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Abstract

The inversion of the Radon transform is a classical ill-posed inverse problem where
some method of regularization must be applied in order to accurately recover the
objects of interest from the observable data. A well-known consequence of the tra-
ditional regularization methods is that some important features to be recovered
are lost, as evident in imaging applications where the regularized reconstructions
are blurred versions of the original. In this paper, we show that the affine-like sys-
tem of functions known as the shearlet system can be applied to obtain a highly
effective reconstruction algorithm which provides near-optimal rate of convergence
in estimating a large class of images from noisy Radon data. This is achieved by
introducing a shearlet-based decomposition of the Radon operator and applying a
thresholding scheme on the noisy shearlet transform coefficients. For a given noise
level €, the proposed shearlet shrinkage method can be tuned so that the estimator
will attain the essentially optimal mean square error O(log(e~1)e%/?), as ¢ — 0.
Several numerical demonstrations show that its performance improves upon similar
competitive strategies based on wavelets and curvelets.
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1 Introduction

The Radon transform, introduced by Johann Radon in 1917 [28], is the un-
derlying mathematical foundation for a number of methods employed to de-
termine structural properties of objects by using projected information, such
as computerized X-ray tomography and magnetic resonance imaging (MRI).
It also provides the basic mathematical principles employed by remote sensing

devices such as synthetic aperture radar (SAR) and inverse synthetic aperture
radar (ISAR).

In its classical formulation (see, for example, [24]), in dimension n = 2, the
Radon transform can be described as follows. For # € S! and ¢t € R, consider
the lines in R?:

LOt)={z€R*: z-0 =t}
These are the lines perpendicular to # with distance t from the origin, and
represent, in X-ray tomography, the paths along which the X-rays travel. The

Radon transform is used to model the attenuation of an X-ray traveling across
the object f along the line L(6,t), and, for f € L'(R?), is defined by

(RHO.) = [ oy J@)

The problem of interest consists in inverting the transform to recover the
function f from the Radon data (Rf)(0,t) and was solved, in principle, by
J. Radon who (under some regularity assumptions on f) obtained the inversion

formula
R f(6,t)
dt df.
() T An? /Sl /]R x-0—

However, how to convert this inversion formula into an accurate computational
algorithm is far from obvious. Indeed, this inverse problem is technically ill-
posed since the solution is unstable with respect to small perturbations in the
projection data Rf(0,t). In practical applications, the data Rf(0,t) are known
with a limited accuracy (on a discrete set only) and are typically corrupted
by noise, so that some method of regularization for the inversion is needed
in order to accurately recover the function f and control the amplification of
noise in the reconstruction.

Starting from the rediscovery of the Radon transform in the 60’s and its appli-
cations to computerized tomography [6,7], several methods have been intro-
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duced to deal with the inverse problem associated with the Radon transform,
including Fourier methods, backprojection and singular value decomposition
[24]. A well known limitation of all these methods is that they usually yield
reconstructions where high frequency features, such as edges, are smoothed
away, with the result that the reconstructed images are blurred versions of the
original ones. While a number of heuristic methods have been introduced to
deal with the phenomenon of blurring in the Radon inversion, only in recent
years, in the work of Candes and Donoho [4], a method was proposed to deal
with the efficient reconstruction of images with edges and with the precise
assessment of the method performance.

In fact, the approach developed in the work of Candeés and Donoho relies
on some recent advances in the theory of wavelets and multiscale methods
which provide a new theoretical perspective on the problem of dealing with
information associated with edges effectively. Following a similar theoretical
framework, in this paper, we propose a novel technique for regularizing the in-
version of the Radon transform by means of a multiscale and multidirectional
representation known as the shearlet representation. Our approach provides
an algorithm for inverting the Radon transform which is particularly effec-
tive in recovering data containing edges and other distributed discontinuities.
In particular, by taking advantage of the sparsity properties of the shearlet
representation, we prove that the shearlet-based inversion is optimally effi-
cient in the reconstruction of images containing edges from noisy Radon data.
In addition, thanks to some specific advantages of the discrete shearlet de-
composition, the shearlet-based numerical algorithm allows for a significant
performance improvement over the wavelets— and curvelets—based results.

1.1 Historical Perspective and Motivation

To provide a more detailed perspective on the method that we propose, let us
start by recalling the general framework of the Wavelet-Vaguelette decompo-
sition (WVD), introduced by Donoho [9]. This method applies a collection of
functionals called vaguelettes to simultaneously invert an operator and com-
pute the wavelet coefficients of the desired function. The function is then es-
timated by applying a nonlinear shrinkage to the noise-contaminated wavelet
coefficients and inverting the wavelet transform. The ingenuity of the Wavelet-
Vaguelette decomposition is that it emphasizes the estimating capabilities of
a representation best suited to approximate the underlying function. This is
in contrast to constructions such as the Singular Value Decomposition (SVD)
that use basis functions depending solely on the operator to regularize the
inversion. Since the appearance of this work, this strategy has spurred much
interest for the Radon inversion problems as well as for other inverse problems
(e.g., [22,19,25]). We also recall that several other wavelet-based techniques



have been applied to the problem of inverting the Radon transform, including
[2,26,29].

However, for the Radon inversion of images containing edges, while still out-
performing other traditional methods, the WVD technique as well as the other
wavelet-based methods fall short from being optimal in terms of their estima-
tion capabilities. Consider the problem of recovering an image f which is
smooth away from regular edges, from the noisy data

Y=Rf+ecW,

where eW is white Gaussian noise, and € measures the noise level. Then an
inversion based on the WVD approach yields a Mean Squared Error (MSE)
that is bounded, within a logarithmic factor, by O(%/3) as e — 0. This is better
than the MSE rate of O(¢'/?), as ¢ — 0, which is achieved when the inversion
techniques are SVD-based [4]. To further improve the performance, one should
replace the wavelet system used in the WVD with a representation system
which is more capable of dealing with edges. This is exactly the motivation
for the introduction of the biorthogonal curvelet decomposition of the Radon
transform in [4] whose application yields a MSE rate

O(log(e He*?) ase — 0. (1)
This rate is essentially optimal for this class of functions.

The method that we propose also adapts the basic WVD framework. By tak-
ing advantage of the shearlet representation, we obtain a novel decomposition
of the Radon transform which is optimally efficient in dealing with images
containing edges and provides the same essentially optimal estimation rate
given by (1). Notice that, while offering similar approximation properties,
the shearlet and curvelet representations have very different mathematical
constructions. In particular, unlike the curvelet representation, the shearlet
approach is based on the framework of affine systems, where the representa-
tion elements are obtained by applying a countable collection of translations
and dilations to a finite set of generators. As a consequence, the shearlet
approach provides a simpler and more flexible mathematical setting, and a
unified treatment for both the continuous formulation and the corresponding
discrete implementation (as also recently exploited in [21]). Indeed, while the
current curvelet description given in [3] theoretically is ideal for inverting the
Radon transform from a continuous perspective, its implementation has to
deal with the fact that the image to be estimated is to be described on a
finite discrete set (typically, a rectangular grid). By exploiting this advantage
of the shearlet setting, we can demonstrate that, in the practical numerical
implementation, the shearlet-based estimation process performs significantly
better than the corresponding curvelet-based estimation process.



Finally, we would like to notice that the original argument provided in [4]
to prove the MSE estimation rate (1) is based on an older and somewhat
cumbersome formulation of the curvelet representation. By using the simpler
shearlet construction, we are able to provide a much more streamlined and
straightforward set of arguments to establish the MSE estimation rate result
for our approach.

1.2 Paper Organization

The paper is organized as follows. In Section 2, we recall the basic definitions
and properties of the shearlet representation which are needed for the paper.
In Section 3, we develop a decomposition of the Radon transform based on
the shearlet representation. In Section 4, we analyze the performance of the
shearlet-based inversion algorithm when the Radon data are corrupted by
additive Gaussian noise. Finally, in Section 5 we present several numerical
experiments to illustrate the performance of the shearlet-based algorithm and
compare it against competing wavelet- and curvelet-based algorithms.

2 Shearlet Representation

Despite their spectacular success in a variety of applications from applied
mathematics and signal and image processing, it is now acknowledged that
traditional wavelets are not particularly efficient in dealing with multidimen-
sional data. This limitation has stimulated a very active research during the
last ten years, which has led to the introduction of a new generation of mul-
tiscale systems with improved capability to capture the geometry of multidi-
mensional data. These systems include the curvelets [4], the bandlets [23], the
contourlets [8] and the composite wavelets [15-17] (of which the shearlets are
a special realization).

The theory of composite wavelets, in particular, provides a uniquely effective
approach which combines geometry and multiscale analysis by taking advan-
tage of the theory of affine systems. In dimension n = 2, the affine systems
with composite dilations are the collections of functions of the form

Aap() = {0 0x(x) = | det A2 (B Al — k) = j,0 € Z, k € Z°},

where ¢ € L*(R?), and A, B are 2 x 2 invertible matrices with |det B| = 1.
The elements of this system are called composite wavelets if Aap(1)) forms a
Parseval frame (also known as tight frame with frame bounds 1) for L*(R?);



that is,
2 2

XK e P = LI,

Ik
for all f € L*(R?). In these systems, the integer powers of the dilations ma-
trices A are associated with scale transformations, while the integer powers of
the matrices B are associated to area-preserving geometric transformations,
such as rotations and shear. This framework allows one to construct Parseval
frames whose elements, in addition to ranging at various scales and locations,
like ordinary wavelets, also range at various orientations.

In this paper, we will consider and apply a special example of affine sys-
tems with composite wavelets in L?(R?), called the shearlet system. One of
the reasons for the particular significance of this system is that it is the only
construction, together with the curvelets, which provides optimally sparse rep-
resentations for a large class of two-dimensional functions [14]. This property
will play a prominent role in the decomposition of the Radon transform.

The shearlet system is an affine systems with composite dilations where A =
Ap is an anisotropic dilation matrix and B = By is the shear matrix, which
are defined by
40 11
AO - ) BO =
02 01

For any & = (&,&) € R2, & #0, let

BOE) = 9O, £) = da(r) b (g) @

where 1@171;2 € CM(R)a Suppr&l - [_%7_%6] U [%67%] and Supp,&? - [_L 1]
Hence, 99 is a compactly-supported C> function with support contained in

[—3, 3% In addition, we assume that
_o 1
Sl Pw)F =1 for | > o, (3)
Jj=20 8’
and, for each j7 > 0,
2
Yo (2w -0 =1 for|w| <1 (4)
{=—27

From the conditions on the support of 7721 and ’172;2 one can easily deduce that
the functions v; ¢, have frequency support contained in the set

{(61,&) - & e [-2Y71, 2 U Y1 2%, |& + 027 < 277}



Thus, each element ﬂmk is supported on a pair of trapezoids of approximate
size 2% x 27 oriented along lines of slope £277 (see Figure 1(a)).

From equations (3) and (4) it follows that the functions {¢)© (€ Ay By %)} form
a tiling of the set

Do ={(6.&) €R?: |G| > 1 | | <1}
Indeed, for (&1,&2) € Dy

> Z PO AT BIHP =) Z [P1(27% &1) | [4ho <2J6 —0P =1 (5

720 ¢=-23 j>0¢=-27

&2

\

S|
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\
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(a) (b)
Fig. 1. (a) The frequency support of a shearlet 1; ), satisfies parabolic scaling. The
figure shows only the support for & > 0; the other half of the support, for & <0, is
symmetrical. (b) A choice of covering of the spatial-frequency plane R? determined
by the supports of the shearlet functions for a given finite set of indices. The covering
of Dy is illustrated in black lines, the covering of D1 is shown in gray lines.

Letting L2(Dy)Y = {f € L*(R?) : supp f C Dy}, property (5) and the fact
that ¢ is supported inside [—5, 5] imply that the collection {wj vk J 2

0,—29 <0 <2 — 1,k € Z*} defined by
¥iP(@) = 297240 (Bi A — k) (6)

is a Parseval frame for L?(Dy)V. Similarly, we can construct a Parseval frame
for L2(Dy)V, where D; is the vertical cone Dy = {(&1,&) € R?: |&] > £ ] | <
1}. Specifically, let
20 10
Al = ) Bl = )
04 11



and 1™ be given by

BO(E) = $O(Er, &) = dhr(62) b (g)

Then the collection {¢\}, : j >0,-2 < ¢ <2/ — 1,k € Z°} defined by
Ul (@) = 29290 (B Al — K) @)
is a Parseval frame for L?(D;)V.

Finally, let ¢ € C5°(R?) be chosen to satisfy

27 -1

1=[2))2+ > 3 [0 OEA7 By xpo (€)

320 ¢=—27
271

+30 3 [POEAT B xp, (€),

j>0¢=—2J

where xp is the indicator function of the set D. This implies that suppp C

[—%, 5%, [9(&)| = 1 for € € [—4, £]?, and the collection {¢y : k € Z*} defined
by ¢r(z) = ¢(x — k) is a Parseval frame for L?([—15, :=]?)"

An illustration of the frequency tiling provided by the shearlet system is shown
in Figure 1(b).

Thus, we have the following result:

Theorem 2.1 Let ¢ and %ek be defined as above. Also, for d = 0,1, let

~

¢§ e)k(f) %gk(f) xp, (&) . The collection of shearlets

{on keZQ}U{z/JM D j>0,—Y +1<0<2 -2 keZ?d=0,1}
U{ij“x ):j>0,0=-2.2 -1 keZ?d=0,1},

is a Parseval frame for L?(R?).

Notice that the “corner” elements @Z)] / k( ), £ = —27 29 —1, are simply obtained
by truncation on the cones xp, in the frequency domain and that the corner
elements in the horizontal cone Dy match nicely with those in the vertical
cone D;. We refer to [14,17] for additional detail about the construction of the
shearlet system.

In the following, for brevity of notation, it will be convenient to introduce the



index set M = N UM, where N = Z2, and
M:{M:(]a&k,d) : j207_2] SESQj—l,kEZ2,d:O,1}.

Hence, we will denote the shearlet system as the collection {s, : p € M =
NUM}, where s, = 1, = wj(c?k ifpe Mands, =¢,ifpe N.Forv,, pe M,
it is understood that the corner elements are modified as in Theorem 2.1.

The shearlet transform is the mapping on L?*(R?) defined by:

SH: [ — SHf(u) = (f,8u), heM.

3 Inversion of Radon Transform via Shearlet Representation

We shall obtain a formula for the decomposition of the Radon transform based
on the shearlet representation. In order do that, some construction is needed.

3.1  Companion Representation

We start by introducing a companion representation of the shearlet system
which is obtained under the action of the fractional Laplacian.

Definition 3.1 For a rational number o and f € C*(R?), define (—A)*f by
the relation ((—A)*f) (&) = [€22f(€). For p € M, let spo=277(=A) s,
In particular, we use the notation ¢t = 27 (=AY, for p € M, and
of = (=AY, for p € N.

It is easy to verify that the functions {s;r : 1 € M} are smooth and compactly
supported in the frequency domain. In addition, since each element of the fine-
scale shearlet system 1, u € M, is supported, in the frequency domain, on
the compact region C; = [—2%71 22712\ [-2%~4 22~1]2 it follows that, in
this region, 277|¢|'/? & 1 and, thus, || || & [|1h,]|. This is the key observation
which is used in the following result and is similar to the one given in [4] for
the case of curvelets.

Theorem 3.2 The system {1 },en is a frame for L*(R*\ [—5, 3]%)Y. That
18, there are positive constants A and B, with A < B, such that

Allfll2 < < Bl fll2,

Z2

2 )

I

for all functions f such that supp f C R2\ [—3, 3%



Notice that the larger system {s} : 4 € M} is not a frame for L*(R*) since
the lower frame bound condition is not satisfied. To enlarge {¢}},cn and
make it into a frame for the whole space L?(R?), one can include a “coarse
scale” system of the form {¢(z — k) : k € Z*} as done for the original shearlet
system.

Proof. To show that the system {1 },cn is a frame, we introduce the
following notation. For j > 0, let M; = {u = (j, {, k,d) : =20 < (<21 -1,k €

Z*,d = 0,1}. Also, denote by C the set R?\ [—1, é]Q.

Using the properties of the shearlet function 1, for h € L?(C)V, we have:

2

> =Y | [ ()95 de
e M; Ok,
Z / d) SA_]B—K) —2miEA; ]B kdf
0,k,d
= [LIh( OF L1664 B de
S ALGRAGES (®)
where

Vi(€) = [ (27%&) Pxp, (&) + 11 (27 &) [*xp, (£).

Notice that the window function Vj is supported on the set
Cj — [_22]'71’ 22]'71]2 \ [_22]'74’ 22j74]2’
and that, by the assumptions on vy,

SV =1 forgeR?\[-1/8,1/8].

Jj=0

Let w; be a smooth window function supported in C;_; U C; U Cj4; which is
equal 1 on the set C;. It follows that w; V; = V; and that w; x g = g for each
function g such that g is supported on the set C;. Hence, using the fact that

supp@/A)u C Cj, when p € M;, we have:

10



SOHLUDP= D0 277 (—A) 4,

neM; neEM;

= > Wwj* f,277 (=2)1y,) 2

neM;

= 3 127 (=) * ) )P

neM;

= > [y )%,

neM;

where h; = 279 (—=A)Y4(w; * f). Notice that the smoothness assumption on
w; guarantees that h; is well defined.

Using (8), we have:

> g vl = [[ IO Vi(6)de
=27 [ 16 IF(©)P Vie) de

Notice that, for £ € Cj, the function 27%|¢| is bounded above and below by
positive constants, independently of j. Hence, from the expression above, we

have that
> Wl = [ 17OV,

neEM;
Adding up over all j > 0, it follows that

Yo KAwDP=> > vl

neM J=>0 peM;

~3 [ 17©F i

7>0

= [1f)ras

for all f € L*(C)". 0

3.2 Shearlet Decomposition of the Radon Transform

We start by recalling some important properties of the Radon transform, which
will be useful in the construction of our decomposition based on the shearlet
representation. We refer to [18] for additional details about these properties
and their derivation.

11



In dimension n = 2, the Radon operator R associates to each suitable function
f and each pair (6,t) € [0,27) x R, the value

Rf(0,t) = /f(a:,y)é(xcos@+ysin9—t) dx dy,

where 0 is the Dirac distribution at the origin. It is easy to verify that Rf,
the Radon transform of f, satisfies the antipodal symmetry Rf(0 + m,—t) =
Rf(0,t). Let Dg denote the space of all functions in L*([0,27) x R) satisfy-
ing the antipodal symmetry. For a rational number «, define the operator of
fractional differentiation (of a single variable) as

D) = o [ el Flw)e do,

and let
R =(I® DY?) oR,

where I denotes the identity operator. The operator R is well-defined on func-
tions on L?([0,27) x R) and it satisfies the Radon isometry condition

[Rf, Ryl = (f.9),

where [-,+] is the inner product in L?([0,27) x R). Also, one can show that
R maps functions which are smooth and of rapid decay on R? into functions
which are smooth and of rapid decay on [0, 27) x R.

Using the companion shearlet representations {S: . € M} from Section 3.1,
we define the system {U, : p € M} by the formula

U,=TRs), pneM. 9)

Using the Radon isometry and Theorem 3.2, one can show that {U, : p € M}
is a frame sequence (that is, a frame for its span), although it is not a frame
for the whole Hilbert space Dg since {U,, : u € M} is not a frame for L?(R?).

We are now ready to introduce a decomposition formula for the Radon opera-
tor based on the shearlet representation. As mentioned above, our construction
adapts the general principles of the Wavelet-Vaguelette Decomposition [9] and
is similar to the Curvelet Biorthogonal Decomposition given in [4].

Theorem 3.3 Let {s, : p € M} be the Parseval frame of shearlets defined
above and let {U, : pw € M} be the system defined by (9). For all f € L*(R?)
the following reproducing formula holds:

f=Y[Rf,U,)2s,.

12



Proof. This proof is very similar to the one in [4] and is based on the
intertwining relation:

Ro (—A)* = (I ® D**)oR.
Direct computations show that:

(f, 5u> = [Rvasu}

(I ®DY?)o Rf,(I® D'*) 0 Rs,]
[Rf,(I® D)o (I ®D"?)oRs,
[Rf,(I© DY) o Ro(=A)""s,]
=[Rf, R(2s]})]

27 [Rf, Ul O

4 Inversion of Noisy Radon Data

In our model, we assume that Radon transform data are corrupted by white
Gaussian noise, that is, we have the observations:

Y = Rf +eW, (10)

where f is the function to be recovered, W is a Wiener sheet and ¢ is measuring
the noise level. This means that each measurement [Y, U,,| of the observed data
is normally distributed with mean [Rf, U,] and variance € [|U,[|72 (0 20)xr)-

While the white noise model may not describe precisely the types of noise
typically found in practical applications, the asymptotic theory derived from
this assumption in practice has been found to lead to very acceptable results.
In addition, this framework allows one to derive a theoretical assessment of the
performance of the method which would be extremely complicated to handle
otherwise.

In order to obtain an upper bound on the risk of the estimator, it is necessary
to specify the type of functions we are dealing with. Following [4], let A be a
positive constant and STAR?(A) be a class of indicator functions of sets B
with C? boundaries OB satisfying the following conditions. In polar coordi-
nates, let p(6) : [0,27) — [0,1]? be a radius function and define B by x € B
if and only if x| < p(#). In particular, the boundary 0B is given by the curve
in R?:

p0) = : (11)



The class of sets of interest to us consists of those sets B whose boundaries
(3 are parametrized as in (11), where p is a radius function satisfying the
condition

sup|p”(0)| < A, p<po<l. (12)

We say that a set B € STAR?(A) if B is in [0,1]* and is a translate of a set
whose boundary obeys (11) and (12). In addition, we set C2([0, 1]?) to be the
collection of twice differentiable functions supported inside [0, 1]2. Finally, we
define the set E*(A) of functions which are C? away from a C* edge as the
collection of functions of the form

f=fo+ fixs,
where fo, f1 € C3([0,1]%), B € STAR?*(A) and ||f]|c2 = Zla‘SQHDO‘fHOO < 1.

Projecting the data (10) onto the frame {U, : p € M}, and rescaling, we
obtain

Y, =2[Y,U,)]
= 2[Rf, U, + 2/ W, U,
= (f,0.) +£2n,, (13)

where n, is a (non-i.i.d.) Gaussian noise with zero mean and variance o, =
|17 ]]2. In order to estimate f, we need to estimate the shearlet coefficients
(f,%u), € M, from the data y,. To accomplish this, we will devise a thresh-
olding rule, to be applied to {y, : 4 € M}, which exploits the sparsity prop-
erties of the shearlet representation.

4.1 Modified Shearlet System

For the application of the shearlet representation to the estimation problem,
it is useful to introduce the following simple variant of the shearlet system
given in Section 2, which is obtained by rescaling the coarse scale system
and changing the range of scales for which the directional fine-scale system is
defined. Namely, for a fixed jo € N, let ¢ € C5°(R?) be such that

291 )
1= )P+ > > WV (EATB)? xoo (€)
Jj>jo £=—2J
291

+30 3 WOEAT BT xo, ().

Jj>jo £=—29

14



Then we obtain the Parseval frame of shearlets:

(200200 — k) k € 22} | J{dD (@) § > jo, b= ~29,20 — 1,k e Z2,d=0,1}
Uwi(@) s 5> o, —2 +1<0<2 —2 keZ?d=0,1}.

As the original shearlet system given in Theorem 2.1, the modified shearlet
system is made of coarse and fine scale systems, with the coarse scale system
now associated with the coarse scale jy. Proceeding as above, we introduce
the index set M? = N U M°, where N = Z?2,

M ={p= (4,0, k,d): j>jo,—2 <0< —-1,kecZ?d=0,1},

and denote the new shearlet system using the compact notation {s, : p €
MO}, where s, = 9, = wj%)k if w e M° and s, = 290¢(2%°x — p) if p € N.
For 1, p € MY, it is understood that the corner elements are modified as in

Theorem 2.1.

In our construction, the selection of the scale j, will depend on the noise
level €. Namely, we set j, = % log,(e7!). We also introduce the scale index
j1 = 2logy(e7!) (so that 200 = e~/ and 27 = ¢72/5).

Hence, depending on the noise level €, we may now define the set of significant
coefficients of a function f € £2(A). Define the set of significant indices asso-
ciated with the shearlets as the subset of M given by N () = M;(g) U Ny(¢),
where

No(e) ={u=keZ®: |k <2¥*'} and

M(e) ={p= 0,0k d): jo<j<i, |kl <2% d=0,1}.

The significant coefficients in the shearlet representation of f are the elements
(f, su) for which p belongs to N (e).

We obtain the following result which is proved in the Appendix.

Theorem 4.1 Let € denote the noise level, and N (g) be the set of significant
indices associated with the shearlets so that a function f is represented as

[ = Z <fa5u>5u-

neMo

Then there exist positive constants C',C", and C" such that the following
properties hold:

(1) The neglected shearlet coefficients {(f,s,): n ¢ N(e)} satisfy:
sup Y [(fs)]? < OO

FEE2(A) ug N (e)

15



(2) The risk prozy satisfies:

sup > min(|(f,s,)|?% 2¥e%) < O".
FEE2(A) pen(e)

(3) The cardinality of N () obeys:
#N(e) < C"e2.

4.2 Estimation Rate

To estimate f from the noisy observations (13), we will apply the soft thresh-
olding function Ts(y,t) = sgn(y)(|y| — t)+. The analysis of the estimation
error follows the general framework of the wavelet shrinkage developed in [10].
Letting #MN (¢) be the number of significant coefficients of the shearlet repre-
sentation of f, we estimate function f by

f: Z CuSu (14)

neMo
where the coefficients are obtained by the rule

_ ={Ts<yma 2log(#N (£)20,), 1€ N(e), (15)

¢
: 0 otherwise.
and 0, = ||s/[|3. Notice that the terms o, 4 € M?, are uniformly bounded.

The main theorem can now be established (this is similar to Theorem 6 in [4],
which uses the curvelet decomposition).

Theorem 4.2 Let f € E%(A) be the solution of the problem Y = Rf +eW
and let f be the approximation to f given by the formulas (14) and (15). Then
there is a constant C' > 0 such that

sup E||f — f[3 < Clog(e™") ", ase —0,
£2(4)

where E s the expectation operator.

Proof. For € MY let ¢, = (f,s,) and ¢, be given by (15). By the Parseval
frame property of the shearlet system {s, : u € M°}, it follows that

| Z CusuH%S Z ‘%‘27
ueMo neMo

and that

E|f-fl;<E ( > 1w — CMIQ) : (16)

nemMo
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On the other hand, by the oracle inequality [10] we have

E ( Z ¢, — CM|2) < L(e) (82 Z <7:/if(?;) —|—min(ci,5222jai)>)(17)

HEN(€) preN(e)

where L(e) = (1 + 2log(#N (¢)). Now observe that, by Theorem 4.1, there
exist positive constants C’, C”, C"" such that

Z min(ci,sQQQjai) < eV,
HEN ()
Z CZ < C”€4/5,
LEN (€)
log(#N(¢)) < C" log(e™1).

By the assumption on N (¢), there is a constant C; > 0 such that

2
2 2i  u 2 6271 _ 6/5
e? Y 2L < (0?27 = (e
pene) N (E)

Thus, using these observations and equations (16) and (17), we deduce that
there is a constant C' > 0 such that

Ellf - I3 < E( 3 \EH—C#P) Y <O log(e e, o

HEN (e) HeN (e)°

As also observed in [4], Theorem 4.2 remains valid if the soft thresholding oper-
ator T,(y, t) is replaced by the hard thresholding operator T}, (y,t) = y X{jy>¢}-
In fact, also in the case of hard thresholding, one can obtain estimates similar
to (17).

Finally, for completeness, we recall the following theorem from [4] showing
that the rate of convergence of our estimator is near optimal; no estimator

can achieve an essentially better rate uniformly over £2(A).

Theorem 4.3 ([4]) Let f € E*(A) and consider the minimaz mean square
error

M(e,€%(A)) = inf sup E|f - 3.
fe2(4)
This satisfies
M(e,E2(A)) > Ce*olog(e™1)) %5, & —0,

for some C' € RT.
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5 Numerical Experiments

In this section, we demonstrate the derived estimation rates and compare our
proposed shearlet estimation method against a curvelet and wavelet-based ver-
sion. The numerical implementations of curvelets and shearlets are described
in [3] and [13], respectively. The adaptation of these representation routines
for the inversion of the Radon transform was done using the technique given
in [19] which describes the wavelet-based inversion method. That is, a back-
projection algorithm is used to convert the array of projections into a square
array that is then appropriately filtered.

In the first experiment, we used the star image shown in the upper left-hand
side of Figure 2. White Gaussian noise with zero mean was added to the Radon
transform of the image with various levels of standard deviations and the
inversion processes was regularized by the proposed method. For comparison,
a version using curvelets and wavelets was also included.

For another set of experiments, we tested both a soft thresholding and hard
thresholding version for each of the methods using a modified Shepp-Logan
Phantom image and an MRI brain scan image.

For the soft thresholding Ts(y,t), we estimated the standard deviation &, of

[Y,U,] and set ¢ = 275,,/2log(27). For the hard thresholding, Monte Carlo
simulations were used to estimate the standard deviation of the noise through
each subband and a scalar multiple of the estimated standard deviations was
chosen as the threshold value. In particular, the threshold for the finest scales
was chosen to be four times the estimated standard deviation of the noise and
the threshold for the remaining scales except for the coarsest scale was chosen
to be three times the estimated standard deviation. To assess the performance,
we used the measure

SNR(f, fest) = 101logy, [ var(f) ] )

mean(f — fost)

where f,fost , and var(f) are the original image, the estimated image, and
the variance of the image, respectively. Both the SN R of the noisy projections
(treated as an image) and the unfiltered inversion are given in Tables I and
I1. Some results are also displayed in Figures 3, 4, and 5.

Note a considerable advantage of our proposed shearlet-based technique is that
it is better suited for use with generalized cross validation (GCV) functions
for automatic determination of the threshold parameters (see [11] and [27]).

As subtle artifacts remained after reconstruction from the shearlet-based es-
timates, we applied the following additional filtering scheme which is based
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Fig. 2. SNR performances of shearlet-based estimate (solid line), curvelet-based
estimate (dash-dot line), and wavelet-based estimate (solid-gray line) as functions
of SNR of the unfiltered reconstruction.

on total variation minimization and is described in [12]. This post-filtering
applies only to the hard thresholding estimate and can be roughly described
as follows. Denote by MY the set of indices of M in the shearlet domain
that correspond to the coefficients that would be set to zero in the above re-
construction (namely, the indices of the thresholded coefficients). Define the
projection operator Pg onto the reconstruction from these coefficients as

Ps(u)= > (u,¥jeu)Vjek

j,b,keMC

The proposed method is then to essentially solve

ou '(IIV Pg(u
Gt =V (Y Ps(w) = Ay (= wo)
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TABLE I - Estimates based on soft-thresholding
(Performance in SNR)

Radon dom. Unfiltered Shearlet Curvelet Wavelet

Star image
41.38 dB 15.27dB| 20.46 dB 19.87dB 19.70 dB
35.35 dB 10.68 dB| 19.36 dB 18.63 dB 18.08 dB
31.83 dB 748 dB| 18.62dB 17.86 dB 17.14 dB

Phantom

39.63 dB 14.08 dB| 18.82dB 18.60dB 17.81 dB

33.62 dB 9.23 dB 17.62 dB 17.45dB 16.25 dB
30.09 dB 5.97 dB 16.80 dB 16.68 dB 15.36 dB
Brain scan

41.34 dB 15.01 dB| 22.08dB 21.36dB 20.89 dB

35.32 dB 9.39dB| 20.79dB 20.09dB 19.43 dB
31.80 dB 5.95 dB 19.88 dB  19.25 dB 18.57 dB
with the boundary condition % = 0 on 012 and the initial condition u(z,y,0) =

ug(x,y) for z,y € Q, where Q is the image domain and ¢ € C*(R) is an even
regularization function. The quantity A, , is a spatially varying penalty term
based on a measure of local variances that is updated after a number of iter-
ations or progressions of artificial time step. For this post-processing step, we
set Ay, = 0 and ug(z,y) to be the initial shearlet-based estimate.

Notice that, as shown in Table II, this post-filtering scheme produces a slight
improvement in performance. However, the numerical tests show that, even
without this filtering, the shearlet based method would still outperform the
corresponding wavelet- and curvelet-based tests.

20



TABLE II - Estimates based on hard-thresholding
(Performance in SNR)

Radon dom. Unfiltered| Shear+TV  Shearlet Curvelet Wavelet
Star image
41.38 dB 15.27 dB 21.69dB  21.60dB 20.73dB 20.72 dB
35.35 dB 10.68 dB 20.75dB  20.67dB 19.62dB 19.03 dB
31.83 dB 7.48 dB 20.07dB  20.01dB 18.98dB 17.88 dB
Phantom
39.63 dB 14.08 dB 20.27dB  20.21 dB 19.41 dB 18.59 dB
33.62 dB 9.23 dB 19.07dB 1899 dB 18.27dB 16.92 dB
30.09 dB 5.97 dB 18.29dB 18.23dB 17.78 dB 15.89 dB
Brain scan
41.34 dB 15.01 dB 23.26 dB 2298 dB 22.22dB 21.66 dB
35.32 dB 9.39 dB 21.86 dB  21.55dB 20.85dB 20.14 dB
31.80 dB 5.95 dB 20.82dB  20.49dB 19.92dB 19.08 dB
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Fig. 3. From the top, clockwise: noisy Radon projections (SNR=30.09 dB); un-
filtered reconstruction (SNR=5.97 dB); shearlet-based estimate (SNR=18.23 dB);
curvelet-based estimate (SNR=17.78 dB); wavelet-based estimate (SNR=15.89 dB).
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Fig. 4. From the top, clockwise: noisy Radon projections (SNR=35.32 dB); unfiltered
reconstruction (SNR=9.39 dB); shearlet and TV-based estimate (SNR=21.86 dB);
curvelet-based estimate (SNR=20.85 dB); wavelet-based estimate (SNR=20.14 dB).

For the final demonstrations of the methods, we tested the performance using
an ISAR dataset collected by System Planning Corporation’s Mark V radar
of a SAAB 9000 car. The collected data (Radon projections) and an image
of the unfiltered reconstruction are shown in Figure 6. The hard thresholding
values were determined using the noise level found by means of a median
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estimator. Since there is no reference image to compare against, no measure of
performance can be given. Yet, it is clear the shearlet-based estimate provides
the best looking estimate. Note that some of the noise present in ISAR imagery
can be attributed to speckle but when displayed on a logarithmic scale as
shown in Figure 6, the noise can be approximated as additive Gaussian [1].

Fig. 5. Close ups from the top, clockwise: original; wavelet-based estimate
(SNR=20.14 dB); shearlet-based estimate (SNR=21.55 dB); shearlet and TV-based
estimate (SNR=21.86 dB); curvelet-based estimate (SNR=20.85 dB).
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Fig. 6. From the top, clockwise: noisy Inverse Synthetic Aperture Radar (Radon)
projections; unfiltered reconstruction; shearlet-based estimate; curvelet-based esti-
mate; wavelet-based estimate.
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6 Appendix. Proofs from Section 4

We are considering the modified shearlet system {s, : u € M°} introduced
in Section 4.1. Recall that M° = N U M° | where N = Z* M° = {u =
(4,0, k,d): j>jo,—2 <l <29—1keZd=0,1}, and the system is made
of the coarse scale system {s, = 27°p(2%°x — u) : u € N} and the fine scale

d
system {s, =1, = @ZJ](',E),k :p€ MO}

In order to prove Theorem 4.1, we need the following lemma which provides
an estimate for the size of the shearlet coefficients at a fixed scale j (where
J > Jjo). For such j fixed, recall from Section 3 that M; = {(j,¢, k,d) : =27 <
(<2 keZ?d=0,1}.

Lemma 6.1 Let f € E*(A) and j > jo. Then there is a positive constant C
such that
> v <Cc27™

neM;

Proof. It is useful to introduce a smooth localization of the function f near
dyadic squares. Let Q; be the collection of dyadic squares of the form @) =
[, k] x [22, 28] with 1y, v, € Z. For a nonnegative C* function w with
support in [—1,1]?, we define a smooth partition of unity

Y wh(z)=1, zeR?
QeQ;

where, for each dyadic square Q € Q;, wg(z) = w(2xy — vy, 229 — 1y).

Given f € E*(A), the coefficients {(f,,)} will exhibit a very different be-
havior depending on whether the edge curve of f intersects the support of wg
or not. We split Q; into the disjoint sets Q? and le- that indicate whether
the collection of dyadic squares () intersects an edge curve or not. Since each
dyadic square @ has side-length 2 - 277 and f has compact support in [0, 1]?,
there are O(27) dyadic cubes in @ € QY intersecting the edge curve and O(2%)
dyadic cubes in @) € Q} not intersecting the edge curve.

For each such cube @ € QY, it is shown in [14] that

S [(fo )P < C27% (14 |¢])~°.

keZ?

More precisely, in the proof of Theorem 1.3 in [14], it is shown that

S [{fa )P S CLEZ27% (1+|4))7°,

k€RK
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where K € 7% Ugezz R = 72 and 3y L2 < oco. Hence

Yo Wl = > > o) <Cc27.

peM; 0| <27 kez?

Adding up over all cubes in Q?, we have that

> e <C27¥, (18)

neM; QeQf

For Q € Qj, it is shown in [14, Thm.1.4] that

> Wfa.v)? <C27Y.

peM;

Hence adding up over all Q € QJ, it follows that

oY Ko v <C27%, (19)

nEM; QeQj

The proof is completed by combining the estimates (18) and (19). 0

We now proceed with the proof of Theorem 4.1.

Proof. (Theorem 4.1.1(1)) We need to establish

sup o [(f,su) P < OO
FEE(A) ug N (e)

We start by examining the situation at fine scales, for j > ji(e) =
g,(e71), so that 279 < £5. Notice that, for these values of the index j,

p= wu-
By Lemma 6.1, for each f € £2(A) and each j > jy, we have that

> Kl <c2™.

peM;

0
5 lo
S

Hence

S Y Py 27¥ <Ces.

J>Jj1 pEM; J>J

(IT) Let Qo = [0,1]* and supp f C Qo. We will show that the terms (f,s,)
decay very rapidly for locations k away from Q).
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We will start by examining the decay of a fine-scale term (f,s,), for p =

) 221 427
(j, £, k,d) € M° and d = 0. Let Ej = B*A7 = | By the assumptions
0 2

on 1, it follows that, for each m € N, there is a constant (), > 0 such that
(@) < C (1+ [Jz])~™ (20)
It follows that
[P0 (@)] < O 2972 (14 || By — k)™
We will use two simple facts. The first one is |Ej, z|| < [[Ejell[|z]| = 2%]|z| <
V2 2% for x € @, and the second one is that for a > 0, 0 < b < ¢ < a, we
havea — b > a — c.

It follows that, for |k| > 227! we have

(2 <l [ R4 do
<Cp2¥ [ <1+||Ejﬂ—k||)_ de
Qo
<C2¥ [ (14 1k = | Byal) da
0

<Cn 24 [ (k] = 2¥ o) " da
Qo

< Cp 2% (k| — V2 2%9)™. (21)
Thus,
27 -1 ©) 29 -1 ' ,
oY WAl <Cn 3 29 3 (K —v22¥)7
(=—20 |k|>220+1 (=—27 |k|>220+1
—(C,, 24! Z (|k| — V2 22j)—2m
k| =223+

< Cm 24j+1 2—2j(2m—2)
— Cm 28j+1 274jm

Now we can add up all contributions for j > jj. Since we can choose m
arbitrarily, for an appropriate choice of the constant C, we have:
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271

S S [AUDNP <L Y 2o im < 0270 = (s

>0 b=—29 |k|>223+1 7>jo

The analysis in the case where ; € M° and d = 1 is essentially the same as
the one given above. For the coarse case terms, notice first that ¢ satisfies the
same decay behavior as (20) for ¢. Hence, letting ¢j, x(z) = 2%°0¢(2%°x — k)
and proceeding as in (21), we have that

(00| < 1l [ os0(@)| do < € 2P (k] = V2 20)

Now we can proceed as above by summing over |k| > 2%*1 and using the fact
that m can be chosen arbitrarily, to conclude that

Z 1 f, SOjo,k>|2 < Ces.

k] >227+1

Combining the estimates from parts (I) and (II) and of the proof, we finally
have that

> Hfisa)l? < 0e'. O

EN (e)

Proof. (Theorem 4.1.1(2)) For u € M, we use the notation ¢, = (f, s,) and
we define the set

R(j,e) = {n € M; : le,| > e},
to denote the set of “large” shearlet coefficients, at a fixed scale j.

By Corollary 1.5 in [14] (which is valid both for coarse and fine scale shearlets),
there is a constant C' > 0 such that, as ¢ — 0,

#R(j,e) <Ce™?
It follows by rescaling that
#R(j,2e) < C272/372/3,

Since ¢ € Ce°(R?), for = (4,0, k,d) € M° and d = 0, we have that

leal = |(f )] = ‘/ (2)2972 (B A — k)d
<2V fllo [ [(e)ldz = 027,
R
Thus, R(j,27¢) = 0 when 27 > ¢72/° (that is, j > ji(e)

Similarly, R(j,€) = () when 27 > ¢72/3 (that is, j > ja(c) =
i€ MY and d = 1, we get exactly the same estimates.
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For the risk proxy, notice that

Z min(ci, 2%7¢?) = Si(g) + Sy(e),

{neN(e)}
where
Si(e) = > min(c’, 2% &%)
{neN(e):leu|227 e}
Ss(e) = > min(c’, 2%¢?)

{HeEN (e): eu|<27 e}

Hence, using the observations above, we have:

Si(e)= > 2% 2
{HeN(e): eu|227 €}
< Z Z 92j o2
J<i1 {peMj:|c|>27 e}

<C Z 2]/3 —2/3 22] 2
J<i1

=C Z 95 5%
J<j1
4

<(Ces

For Sy, we have

Sa(e) = > el

{neN(e): leu|<2 e}

Z i Z |Cu|2

Jo<j<j1n=0 {27-n—le<|c,|<2i "¢}

<0 Y Y 2t dgion 2

Jo<j<j1 m=0
s 4 2 4. 4
=C Y Y 273"2525¢s
Jo<j<j1 n=0
4. 4
<C Y 237es
Jo<j<n
4
<(Ces a

Proof. (Theorem 4.1.1(3)) For each fixed scale jo < j < jj, the number of
indices p in N'(£)N M; is of the order O(2%). In fact, N'(e)NM; C {(j, ¢, k,d) :
|k] < 2%+ |¢] <27} and this set contains O(2%) terms for the k variable and
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O(j) terms for the ¢ variable. Hence, adding up the contributions correspond-
ing to the various scales, we obtain:

AN(e) <C Y 29 < Ce 2. 0

7<1
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