

|⟨f, ψ̃+
µ ⟩|2

≃
∑
j≥0

∫
Cj

|f̂(ξ)|2 |W (2−2jξ)|2 dξ

=

∫
C
|f̂(ξ)|2dξ

for all f ∈ L2(C)∨. ⊓⊔

3.2 Shearlet decomposition of the 3D X-ray transform

We first recall some basic properties of the X-ray transform, which will be useful in
the construction of our decomposition based on the shearlet representation (cf. [21]
for additional details). For Θ ∈ S2 and x ∈ R3, then the 3D X-ray transform of
g ∈ S(R3) is defined by

Pg(Θ, x) =

∫
R
g(tΘ + x) dt.

This is the integral of g over the straight line through x with direction Θ (see
Figure 2). Notice that Pg(Θ, x) does not change if x is moved in the direction Θ.
Hence, x is normally restricted to Θ⊥ so that Pf is a function on the tangent
bundle T = {(Θ, x) : Θ ∈ S2, x ∈ Θ⊥}.

The adjoint operator P ∗ of P is acting on functions on T and is defined by

(P ∗g)(x) =

∫
S2

g(Θ,EΘx)dΘ,

where EΘx = x− (x ·Θ)Θ is the orthogonal projection of x on Θ⊥.
For F, G on T , we define the inner product of F, G ∈ L2(T ) by

[F,G] =

∫
S2

∫
Θ⊥

F (Θ, x)G(Θ, x)dx dΘ,
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x

Θ

Θ⊥

x1

x3

x2

Fig. 2 The 3D-ray transform is defined by integration over the lines through the point x with
direction Θ.

while as usual for f, g on R3, define the inner product of f and g by

⟨f, g⟩ =
∫
R3

f(x) g(x)dx.

In this setting, we have

[Pf,G] = ⟨f, P ∗G⟩.

It is useful to recall the Fourier Slice Theorem which establishes that following
relationship between the 3D X-ray transform of g and its Fourier transform:

F2[Pg](Θ, η) =

∫
Θ⊥

Pg(Θ, x) e−2πiηx dx = ĝ(η), η ∈ Θ⊥,

where F2 denotes the Fourier transform over the second variable η.
For a function F on T , we define the operator Iα2 , α ∈ R, on F by

F2[I
α
2 F ](Θ, η) = |η|−αF2[F ](Θ, η), η ∈ Θ⊥.

It follows that, for each fixed Θ, we have:

F2[I
− 1

2
2 Pf ](Θ, η) = |η|

1
2F2[Pf ](Θ, η) = |η|

1
2 f̂(η), η ∈ Θ⊥.

Since, for each fixed Θ,

F2[P (I
− 1

2 f)](Θ, η) = (̂I−
1
2 f)(η) = |η|

1
2 f̂(η), η ∈ Θ⊥,
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it follows that I
− 1

2
2 Pf = PI−

1
2 f .

We will need the following formula for the 3D X-ray transform which, up to
a simple change of constant (needed to make it consistent with our definition of
Fourier transform), is a special case of Theorem 2.14 in [21]. For f ∈ S(R3), we
have

f = 2−1I−
1
2P ∗ I

− 1
2

2 Pf.

Let P = I
− 1

2
2 P. Since the operator I−

1
2 is self-adjoint, the formula above yields the

following X-ray isometry condition

[Pf,Pg] = 2 ⟨f, g⟩.

Using the companion shearlet representations {s+µ : µ ∈ M} from Section 3.1,
we define the system {Uµ : µ ∈M} by the formula

Uµ = Ps+µ , µ ∈M. (12)

Using the X-ray isometry and Theorem 2, one can show that {Uµ : µ ∈ M} is
a frame sequence (that is, a frame for its span), although it is not a frame since
{s+µ : µ ∈M} is not a frame for L2(R3).

We are now ready to introduce a decomposition formula for the 3D X-ray
transform based on the 3D shearlet representation. This result is in the spirit of
the Wavelet-Vaguelette Decomposition [6] and extends to the 3D setting the 2D
decomposition of the Radon transform from [2,3].

Theorem 3 Let {sµ : µ ∈ M} be the Parseval frame of shearlets given by (10) and

{Uµ : µ ∈ M} be the system defined by (12). For all f ∈ L2(R3) the following repro-

ducing formula holds:

f = 2−1
∑
µ

2j [Pf, Uµ] sµ.

Proof. A direct computation show that:

⟨f, sµ⟩ = 2−1[Pf,P sµ]

= 2−1[I
− 1

2
2 Pf, I

− 1
2

2 Pf P sµ]

= 2−1[Pf, I
− 1

2
2 I

− 1
2

2 P sµ]

= 2−1[Pf, I
− 1

2
2 PI−

1
2 sµ]

= 2−1[Pf,P(2js+µ )]

= 2−12j [Pf, Uµ]. ⊓⊔

4 Optimal Inversion of Noisy 3D X-Ray Data

Let us consider the classical problem of recovering an unknown function f from
its noisy X-ray projections. More precisely, we assume that the observed 3D X-ray
transform of f is corrupted by white Gaussian noise as:

Y = Pf + εW, (13)
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where W is a Wiener sheet and ε is measuring the noise level. This means that
each measurement [Y,Uµ] of the observed data is normally distributed with mean
[Pf, Uµ] and variance ε2 ∥Uµ∥2L2(T ).

While the white noise model may not describe precisely the types of noise
typically found in practical applications, the asymptotic theory derived from this
assumption in practice has been found to lead to very acceptable results. This
framework allows one to derive a theoretical assessment of the performance of the
method which would be extremely complicated to handle otherwise.

In order to obtain an upper bound on the risk of the estimator, it is necessary to
specify the type of functions we are considering. Following [13], we fix a constant
A > 0 and denote by M(A) the class of indicator functions of sets B ⊂ [0, 1]3

whose boundary Σ = ∂B is a C2 2-manifold which can be written as
∪

αΣα,
where α ranges over a finite index set and Σα = {(v, Eα(v)), v ∈ Vα ⊂ R2},
such that ∥Eα∥C2(Vα) ≤ A for all α. Also, let C2

c ([0, 1]
3) be the collection of twice

differentiable functions supported inside [0, 1]3. Hence, we define the set E2(A) of
functions which are C2 away from a C2 surface as the collection of functions of the
form

f = f0 + f1 χB ,

where f0, f1 ∈ C2
c ([0, 1]

3), B ∈ M(A) and ∥f∥C2 =
∑

|α|≤2∥D
αf∥∞ ≤ 1.

Projecting the data (13) onto the frame {Uµ : µ ∈M}, and rescaling, we obtain

yµ := 2j [Y, Uµ]

= 2j [Pf, Uµ] + ε 2j [W,Uµ]

= 2⟨f, sµ⟩+ ε 2j nµ, (14)

where nµ is a (non-i.i.d.) Gaussian noise with zero mean and variance σµ = ∥ψ+
µ ∥2.

We observe that there are positive numbers α1, α2 such that α1 ≤ σµ ≤ α2 for all
µ ∈M . In order to estimate f , we need to estimate the shearlet coefficients ⟨f, ψµ⟩,
µ ∈ M , from the data yµ. To accomplish this, we will devise a thresholding rule,
to be applied to {yµ : µ ∈ M}, which exploits the sparsity properties of the 3D
shearlet representation.

4.1 Shearlet-based decomposition of the noisy data

For the application of the shearlet representation to the estimation problem, we
need to modify the shearlet system by rescaling the coarse scale system and chang-
ing the range of scales for which the directional fine-scale system is defined. Hence,
for a fixed j0 ∈ N (which will be chosen as a function of the noise level), we let

– MC = {µ = (j, k) : j = j0−1, k ∈ Z3} (coarse-scale shearlets, replacing Φ(x−k)
by 2

3
2
j0Φ(2j0x− k) )

– MI = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ j0, |ℓ1|&|ℓ2| < 2j , k ∈ Z3, d = 1, 2, 3} (interior
shearlets)

– MB = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ j0, |ℓ1| < 2j , ℓ2 = ±2j , k ∈ Z3, d = 1, 2, 3} ∪ {µ =
(j, ℓ1, ℓ2, k) : j ≥ j0, ℓ1, ℓ2 = ±2j , k ∈ Z3} (boundary shearlets)

so that the modified system is still a Parseval frame in R3.
Similar to the original shearlet system given in Theorem 1, the modified shear-

let system is made of coarse and fine scale systems, with the coarse scale system
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now associated with the coarse scale j0. Proceeding as above, we introduce the
index set M0 = N ∪M0, where N = Z3,

M0 = {µ = (j, ℓ, k, d) : j ≥ j0,−2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z3}, d = 1, 2, 3;

we shall denote the new shearlet system using the compact notation {sµ : µ ∈ M0},
where sµ = ψµ = ψ

(d)
j,ℓ,k if µ ∈ M0 and sµ = 2

3
2
j0Φ(2j0x − µ) if µ ∈ N . For ψµ,

µ ∈M0, it is understood that the boundary elements are modified as in Theorem 1.

In our reconstruction method, the selection of the scale j0 will depend on the
noise level ε. Namely, we set j0 = 2

15 log2(ε
−1). We also introduce the scale index

j1 = 1
3 log2(ε

−1) (so that 2j0 = ε−
2
15 and 2j1 = ε−

1
3 ).

Hence, depending on the noise level ε, for a given a function f ∈ E2(A) we
define the set of significant indices associated with the shearlet representation of f
as the subset of M0 given by N (ε) =M1(ε) ∪N0(ε), where

N0(ε) = {µ = k ∈ Z3 : |k| ≤ 22j+1}, and

M1(ε) = {µ = (j, ℓ, k, d) : j0 < j ≤ j1, |k| ≤ 22j+1, d = 1, 2, 3}.

The significant coefficients in the shearlet representation of f are the elements ⟨f, sµ⟩
for which µ belongs to N (ε).

We obtain the following result which is proved in the Appendix. Notice that
the proof of this result relies on the nearly optimal approximation properties of
the 3D shearlets (and does not follow from the 2D proof).

Theorem 4 For f ∈ E2(A), let ε denote the noise level, and N (ε) be the set of

significant indices associated with the shearlet representation of f where f is represented

as

f =
∑

µ∈M0

⟨f, sµ⟩ sµ.

Then there exist positive constants C′, C′′, and C′′′ such that the following properties

hold:

1. The neglected shearlet coefficients {⟨f, sµ⟩ : µ /∈ N (ε)} satisfy:

sup
f∈E2(A)

∑
µ/∈N (ε)

|⟨f, sµ⟩|2 ≤ C′ε2/3.

2. The risk proxy satisfies:

sup
f∈E2(A)

∑
µ∈N (ε)

min(|⟨f, sµ⟩|2, 22jε2) ≤ C′′ε2/3.

3. The cardinality of N (ε) obeys:

#N (ε) ≤ C′′′ε−
8
3 .
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4.2 3D X-ray data recovery via shearlet thresholding

To estimate f from the noisy observations (14), we will apply the soft thresholding
function Ts(y, t) = sgn(y)(|y|−t)+. The analysis of the estimation error follows the
general framework of the wavelet shrinkage developed in [7]. Letting #N (ε) be the
number of significant coefficients of the shearlet representation of f , we estimate
the function f by

f̃ =
∑

µ∈M0

c̃µ sµ, (15)

where the coefficients are obtained by the rule

c̃µ =

{
Ts(yµ, ε

√
2 log(#N (ε))2jσµ), µ ∈ N (ε),

0 otherwise.
(16)

and σµ = ∥s+µ ∥22. Notice that the terms σµ, µ ∈ M0, are uniformly bounded.

Our main theorem can now be established. This result is the first published
result of this type and, as will be shown in the next section, is essentially optimal
for functions in E2(A). It is the the 3D analogue of the 2D results obtain using
curvelets and shearlets in [2, Thm.6] and in [3, Thm.4.2], respectively.

Theorem 5 Let f ∈ E2(A) be the solution of the problem Y = Rf + εW and let f̃ be

the approximation to f given by the formulas (15) and (16). Then there is a constant

C > 0 such that

sup
E2(A)

E∥f̃ − f∥22 ≤ C log(ε−1) ε
2
3 , as ε→ 0,

where E is the expectation operator.

Proof. For µ ∈ M0, let cµ = ⟨f, sµ⟩ and c̃µ be given by (16). By the Parseval
frame property of the shearlet system {sµ : µ ∈ M0}, it follows that

∥
∑

µ∈M0

cµ sµ∥22 ≤
∑

µ∈M0

|cµ|2,

and that

E∥f̃ − f∥22 ≤ E

 ∑
µ∈M0

|c̃µ − cµ|2
 . (17)

On the other hand, by the oracle inequality [7] we have

E

 ∑
µ∈N (ε)

|c̃µ − cµ|2
 ≤ L(ε)

ε2 ∑
µ∈N (ε)

(
22jσ2µ
#N (ε)

+min(c2µ, ε
222jσ2µ)

) (18)
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where L(ε) = (1 + 2 log(#N (ε)). Now observe that, by Theorem 4.1, there exist
positive constants C1, C2, C3, C4 such that∑

µ∈N (ε)

min(c2µ, ε
222jσ2µ) ≤ C1 ε

2
3 ,

∑
µ/∈N (ε)

c2µ ≤ C2 ε
2
3 ,

log(#N (ε)) ≤ C3 log(ε−1).

ε2
∑

µ∈N (ε)

22j
σ2µ

#N (ε)
≤ α2

2ε
2
∑

µ∈N (ε)

22j ≤ C4 ε
2 22j1 = C4ε

4
3 .

Thus, using these observations and equations (17) and (18), we deduce that there
is a constant C > 0 such that

E∥f̃ − f∥22 ≤ E

 ∑
µ∈N (ε)

|c̃µ − cµ|2
+

∑
µ∈N (ε)c

c2µ ≤ C log(ε−1) ε
2
3 . ⊓⊔

As also observed in [2], Theorem 5 remains valid if the soft thresholding oper-
ator Ts(y, t) is replaced by the hard thresholding operator Th(y, t) = y χ{|y|≥t}. In
fact, also using hard thresholding one can obtain estimates similar to (18).

4.3 Analysis of the MSE estimation rate

We will prove that estimate in Theorem 5 is nearly optimal with respect to the
rate of convergence; that is, up to the log-like factor, no estimator can achieve a
better rate uniformly over E2(A). This is the content of the following result which
extends a similar 2-dimensional statement from [2].

Theorem 6 Let f ∈ E2(A) and consider the minimax mean square error

M(ε, E2(A)) = inf
f̃

sup
E2(A)

E∥f̃ − f∥22.

This satisfies

M(ε, E2(A)) ≥ Cε
2
3 (log(ε−1))−

2
3 , ε→ 0,

for some C ∈ R+.

Notice that the proof of Theorem 6 does not follow from the proof of the 2D case
in [2] even though the general architecture of the proof is similar. In particular, the
crucial Lemma 1, estimating the L2 norm of the X-ray transform for the indicator
function of ellipsoids in R3, is much more involved than the corresponding 2D case.

The proof of Theorem 6 requires some construction. To begin with, let α be a
smooth and nonnegative bivariate function with compact support in [0, 2π]× [0, π]
with ∥α∥C2 = 1. For m ≥ 1, let

αi,j,m(t1, t2) = m−2α(mt1 − 2πi,mt2 − πj), i, j = 0, 1, . . . ,m− 1.
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Notice that ∥αi,j,m∥C2 = ∥α∥C2 and ∥αi,j,m∥L1 = m−4∥α∥L1 . We introduce a
spherical coordinates (ρ, θ, ϕ) with origin in (12 ,

1
2 ,

1
2 ). For ρ0 = 1

4 , set

ψi,j,m = χ{ρ≤ρ0} − χ{ρ≤αi,j,m+ρ0}, , i, j = 0, 1, . . . ,m− 1.

That is, similar to the 2D argument, the functions ψi,j,m are characteristic func-
tions of bulges around the sphere of radius ρ0; notice that they have disjoint
supports. Also, we define the radius functions

rξ =
1

4
+

m∑
i,j=1

ξi,j αi,j,m, ξi,j ∈ {0, 1}

and the corresponding functions

fξ = χ{ρ≤ρ0} +
m∑

i,j=1

ξi,j ψi,j,m, ξi,j ∈ {0, 1}.

each fξ is the indicator function of a part of the the sphere of radius ρ0 plus
some addition bulges. Using the fact that α is bounded and nonnegative, a direct
calculation shows that

∥ψi,j,m∥2L2(R3) ≃ ∥αi,j,m∥L1([0,2π]×[0,π]) = m−4∥α∥L1([0,2π]×[0,π]),

and, for each radius function rξ,

∥rξ∥C2 ≤ ∥αi,j,m∥C2 = ∥α∥C2 .

Let

Hm = {h = f0 +
∑
i,j

ξi,jψi,j,m, ξi,j ∈ {0, 1}}.

It is clear that Hm ⊂ E2(A) and for f ∈ Hm, the estimator f̂ can be chosen from
the same set Hm. Set

M(ε,Hm) = inf
f̃

sup
Hm

E∥f̃ − f∥22.

It follows that

M(ε, E2(A)) ≥ M(ε,Hm).

We need the following critical lemma.

Lemma 1 For m ≥ 2, let gm be the indicator function of the ellipsoid in R3 with the

center at the origin and the length of the axes a ≃ m−2, b ≃ m−1 and c ≃ m−1 and

let (Pgm)(Θ, u) be the X-ray transform of gm. Then there is an absolute constant C

such that

∥Pgm(Θ, u)∥2L2(Θ,u) ≤ Cm−6(lnm)2.
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Proof. Let g0(x) be the indicator function of the unit ball in R3 and the g1(x)
be the indicator function of the ellipsoid with the center at the origin and the
length of the axes a, b and c such that g1(x) = g0(

x1
a ,

x2

b ,
x3
c ).

A simple calculation shows that Pg0(Θ, u) = 2
(√

1− |u|2
)+

for any Θ ∈ S2

and u ∈ Θ⊥, where
(√

1− |u|2
)+

=
√

1− |u|2 for |u| ≤ 1 and
(√

1− |u|2
)+

= 0

for |u| > 1. In spherical coordinates, write Θ = cos θ sinϕ i+ sin θ sinϕ j+ cosϕk.
We choose L1 = cos θ cosϕ i+ sin θ cosϕ j − sinϕk, L2 = − sin θ i+ cos θ j+ 0k as
an orthonormal basis in Θ⊥ so that u ∈ Θ⊥ can be written as u = u1L1 + u2L2.
We have:

Pg1(Θ, u) =

∫ ∞

−∞
g1(tΘ + u1L1 + u2L2)dt

=

∫ ∞

−∞
g0

(
t(
1

a
cos θ sinϕ,

1

b
sin θ sinϕ,

1

c
cosϕ)

+ u1(
1

a
cos θ cosϕ,

1

b
sin θ cosϕ,−1

c
sinϕ) + u2(−

1

a
sin θ,

1

b
cos θ, 0)

)
dt

=
abc

σ

∫ ∞

−∞
g0

(
tΘ0 + u1(

1

a
cos θ cosϕ,

1

b
sin θ cosϕ,−1

c
sinϕ)

+ u2(−
1

a
sin θ,

1

b
cos θ, 0)

)
dt,

where σ = σ(θ, ϕ, a, b, c) = (b2c2 cos2 θ sin2 ϕ+ a2c2 sin2 θ sin2 ϕ+ a2b2 cos2 ϕ)
1
2 and

Θ0 = abc
σ ( 1a cos θ sinϕ, 1b sin θ sinϕ,

1
c cosϕ) ∈ S2.

Let L3 = 1
a cos θ cosϕ i+ 1

b sin θ cosϕ j− 1
c sinϕ k, L4 = − 1

a sin θ i+ 1
b cos θ j+

0 k. We can choose L5 = 1
cb cos θ cosϕ i + 1

ca sin θ cosϕ j − 1
ab sinϕ k, L6 =

−( 1
ab2 sin θ sin

2 ϕ+ 1
ac2 sin θ cos

2 ϕ) i+ ( 1
a2b cos θ sin

2 ϕ+ 1
bc2 cos θ cos

2 ϕ) j+ ( 1
a2c −

1
b2c ) cos θ sin θ cosϕ sinϕ k to be an orthogonal basis in Θ⊥

0 . Letting L50 = 1
∥L5∥L5, L60 =

1
∥L6∥L6, we can write L3, L4 as

L3 = ⟨L3, Θ0⟩Θ0 + ⟨L3,L50⟩L50 + ⟨L3,L60⟩L60 ,

L4 = ⟨L4, Θ0⟩Θ0 + ⟨L4,L50⟩L50 + ⟨L4,L60⟩L60 .

It follows that

Pg1(Θ, u) =
abc

σ

∫ ∞

−∞
g0
(
(t+ u1⟨L3, Θ0⟩+ u2⟨L4, Θ0⟩)Θ0 + (u1⟨L3,L50⟩+

+ u2⟨L4,L50⟩)L50 + (u1⟨L3,L60⟩+ u2⟨L4,L60⟩)L60

)
dt

=
abc

σ

∫ ∞

−∞
g0
(
tΘ0 + (u1⟨L3,L50⟩+ u2⟨L4,L50⟩)L50 +

+ (u1⟨L3,L60⟩+ u2⟨L4,L60⟩)L60

)
dt

=
2abc

σ

(√
1− (u1⟨L3,L50⟩+ u2⟨L4,L50⟩)2 − (u1⟨L3,L60⟩+ u2⟨L4,L60⟩)2

)+
.

LetD = ⟨L3,L50⟩⟨L4,L60⟩−⟨L4,L50⟩⟨L3,L60⟩. It is easy to check that ⟨L4,L50⟩ =
0, ⟨L3,L50⟩ = 1

abc∥L5∥ and ⟨L4,L60⟩ = 1
a2b2c2∥L6∥σ

2
1 , where σ21 = c2 sin2 ϕ +

(b2 sin2 θ+a2 cos2 θ) cos2 ϕ. It follows thatD = ⟨L3,L50⟩⟨L4,L60⟩ =
σ2
1

a3b3c3∥L5∥∥L6∥ =
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σ2
1

σ2σ3
, where σ2 = (a2 cos2 θ cos2 ϕ+b2 sin2 θ cos2 ϕ+c2 sin2 ϕ)

1
2 , σ3 =

(
(ac2 sin θ sin2 ϕ+

ab2 sin θ cos2 ϕ)2+(bc2 cos θ sin2 ϕ+a2b cos θ cos2 ϕ)2+(b2c−a2c)2 cos2 θ sin2 θ cos2 ϕ sin2 ϕ
) 1

2 .
Hence we have that

∥Pg1(Θ, u)∥22 = 4(abc)2
∫ π

0

∫ 2π

0

1

σ2D

∫
R2

((√
1− |u|2

)+)2

du dθ dϕ

= 2(abc)2 π

∫ π

0

∫ 2π

0

σ2σ3
σ2σ21

dθ dϕ

For m ≥ 2, let a ≃ m−2, b ≃ m−1, a ≃ m−1, where a ≃ m−2 means that there are
positive constants c1, c2 such that c1m

−2 ≤ a ≤ c2m
−2. It follows that

σ2 ≃ m−4(cos2 θ sin2 ϕ+m−2(sin2 θ sin2 ϕ+ cos2 ϕ)

≃ m−4(cos2 θ sin2 ϕ+m−2);

σ21 ≃ m−2(sin2 ϕ+ (sin2 θ +m−2 cos2 θ) cos2 ϕ)

≃ m−2(1− (1−m−2) cos2 θ cos2 ϕ);

σ2 ≃ m−1(m−2 cos2 θ cos2 ϕ+ sin2 θ cos2 ϕ+ sin2 ϕ)
1
2 ≃ σ1;

σ3 ≃ m−3((m−2 sin2 θ + (m−2 + sin2 ϕ)2 cos2 θ + cos2 θ sin2 θ cos2 ϕ sin2 ϕ
) 1

2 .

Using this observation, we have that

m6 ∥Pgm(Θ, u)∥22

≃
∫ π

0

∫ 2π

0

(
m−2 sin2 θ + (m−2 + sin2 ϕ)2 cos2 θ + cos2 θ sin2 θ cos2 ϕ sin2 ϕ

) 1
2

(cos2 θ sin2 ϕ+m−2)(1− (1−m−2) cos2 θ cos2 ϕ)
1
2

dθdϕ

Since the two factors of the denominator in the above integral have different zeros,
in order to estimate ∥Pg1(Θ, u)∥22 we can consider the two factors cos2 θ sin2 ϕ+m−2

and (1−(1−m−2) cos2 θ cos2 ϕ)
1
2 separately. In the following, we only examine the

first factor (setting the second factor = 1), which has higher order of zeros than
the second one has. The discussion for the second factor is similar. Also we may
assume that (θ, ϕ) ∈ [0, π2 ]× [0, π2 ]. Hence, we then can write

m6 ∥Pgm(Θ, u)∥22

≃
∫ π

2

0

∫ π
2

0

(
m−2 sin2 θ + (m−2 + sin2 ϕ)2 cos2 θ + cos2 θ sin2 θ cos2 ϕ sin2 ϕ

) 1
2

(cos2 θ sin2 ϕ+m−2)
dθdϕ

≃
∫ π

2

0

∫ π
2

0

(
m−1 sin θ + (m−2 + sin2 ϕ) cos θ + cos θ sin θ cosϕ sinϕ

(cos2 θ sin2 ϕ+m−2)
dθdϕ.

Since the behavior of this expression is determined by the zeros of cos θ and sinϕ,

we will decompose the above double integral
∫ π

2

0

∫ π
2

0
as∫ 1

m

0

∫ π
2

π
2
− 1

m

+

∫ π
2

1
m

∫ π
2
− 1

m

0

+

∫ 1
m

0

∫ π
2
− 1

m

0

+

∫ π
2

1
m

∫ π
2

π
2
− 1

m

.

Noticing that (cos2 θ sin2 ϕ + m−2) ≥ max{cos2 θ sin2 ϕ,m−2,m−1 cos θ sinϕ} on
[0, π2 ]× [0, π2 ], that cos θ ≃ π

2 − θ for θ near π
2 , and that sinϕ ≃ ϕ for ϕ near 0, we

have: ∫ 1
m

0

∫ π
2

π
2
− 1

m

m−1 sin θ + (m−2 + sin2 ϕ) cos θ + cos θ sin θ cosϕ sinϕ

cos2 θ sin2 ϕ+m−2
dθdϕ
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≤
∫ 1

m

0

∫ π
2

π
2
− 1

m

(m+ 1 + 2m2)dθdϕ ≤ C;

∫ π
2

1
m

∫ π
2
− 1

m

0

(
m−1 sin θ + (m−2 + sin2 ϕ) cos θ + cos θ sin θ cosϕ sinϕ

(cos2 θ sin2 ϕ+m−2)
dθdϕ

≤
∫ π

2

1
m

∫ π
2
− 1

m

0
(

1

cos θ sinϕ
+ 1 +

1

cos θ
+

1

cos θ sinϕ
))dθdϕ

≤ C (lnm)2;∫ 1
m

0

∫ π
2
− 1

m

0

m−1 sin θ + (m−2 + sin2 ϕ) cos θ + cos θ sin θ cosϕ sinϕ

cos2 θ sin2 ϕ+m−2
dθdϕ

≤
∫ 1

m

0

∫ π
2
− 1

m

0
(m+ 1 +m+m)dθdϕ ≤ C.

Finally, the integral
∫ π

2
1
m

∫ π
2
π
2
− 1

m

can be estimates exactly like the last term. Hence

it follows that
∥Pgm(Θ, u)∥22 ≤ Cm−6 (lnm)2,

and this completes the proof of Lemma 1. ⊓⊔

We also need the following lower bound on the estimator from [2, Lemma 8.3].

Lemma 2 For N ≥ 1, let ξ ∈ {0, 1}N and X = N(ξ, V ) be a multivariate Gaussian

vector. Assume that V is invertible such that τ2i = V ar(Xl|Xk, k ̸= l) = 1
(V −1)ll

≥ 1

for all 1 ≤ l ≤ N . Then there is an absolute constant B such that

inf
ξ̂

sup
ξ∈{0,1}N

E∥ξ̂ − ξ∥22 ≥ B ·N.

We can now prove Theorem 6. This argument follows the general idea from [2].
Proof of Theorem 6. From the inequality M(ε, E2(A)) ≥ M(ε,Hm) we see

that, in order to estimate f from the noisy data Y = Pf + ϵW , it is enough
to consider f ∈ Hm. Furthermore, via the L2 projection onto the smallest affine
subspace containing Hm, we can restrict the estimator f̂ to be in this subspace.
That is, we can write f̂ = f0+

∑
1≤i,j≤m ξ̂i,j ψi,j,m, where ξ̂ = (ξ̂i,j) ∈ RN , N = m2.

Since f ∈ Hm, we can write f = f0 +
∑

1≤i,j≤m ξi,j ψi,j,m, where ξ = (ξi,j) ∈
{0, 1}N , N = m2. From the orthogonality of the functions ψi,j,m and the fact that
∥ψi,j,m∥22 ≃ m−4, we have

∥f̂ − f∥L2 ≃ m−4∥ξ̂ − ξ∥ℓ2 . (19)

Hence, it remains to control the term ∥ξ̂ − ξ∥ℓ2 .
Let gi,j = Pψi,j,m be the X-ray transform of the hypercube Hm generators

ψi,j,m. We notice that, even though the functions gi,j are no longer orthogo-
nal, they are still linearly independent. Let Vm denote the affine space {Pf0 +∑

i,j θi,jgi,j , 1 ≤ i, j ≤ m} for arbitrary choices (θi,j). For each (i, j), let Yi,j =
⟨Y, gi,j⟩−⟨Pf0, gi,j⟩. Similar to the 2D argument in [2, Sec.8], the vector Y = (Yi,j)
is a sufficient statistic for the ξ’s and we may restrict our attention to estimators
that are functions of Y alone. In matrix notation, we have Y ≈ N(Gξ, ϵG), where G
is the Gram matrix of the functions gi,j , i.e., Gi,j;i′,j′ = ⟨gi,j , gi′,j′⟩. Since the func-
tions gi,j are linearly independent, it follows that G is invertible. DefineX = G−1Y .
Since Y is a sufficient statistic for the ξ’s, so is X and we may restrict our attention
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to estimators that are functions of X alone. We have that X ≈ N(ξ, ϵG−1). Now
let V = ϵG−1 so that (V −1)i,j;i,j = ϵ−2∥gi,j∥2. By choosing a sufficiently large m
(this may depend on ϵ) such that ∥gi,j∥2 ≤ ϵ2 for all 1 ≤ i, j ≤ m, then one can
apply Lemma 2 for X and for N = m2 to get

inf
ξ̂

sup
ξ∈{0,1}N

E∥ξ̂ − ξ∥22 ≥ Bm2.

From the above inequality, using (19) we have that M(ε,Hm) ≥ Bm−2 and hence

M(ε, E2(A)) ≥ Bm−2. (20)

For any ψi,j,m, there are ellipsoid D and D1 , both having the three axes of side
length ≃ m−2,m−1,m−1, such that 1D ≤ ψi,j,m ≤ 1D1

. We observe that, by the
definition of ψi,j,m, the ratio of axis lengths for the inscribing and circumscribing
ellipsoids are bounded independently of i, j, and m. Since the L2 norm of Pf is
invariant with respect to both rotation and translation of the variables of f in R3,
we may assume that, for any i, j, the function ψi,j,m is the indicator function of the
ellipsoid in R3 with center at the origin and axis side lengths ≃ m−2,m−1,m−1.

By Lemma 1, we have that there is a constant C > 0 such that ∥gi,j∥22 ≤
Cm−6(lnm)2 for all i, j. Given ϵ > 0, one can choose a large m with ϵ ≃ m−3 lnm
so that ∥gi,j∥22 ≤ ϵ2 for all 1 ≤ i, j ≤ m, which is the condition for us to apply
Lemma 2.

Finally from ϵ ≃ m−3 lnm, we have m−2 ≃ ϵ
2
3 (lnm)−

2
3 and lnm ≃ ln ϵ−1,

which implies m−2 ≃ ϵ
2
3 (ln ϵ−1)−

2
3 . The proof is completed by replacing m−2 in

(20) with ϵ
2
3 (ln ϵ−1)−

2
3 . ⊓⊔

5 Appendix: The Proof of Theorem 4.1

Let {sµ : µ ∈ M0} be the modified shearlet system introduced in Section 4.1.
Recall that M0 = N ∪ M0, where N = Z3, M0 = {µ = (j, ℓ1, ℓ2, k, d) : j ≥
j0,−2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z3, d = 1, 2, 3}, and the system is made of the coarse
scale system {sµ = 2j0φ(2j0x− µ) : µ ∈ N} and the fine scale system {sµ = ψµ =

ψ
(d)
j,ℓ1,ℓ2,k

: µ ∈M0}.
In order to prove Theorem 4.1, we need the following lemma which provides

an estimate for the size of the shearlet coefficients at a fixed scale j (where j ≥ j0).
For such j fixed, recall from Section 3 that Mj = {(j, ℓ, k, d) : −2j ≤ ℓ1, ℓ2 ≤
2j , k ∈ Z2, d = 1, 2, 3}. Due to the symmetry of ℓ1 and ℓ2 in Mj , there is no loss of
generality in assuming that |ℓ1| ≤ |ℓ2|.

Lemma 3 Let f ∈ E2(A) and j ≥ j0. Then there is a positive constant C such that∑
µ∈Mj

|⟨f, ψµ⟩|2 ≤ C 2−2j .

Proof. It is useful to introduce a smooth localization of the function f

near dyadic squares. Let Qj be the collection of dyadic squares of the form
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Q = [ ν1

2j ,
ν1+1
2j ] × [ ν2

2j ,
ν2+1
2j ] × [ ν3

2j ,
ν3+1
2j ], with ν1, ν2, ν3 ∈ Z. For a nonnegative

C∞ function w with support in [−1, 1]3, we define a smooth partition of unity∑
Q∈Qj

w2
Q(x) = 1, x ∈ R3,

where, for each dyadic square Q ∈ Qj , wQ(x) = w(2jx1 − ν1, 2
jx2 − ν2, 2

jx3 − ν3).
Given f ∈ E2(A), the coefficients {⟨f, ψµ⟩} will exhibit a very different behavior

depending on whether the edge surface of f intersects the support of wQ or not.
We split Qj into the disjoint sets Q0

j and Q1
j that indicate whether the collection

of dyadic squares Q intersects an edge surface or not. Since each dyadic square
Q has side-length 2 · 2−j and f has compact support in [0, 1]3, there are O(22j)
dyadic cubes in Q ∈ Q0

j intersecting the edge surface and O(23j) dyadic cubes in

Q ∈ Q1
j not intersecting the edge surface.

For each such cube Q ∈ Q0
j , as a corollary of Theorem 4.1 in [13], we have∑

k∈Z3

|⟨fQ, ψµ⟩|2 ≤ C 2−4j (1 + |ℓ2|)−5.

More precisely, in the proof of Theorem 3.3 in [13], it is shown that∑
k∈RK

|⟨fQ, ψµ⟩|2 ≤ C L−2
K 2−3j (1 + |ℓ|)−5,

where K ∈ Z3, ∪K∈Z3RK = Z3 and
∑

K∈Z3 L
−2
K <∞. Hence∑

µ∈Mj

|⟨fQ, ψµ⟩|2 =
∑

|ℓ1|≤|ℓ2|≤2j

∑
k∈Z3

|⟨fQ, ψµ⟩|2 ≤ C 2−4j .

Adding up over all cubes in Q0
j , we have that∑

µ∈Mj

∑
Q∈Q0

j

|⟨fQ, ψµ⟩|2 ≤ C 2−2j . (21)

Similarly for Q ∈ Q1
j , from the proof of Theorem 3.4 in [13], one can obtain

that ∑
µ∈Mj

|⟨fQ, ψµ⟩|2 ≤ C 2−11j .

Hence adding up over all Q ∈ Q1
j , it follows that∑

µ∈Mj

∑
Q∈Q1

j

|⟨fQ, ψµ⟩|2 ≤ C 2−8j . (22)

The proof is completed by combining the estimates (21) and (22). ⊓⊔

We now proceed with the proof of Theorem 4.1.
Proof of Theorem 4.1.1(1): We need to establish

sup
f∈E2(A)

∑
µ/∈N (ε)

|⟨f, sµ⟩|2 ≤ C′ε2/3.
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(I) We start by examining the situation at fine scales, for j ≥ j1(ε) =
1
3 log2(ε

−1),

so that 2−j ≤ ε
1
3 . Notice that, for these values of the index j, sµ = ψµ.

By Lemma 3, for each f ∈ E2(A) and each j ≥ j0, we have that∑
µ∈Mj

|⟨f, ψµ⟩|2 ≤ C 2−2j .

Hence ∑
j>j1

∑
µ∈Mj

|⟨f, ψµ⟩|2 ≤ C
∑
j>j1

2−2j ≤ C ε
2
3 .

(II) Let Q0 = [0, 1]3 and supp f ⊂ Q0. We will show that the terms ⟨f, sµ⟩
decay very rapidly for locations k away from Q0.

We will start by examining the decay of a fine-scale term ⟨f, sµ⟩, for µ =

(j, ℓ, k, d) ∈ M0 and d = 1. Let Ejℓ = B
[ℓ]
(1)
Aj

(1)
, where A(1) and B

[ℓ]
(1)

are given in

Sec. 2.

By the assumptions on ψ, it follows that, for each m ∈ N, there is a constant
Cm > 0 such that

|ψ(x)| ≤ Cm (1 + ∥x∥)−m. (23)

It follows that

|ψ(1)
j,ℓ,k(x)| ≤ Cm 22j (1 + ∥Ejℓ x− k∥)−m.

We will use two simple facts. The first one is that ∥Ejℓ x∥ ≤ ∥Ejℓ∥∥x∥ =

22j∥x∥ ≤
√
3 22j for x ∈ Q0 and the second one is that for a > 0, 0 ≤ b ≤ c ≤ a, we

have a− b ≥ a− c. It follows that, for |k| ≥ 22j+1, we have

|⟨f, ψ(1)
j,ℓ,k⟩| ≤ ∥f∥∞

∫
Q

|ψ(1)
j,ℓ,k(x)| dx

≤ Cm 22j
∫
Q0

(
1 + ∥Ejℓx− k∥

)−m
dx

≤ Cm 22j
∫
Q0

(
1 + |k| − ∥Ejℓ x∥

)−m
dx

≤ Cm 22j
∫
Q0

(|k| − 22j∥x∥)−mdx

≤ Cm 22j (|k| −
√
3 22j)−m. (24)

Thus:∑
|ℓ1|≤|ℓ2|≤2j

∑
|k|≥22j+1

|⟨f, ψ(1)
j,ℓ,k⟩|

2 ≤ Cm

∑
|ℓ1|≤|ℓ2|≤2j

26j
∑

|k|≥22j+1

(|k| −
√
3 22j)−2m

= Cm 26j
∑

|k|≥22j+1

(|k| −
√
3 22j)−2m

≤ Cm 26j 2−2j(2m−2)

= Cm 210j 2−4jm.
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Now we can add up all contributions for j ≥ j0. Since we can choose m arbitrarily
large, for an appropriate choice of the constant C, we have:∑

j≥j0

∑
|ℓ1|≤|ℓ2|≤2j

∑
|k|≥22j+1

|⟨f, ψ(1)
j,ℓ,k⟩|

2 ≤ Cm

∑
j≥j0

210j 2−4jm ≤ C 2−5j0 ≤ Cε
2
3 .

The analysis in the case where µ ∈ M0 and d = 2, 3 is essentially the same
as the one given above. For the coarse case terms, notice first that φ satisfies the
same decay behavior as (23) for ψ. Hence, letting φj0,k(x) = 2

3
2
j0φ(2j0x− k) and

proceeding as in (24), we have that

|⟨f, φj0,k⟩| ≤ ∥f∥∞
∫
Q

|φj0,k(x)| dx ≤ Cm 2
3
2
j0 (|k| −

√
3 2j0)−m.

Now we can proceed as above by summing over |k| ≥ 22j0+1 and using the fact
that m can be chosen arbitrarily, to conclude that∑

|k|≥22j0+1

|⟨f, φj0,k⟩|
2 ≤ Cε

2
3 .

Combining the estimates from parts (I) and (II) and of the proof, we finally have
that ∑

µ/∈N (ε)

|⟨f, sµ⟩|2 ≤ C ε
2
3 . ⊓⊔

Proof of Theorem 4.1.1(2): For µ ∈ M0, we use the notation cµ = ⟨f, sµ⟩
and we define the set

R(j, ε) = {µ ∈Mj : |cµ| > ε},

to denote the set of “large” shearlet coefficients, at a fixed scale j.
By Corollary 3.5 in [13] (which is valid both for coarse and fine scale shearlets),

there is a constant C > 0 such that, as ε→ 0,

#R(j, ε) ≤ C ε−1.

It follows by a simple rescaling argument that

#R(j, 2jε) ≤ C 2−jε−1.

Since ψ̂ ∈ C∞
0 (R3), for µ = (j, ℓ, k, d) ∈M0 and d = 1, we have that

|cµ| = |⟨f, ψµ⟩| =
∣∣∣∣∫

R3

f(x)22jψ(Bℓ
1A

j
1x− k)dx

∣∣∣∣
≤ 2−2j∥f∥∞

∫
R3

|ψ(z)|dz = C′2−2j .

Thus, we can assume that R(j, 2jε) = ∅ when 2j > ε−1/3 (that is, j > j1(ε) =
−1

3 log2(ε
−1)). Similarly, R(j, ε) = ∅ when 2j > ε−1/2 (that is, j > j2(ε) =

1
2 log2(ε

−1)). For µ ∈M0 and d = 2, 3, we get exactly the same estimates.
For the risk proxy, notice that∑

{µ∈N (ε)}

min(c2µ, 2
2jε2) = S1(ε) + S2(ε),
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where
S1(ε) =

∑
{µ∈N (ε): |cµ|≥2j ε}

min(c2µ, 2
2jε2)

S2(ε) =
∑

{µ∈N (ε): |cµ|<2j ε}

min(c2µ, 2
2jε2).

Hence, using the observations above, we have:

S1(ε) =
∑

{µ∈N (ε): |cµ|≥2j ε}

22j ε2

≤
∑
j≤j1

∑
{µ∈Mj : |cµ|≥2j ε}

22j ε2

≤ C
∑
j≤j1

(2−jε−1) 22j ε2

= C
∑
j≤j1

2j ε

≤ C 2j0ε ≤ C ε
2
3 .

For S2, we have

S2(ε) =
∑

{µ∈N (ε): |cµ|<2j ε}

|cµ|2

=
∑

j0≤j≤j1

∞∑
n=0

∑
{2j−n−1ε≤|cµ|<2j−nε}

|cµ|2

≤ C
∑

j0≤j≤j1

∞∑
n=0

2−(j−n−1)ε−122(j−n) ε2

= C
∑

j0≤j≤j1

∞∑
n=0

2−n+1 2j ε

≤ C
∑

j0≤j≤j1

2j ε

≤ C ε
2
3 . ⊓⊔

Proof of Theorem 4.1.1(3): For each fixed scale j0 ≤ j ≤ j1, the number of
indices µ in N (ε) ∩Mj is of the order O(28j). In fact, N (ε) ∩Mj ⊂ {(j, ℓ, k, d) :
|k| ≤ 22j+1, |ℓ1| ≤ 2j , |ℓ2| ≤ 2j} and this set contains O(26j) terms for the k vari-
able and O(2j) terms for the ℓ1, ℓ2 variables. Hence, adding up the contributions
corresponding to the various scales, we obtain:

#N (ε) ≤ C
∑
j≤j1

28j ≤ Cε−
8
3 . ⊓⊔
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