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Abstract

The expressive power of deep neural networks is manifested by their remarkable
ability to approximate multivariate functions in a way that appears to overcome
the curse of dimensionality. This ability is exemplified by their success in solving
high-dimensional problems where traditional numerical solvers fail due to their
limitations in accurately representing high-dimensional structures. To provide a
theoretical framework for explaining this phenomenon, we analyze the approx-
imation of Hölder functions defined on a d-dimensional smooth manifold M
embedded in RD, with d ≪ D, using deep neural networks. We prove that the
uniform convergence estimates of the approximation and generalization errors
by deep neural networks with ReLU activation functions do not depend on the
ambient dimension D of the function but only on its lower manifold dimension
d, in a precise sense. Our result improves existing results from the literature
where approximation and generalization errors were shown to depend weakly
on D.
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1. Introduction

One of the most striking properties of deep Neural Networks (NNs) is their
remarkable ability to approximate high-dimensional functions in a way that
appears to overcome the curse of dimensionality (COD). COD postulates that
numerical approximation methods deteriorate exponentially fast with increasing
dimension [1, 2] and poses a very significant challenge in many areas of applied
mathematics. For instance, the computational cost of traditional discretization
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methods for Partial Differential Equations (PDEs), such as finite difference,
finite element and spectral methods, scales with the dimension and becomes
impractical as the dimension increases. By contrast, recent results have shown
that deep NNs may perform very efficiently even in high dimensional numerical
PDE problems where classical numerical solvers fail (e.g., [3]). These results
have spurred a flurry of research activity aiming at integrating deep learning
algorithms into traditional numerical methods.

Several arguments have been proposed to understand the approximation
properties of NNs and explain the mechanisms by which deep NNs can avoid
COD [4, 5]. A number of notable papers, for instance, have explored the role
of compositionality by which deep ReLU NNs can outperform more traditional
approximation methods [4, 6, 7]. Another group of works adopted the approach
of framing the approximation problem within a target function space well suited
to the approximation properties of deep ReLU NNs, such as the Barron spaces
[8, 9, 10], or the Hölder-Zygmund spaces of mixed smoothness [11]. Yet another
very appealing explanation for the ability of deep neural networks of avoiding
COD is the so-called manifold hypothesis, a theoretical framework that is the
foundation of manifold learning [12] and was already successfully exploited in
nonlinear dimensionality reduction applications [13, 14]. Under the manifold
hypothesis, high dimensional data are assumed to lie in the vicinity of a lower
dimensional manifold. As a result, as we observe samples from an unknown
function f defined on a compact subset of RD, we are not seeking to approximate
f with respect to a norm on RD; rather, we consider a measure µ defined on a
d-dimensional manifold M, where d < D (often d ≪ D), and we estimate the
error associated with the measure µ on M. In this setting, D is often referred to
as the ambient dimension as compared to the manifold dimension d. Under the
manifold hypothesis, the ability of a neural network to avoid COD is explained
as the ability of discovering appropriate local coordinate transformations, hence
reducing the complexity of a high-dimensional problem to an underlying low-
dimensional problem, given by the data distribution.

A seminal result in this direction is the work by Shaham et al. [15] proving
that, up to some technical assumptions, if f is a C2 function with values on a
d-dimensional smooth manifold M ⊂ RD, then there exists a deep ReLU NN
with W parameters and a finite number of layers computing a function fW such
that

∥f − fW ∥∞ ≤ CW− 2
d , (1)

for some C independent of W (but dependent on f , M and D). That is, the
number of parameters W needed to achieve arbitrary approximation accuracy
for f using a NN scales essentially with the manifold dimension d, and depends
only weakly on the ambient dimension D, where this weak dependence is hidden
non-explicitly in the constant C. Successive contributions from the literature
extended and refined the approximation result stated above in various ways, by
considering functions in a Hölder space with smoothness index β ∈ (0, 1] and
deriving, under the manifold hypothesis, estimates of the form

∥f − fW ∥∞ ≤ CW− β
d , (2)
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where the constant C depends explicitly on the Hölder norm of f , M and D
(cf. [16, 17, 18, 19]).

As the input layer necessarily depends on the input dimension D, the de-
pendence of C on D in (1) and (2) cannot be avoided. The best one can hope
for is to remove the dependence on D up to the input layer. In line with this
observation, the major contribution of this paper is the derivation of a refined
approximation estimate of the form

∥f − fW ∥∞ ≤ C
(
N2

0L
2
0 log3(N0 + 2)

)−β/de
, (3)

where N0 is the maximum width of all hidden layers, L0 is the number of
hidden layers of a deep ReLU NNs and de is an effective dimension closely
related to d (see Theorem 1 and Remark 5 for the precise statement). We argue
that controlling the approximation properties of an NN using the parameters
of the hidden layers is practically and conceptually appropriate as only these
parameters, unlike those in the input layer, are part of the NN design.

Remarkably, our constant C in (3) does not depend on the ambient dimen-
sion D. In our estimate, the number of hidden parameters of the NN needed
to achieve arbitrary approximation accuracy of f on M only depends on the
manifold dimension (through an appropriate effective dimension de dependent
on d but not on D, as shown in our Theorem 1 below). Up to our knowledge,
this is the first result of this type, as in all published results the constant C
in (3) depends on D; further, no existing result of the form (2) can be converted
directly to an estimate of the form (3) with C independent of D.

To achieve our improved approximation estimate, one of the novelties of our
approach is the careful application of a version of the Johnson-Lindenstrauss
Lemma on smooth manifolds (Theorem 4 below) that we use to map points
from the ambient space nearly isometrically into a lower dimensional domain.
An important implication of our new approximation theorem is an improved
estimate of the generalization error using deep ReLU NNs. Our Theorem 2
proves that, using samples taken from an unknown Hölder function satisfying
the manifold hypothesis, not only the decay rate of the regression error but also
the multiplicative constant are independent of the ambient dimension D; both
quantities only depend on the manifold dimension. This result significantly
improves existing generalization estimates in the literature.

The rest of the paper is organized as follows. We introduce the relevant
notation and definitions in Sec. 2. We next present our main results in Sec. 3,
together with a discussion of the related literature. We finally present the proofs
of our main theorems in Sec. 4.

2. Notation and Definitions

Throughout the paper, we denote as N = {1, 2, · · · } the set of natural number
and, for any n ∈ N, we use the compact notation [n] := {1, 2, · · · , n}.

For any a, b ∈ R, we use the notation a ∨ b := max{a, b}. The floor of
a ∈ R, denoted as ⌊a⌋, is the greatest integer less than or equal to a and the
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ceiling of a, denoted as ⌈a⌉, is the least integer greater than or equal to a. We
use boldface symbols to denote vectors and regular fonts with a subscript to
denote vector coordinates, i.e., x ∈ Rn and xi is the i-th coordinate of x. For

a vector x ∈ Rn, we use the standard norm notation, ∥x∥p = (
∑n
i=1 |xi|p)

1/p

and ∥x∥∞ = max1≤i≤n |xi|. For a matrix A ∈ Rm×n, we use the norm notation
∥A∥1 = max1≤j≤n

∑m
i=1 |aij | and ∥A∥∞ = max1≤i≤m

∑n
j=1 |aij |.

For a measure µ on a measurable set E ⊂ RD and a measurable function
f : E → R, the Lp norm of f , for 1 ≤ p < ∞, is the integral ∥f∥Lp(E,µ) :=(∫
E
|f |p dµ

)1/p
. For p = ∞, we denote as usual the supremum norm of f on E

as ∥f∥∞ := ess supx∈E |f(x)|.
We will derive our approximation results on functions from the Hölder space.

Definition 1 (Hölder space). Let β > 0 and F ⊆ RD be a closed set. The
Hölder space with degree of smoothness β on F is defined as

H(β, F ) =
{
f ∈ C⌊β⌋(F )

∣∣ ||f ||H(β,F ) <∞
}
,

where, for f : F → R, the Hölder norm of f is defined by

||f ||H(β,F ) = max

 max
α: ||α||1≤⌊β⌋

sup
x∈F

|∂αf(x)|, max
α: ||α||1=⌊β⌋

sup
x,y∈F
x̸=y

|∂αf(x)− ∂αf(y)|
||x− y||β−⌊β⌋

2

 .

For M > 0, we denote the closed ball in H(β, F ) with radius M as

H(β, F,M) :=
{
f ∈ C⌊β⌋(F )

∣∣ ||f ||H(β,F ) ≤M
}
.

We adopt the following definition of a NN and its realizations, similar to
[20, 21, 22].

Definition 2 (Neural Network (NN)). Given D, L ∈ N, a NN with input
dimension D and L layers is a sequence of matrix-vector tuples

Φ = ((A1, b1), (A2, b2), · · · , (AL+1, bL+1)),

where w0 = D, w1, · · · , wL+1 ∈ N, and where Al ∈ Nwl×wl−1 and bl ∈ Rwl

for l = 1, · · · , L + 1. We refer to wL+1 as the output dimension of Φ and to
w1, . . . , wL as the width (or the number of neurons) of the inner layers. Also,
we denote with the symbol N (Φ) the maximum width for all hidden layers
(or width of Φ) with L(Φ) the number of hidden layers of Φ and with B(Φ) =
maxl=1,··· ,L+1{||V ec(Al)||∞, ||bl||∞} the scale of the weights of Φ, where V ec(A)
is the vectorization of matrix A.

For a NN Φ and an activation function ϱ : R → R, the realization R(Φ)
of Φ is the measurable map R(Φ) : Rw0 → RwL+1 , where the output xL+1 =
R(Φ)(x) ∈ RwL+1 is given by

x0 := x ∈ Rw0

xl := ϱ(Alxl−1 + bl), for l = 1, · · · , L
xL+1 := AL+1xL + bL+1 (4)
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and ϱ is understood to act component-wise.

Note: in the following, throughout the paper, we will assume that ϱ is the
rectified linear unit (ReLU) activation function, defined by ϱ(·) = max{0, ·}.

Definition 3 (Neural Network Class). For a tuple (N0, L0, B0) ∈ N× N×
R, we define as F(W0, L0, B0) the class of NNs

F(N0, L0, B0) :=
{
R(Φ) : [0, 1]w0 →RwL(Φ)+1

∣∣∣N (Φ)≤N0,L(Φ)≤L0,B(Φ)≤B0

}
.

Henceforth, the expression “a NN Φ with width N0, depth L0 and scale B0”
means that R(Φ) ∈ F(N0, L0, B0), i.e.,

� the maximum width of the NN for all hidden layers is no more than N0;

� the number of hidden layers of the NN is no more than L0;

� the scale of weights of the NN is no more than B0.

For example, in the expression (4), Φ is a NN with width maxl=1,··· ,L{ωi}, depth
L and scale maxl=1,··· ,L+1{||V ec(Al)||∞, ||bl||∞}.

We define concatenations and parallelizations of NNs following [20].

Definition 4 (Concatenation of NNs). Given two NNs

Φ1 = ((A1
1, b

1
1), · · · , (A1

L1+1, b
1
L1+1)) and Φ2 = ((A2

1, b
2
1), · · · , (A2

L2+1, b
2
L2+1))

for L1, L2 ∈ N satisfying the condition that the input layer of Φ2 has the same
dimension as the output layer of Φ1, which we assume to be wL1+1, the con-
catenation of Φ1 and Φ2 is

Φ2 ⊙ Φ1

=

(
(A1

1, b
1
1),· · ·, (A1

L1
, b1L1

),

((A1
L1+1

−A1
L1+1

)
,
( b1L1+1

−b1
L1+1

))
,(
[
A2

1;−A2
1

]
,b21),(A

2
2, b

2
2),· · ·,(A2

L2+1, b
2
L2+1)

)
Remark 1. A straightforward calculation shows that

R(Φ2 ⊙ Φ1) = R(Φ2)◦R(Φ1), N (Φ2 ⊙ Φ1) = max{N (Φ2),N (Φ1), 2wL1+1},
L(Φ2 ⊙ Φ1) = 1 + L(Φ2) + L(Φ1), B(Φ2 ⊙ Φ1) = max{B(Φ2),B(Φ1)}.

By induction, Φm ⊙ · · · ⊙ Φ1 has the following properties

R(Φm ⊙ · · · ⊙ Φ1) = R(Φm) ◦ · · · ◦R(Φ1),

N (Φm ⊙ · · · ⊙ Φ1) = max
1≤l≤m

N (Φl) ∨ 2 max
1≤l≤m−1

wLl+1,

L(Φm ⊙ · · · ⊙ Φ1) = (m− 1) +

m∑
l=1

L(Φl),

B(Φm ⊙ · · · ⊙ Φ1) = max
1≤l≤m

B(Φl).
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Definition 5 (Parallelization of NNs). Let L, D1, D2 ∈ N and let

Φ1 = ((A1
1, b

1
1), · · · , (A1

L+1, b
1
L+1), Φ

2 = ((A2
1, b

2
1), · · · , (A2

L+1, b
2
L+1))

be two NNs with L-layers and with D1-dimensional and D2-dimensional input,
respectively. We define the parallelization with shared inputs of Φ1 and Φ2,
denoted as P (Φ1,Φ2), by

P (Φ1,Φ2) := ((Ã1, b̃1), (Ã2, b̃2), · · · , (ÃL+1, b̃L+1)), if D1 = D2,

and define the parallelization without shared inputs of Φ1 and Φ2, denoted as
FP (Φ1,Φ2), by

FP (Φ1,Φ2) := ((Ã1, b̃1), · · · , (ÃL+1, b̃L+1)), for any D1, D2 ∈ N,

where, for 1 < l ≤ L+ 1,

Ã1 :=

(
A1

1

A2
1

)
, b̃1 :=

(
b11
b21

)
, and Ãl :=

(
A1
l 0
0 A2

l

)
, b̂l :=

(
b1l
b2l

)
.

Remark 2. A straightforward calculation gives the following relations

N (P (Φ1,Φ2)) = N (FP (Φ1,Φ2)) = N (Φ1) +N (Φ2),

L(P (Φ1,Φ2)) = L(FP (Φ1,Φ2)) = L,

and B(P (Φ1,Φ2)) = B(FP (Φ1,Φ2)) = max{B(Φ1),B(Φ2)}.

By induction, we obtain the following properties about the generalization using
L layers:

N (P (Φ1, · · · ,Φm)) = N (FP (Φ1, · · · ,Φm)) =
∑m
l=1 N (Φl),

L(P (Φ1, · · · ,Φm)) = L(FP (Φ1, · · · ,Φm)) = L,

B(P (Φ1, · · · ,Φm)) = B(FP (Φ1, · · · ,Φm)) = max
1≤l≤m

B(Φl).

Definition 6 (Identity function). For D,L ∈ N, we define the following NN
with depth L to approximate the identity function on RD:

ΦIdD,L :=

(( ID
−ID

)
, 0

)
, (I2D, 0), · · · , (I2D, 0)︸ ︷︷ ︸

L−1 times

, ([ID | −ID], 0)

,
where ID ∈ RD×D is the identity matrix.

Remark 3. A direct calculation shows that ΦIdD,L is a L-layers NN of the

identity function, i.e., R(ΦIdD,L)(x) = x for x ∈ RD. Also, N (ΦIdD,L) = 2D,

L(ΦIdD,L) = L and B(ΦIdD,L) = 1.
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Definition 7 (Maximum function). We define the following NN to emulate
the maximum function

Φmax :=

(((
1 0
−1 1

)
,

(
0
0

))
, ((1, 1), 0)

)
. (5)

Remark 4. A direct observation shows that, ifR(Φmax)(x1, x2) = max{x1, x2},
for all (x1, x2) ∈ R2, then

N (Φmax) = 2, L(Φmax) = 1, B(Φmax) = 1.

3. Main Theorems

Our study considers functions in H(β,M,M), where the domain M ⊂
[0, 1]D is a smooth compact d-dimensional manifold with d ≪ D. Our first
theorem proves that these functions can be approximated using a deep ReLU
NN whose parameters, except for the input layer, depend on the manifold dimen-
sion d but not the ambient dimension D. Before presenting our main theorems,
we briefly review the related literature.

Several works have recently studied the approximation and generalization
capabilities of deep ReLU NNs under the assumption of low-dimensional data
structures, i.e., for functions with domain in a low-dimensional embedded man-
ifold. We can roughly divide these works into two groups that we describe as
constructive and non-constructive approaches depending on whether the map
between ambient space, where data are nominally defined, and a lower dimen-
sional space is explicitly constructed or not.

Constructive-method papers typically define an explicit chart to map sam-
ples from the ambient space RD into a d-dimensional manifold, with d smaller
than D, and use the properties of the map to approximate functions on the
manifold using NNs. Such papers include the work by Chen et al. [16], Schmidt-
Hieber [18], Nakada and Imaizumi [19] and Cloninger and Klock [17], and derive
uniform approximation estimates of the form (1) or (2), where the number of
network parameters scales essentially with the dimension d. However, as we
mentioned above, the constant C appearing in the estimates depends on the
ambient dimension D.

By contrast, another group of papers - that we describe as non-constructive
- use versions of the Johnson-Lindenstrauss lemma to claim the existence of a
nearly isometric map between the ambient space RD and a lower dimensional
manifold. These papers include the work by Cai et al. [23] (2018), Shen et al.
[21] (2020) and Jiao et al. [24] (2021). Since non-constructive approaches aim
to preserve the global structure of the manifold, they usually require stronger
regularity assumptions on the manifold as compared to constructive approaches
which use local isometric charts (e.g., the constructive approach by Nakada and
Imaizumi [19] does not require the manifold to be smooth). On the other hand,
non-constructive methods generally yield better estimates with respect to the
constant C appearing in the uniform estimate (2) or (3). To provide a more
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precise quantification of expressive power, some authors [21, 22, 25] recently
proposed approximation estimates of the form (3). Using the maximum width
of all hidden layers N0 and the number of hidden layers L0 is not only more
practical as these numbers are design parameters of the NN, but also more
general and precise; an estimate in terms of N0, L0 can be used to derive an
estimate in terms of the total number of NN parameters W but not vice versa.

In this paper, we adopt the non-constructive point of view and apply a
manifold version of the Johnson-Lindenstrauss lemma that is a variant of a
result by Eftekhari and Wakin [26] and establishes the existence of a linear
transformation mapping points in M ⊆ [0, 1]D nearly isometrically into a lower
dimensional domain.

The application of this nearly isometric mapping requires some technical
assumptions about the manifold. Namely, we assume that M is a compact
d-dimensional Riemannian submanifold of RD with a bounded condition num-
ber. We recall a Riemannian submanifold M of Riemannian manifold M̃ is
a submanifold of M̃ equipped with the Riemannian metric inherited from M̃.
We also recall that Riemannian manifolds extend the notion of Euclidean space
into more general curved space. More precisely, a Riemannian manifold is a
real, smooth manifold equipped with a positive-definite inner product g on the
tangent space of the manifold at each point. The family g of inner products is
called a Riemannian metric and allows one to define a distance so that a Rie-
mannian manifold is also a metric space. The condition number of a manifold
or a submanifold M is defined as 1/τ , where τ , called the reach of the manifold,
is the largest number such that any point at distance less than τ from M has
a unique nearest point on M. The significance of the condition number is that
it controls both local properties of the manifold, such as curvature (which is
bounded by 1/τ), and global properties, such as self-avoidance. We refer to [27]
for additional properties of the condition number. We also recall the definition
of diameter of a Riemannian manifold M:

diam(M) := sup
x,y∈M

∆(x,y),

where ∆(x,y) is the geodesic distance between x and y on M.
We can now state our first theorem, whose proof is given in Sec. 4.

Theorem 1. For D ∈ N, let M be a compact d-dimensional Riemannian sub-
manifold contained in [0, 1]D, with 0 ∈ M, having condition number 1/τ and

volume VM satisfying VM
τd ≥

(
21
2
√
d

)d
, and let f0 ∈ H(β,M,M), where M > 0

and β ∈ (0, 1]. Let

de =
⌈
828

(
24d+ 2d log

(
9
√
d

τ

)
+ log(2V 2

M)
)⌉
. (6)

Then, for any N,L ∈ N, there exists a NN Φf0 with R(Φf0) ∈ F(N0, L0, B0)
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where

N0 = 2de/β+1 (6de + 47)N,

L0 = (28d2e − 15)L,

B0 = 1
4 diam (M) ∨ 3⌈2de/β

(
N2 log3(N + 2)

)1/de⌉⌈L2/de⌉ ∨ 64 (diam(M))
2β
de
βM2,

so that

max
x∈M

|R(Φf0)(x)− f0(x)|

≤
(
384 (diam(M))

2β
de
βM2 + 6

)
dβ/2e

(
N2L2 log3(N + 2)

)−β/de
.

Remark 5. From Theorem 1, a direct calculation gives that there is a constant
C = C(β, de,M, diam(M)) dependent on β, de, M and diam(M)) but not on
D such that

max
x∈M

|R(Φf0)(x)− f0(x)| ≤ C
(
N2

0L
2
0 log3(N0 + 2)

)−β/de
.

This is the same decay rate found in [25], where it is also shown that this is
the optimal decay rate, up to a constant [25, Thm 2.4]. As compared with
the similar type of estimates in [21, 23, 24] where the multiplicative constant
C depends on the ambient dimension D, the constant C in our estimate in
Theorem 1 does not depend on D. Up to our knowledge, our approximation
result is the first one of this form to avoid the dependence of the multiplicative
constant C on D.

Remark 6. Theorem 1 and Remark 5 show that, under the manifold hypothe-
sis, the approximation rate and the multiplicative constant C do not scale with
the ambient dimension D but rather with an effective dimension de which de-
pends on the manifold dimension d and the geometry of the manifold but not
on D. The size of de depends on the complexity of the manifold in the sense
that, as implied by (6), higher values of the volume VM or condition number
1/τ make de larger. To further illustrate the impact of the manifold geome-
try on the size of de let us consider, as an example, the case where M is a

d-dimensional unit sphere. In this case, τ = 1 and VM = πd/2

Γ(d/2+1) ∝ d−d/2. It

follows that log(V 2
M) ∝ −d log d and this cancels the term 2d log

√
d = d log d

on the right-hand side of (6), so that in this case de grows linearly on d, namely
de ≈ 19, 872d). For a more general manifold, the volume also depends on the
curvature so that, in general, de would grow like d log d. In other words, a man-
ifold with a larger volume VM or a larger condition number 1/τ (hence greater
curvature) is more complex; hence the effective dimension de of the projection
space into which manifold data are mapped nearly isometrically needs to be
sufficiently large. Our observations show that the numerical value of de can be
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significantly larger than d and, thus, the estimate in terms of de is only useful
when D ≫ d. We believe that the multiplicative constant in (6) can be im-
proved by refining the estimate of Theorem 4; this is however beyond the scope
of this paper.

We next use our approximation result to derive an estimate of the form (2),
where the approximation error is controlled by the total number of network
parameters. Using the observation that a NN Φf0 with input space [0, 1]D

having L0 inner layers and maximum width of the inner layers N0 has at most
W = (Dde+de+N0de+N

2
0 +N0)L0 > (D+1)de+(L0−2)N2

0 +(L0+dδ)N0+1
nonzero parameters, Theorem 1 implies the following Corollary.

Corollary 1. Fix D ∈ N,M > 0, β ∈ (0, 1]. Let M be a compact d-dimensional
Riemannian submanifold contained in [0, 1]D, with 0 ∈ M, having condition

number 1/τ and volume VM satisfying VM
τd ≥

(
21
2
√
d

)d
. Let de be given by (6).

Given f0 ∈ H(β,M,M), for any L ∈ N, there exists a NN Φf0 with depth
L0 = (28d2e − 15)L and width N0 = 2de/β+1 (6de + 47) having at most W :=
(Dde + de +N0de +N2

0 +N0)L0 nonzero parameters such that

max
x∈M

|R(Φf0)(x)− f0(x)| ≤ CN
−β/de
0 (Dde+ de+N0de+N2

0 +N0)
β/de W−β/de ,

where C = C(β, de,M, diam(M)) is independent of D.

Remark 7. By Corollary 1, our Remark 5 implies an estimate of the form (2)
where the multiplicative constant C depends weakly on D, namely as Dβ/de .
For large ambient dimension D, our result improves upon existing estimates
from the literature; note that the constant C depends as (D logD)β/d in [16],

as (D3+D)β/d in [18], as Dβ in [19], as
(
D
εd

log D
ε3+d

)β/d
in [17].

We observe that, while we have used our estimate of the form (3) to imply
an estimate of the form (2), the converse implication does not follow by a direct
argument.

Remark 8. The approach presented above through Theorem 1 and Corol-
lary 1 addresses the issue of how well we can approximate a target function
f ∈ H(β,M,M) and is meant to provide an explanation of the approximation
properties of DNNs observed in applications. Our result does not provide a
practical method that could be implemented numerically. The construction of
numerical approximation procedures raises other problems, most notably the
stability of the approximation algorithm. We refer the reader to [7, Sec. 9] and
[28] for more details about this topic.

We next analyze the generalization error of DNNs by considering a nonpara-
metric regression problem associated with n observations {(Xi, Yi)}ni=1 ⊆ M×R
from the model

Yi = f0(Xi) + εi, i = 1, · · · , n, (7)

10



where f0 ∈ H(β,M,M), the covariates Xi marginally follow a probability mea-
sure µ and the errors εi are i.i.d normally distributed with mean 0 and variance
σ2, independently of the Xi.

As above, we consider the situation where f0 is contained on a d-dimensional
manifold M inside the compact set [0, 1]D. To find the solution of the regres-
sion problem, we introduce a NN class F̂(N,L,B) :=

{
g ◦ Ψ

∣∣ g ∈ F(N,L,B)
}
,

where Ψ : M 7→ [0, 1]de is the affine transformation

Ψ(x) :=
1

4 diam(M)
Ax− 1

4 diam(M)
y0, (8)

defined for x ∈ M, de is the effective dimension given by (6), A is a random
de×D matrix populated with i.i.d. zero-mean Gaussian random variables with
variance 1/de and y0 ∈ Rde is chosen to satisfy A(M) ⊆ {4 diam(M)y +
y0 | y ∈ [0, 1]de}. To estimate the function f0, we then compute the least

square estimator f̂ ∈ F̂(N,L,B) of f0 associated with the following empirical
risk minimization

f̂ = argmin
f∈F̂(N,L,B)

1

n

n∑
i=1

(Yi − f(Xi))
2
. (9)

The following theorem, whose proof is given in Sec. 4, relies on the ap-
proximation properties of Theorem 1 to derive a bound for the generalization
error. Due to the independence of our approximation estimate on the ambient
dimension D, our generalization error bound depends on the effective manifold
dimension de only and not on the ambient dimension D.

Theorem 2. Fix D ∈ N, M > 0, β ∈ (0, 1]. Let M be a compact d-dimensional
Riemannian submanifold contained in [0, 1]D, with 0 ∈ M, having condition

number 1/τ and volume VM satisfying VM
τd ≥

(
21
2
√
d

)d
and let de be given by (6).

Given f0 ∈ H(β,M,M), let f̂ be the solution of the minimization of empirical
risk in (9), where we choose the NN class F̂(N1, L1, B1) defined above with

N1 = 2de/β+1 (6de + 47)nde/(4β+2de),

L1 = (28d2e − 15)C
de/2β
2 ,

B1 = 3

⌈
2de/βn1/(2β+de)

(
log3(n

de/(4β+2de) + 2)
)1/de⌉

⌈C1/β
2 ⌉,

where C2 = d
β/2
e (384 (diam(M))2βde

βM2 + 6). Then there exists a constant
C = C(σ, β, de,M, diam(M)), independent of D, such that

∥f̂ − f0∥2L2(M,µ) ≤ Cn−2β/(2β+de)(1 + log n)2

holds with probability at least 1 − 2 exp
(
−nde/(2β+de)

)
for any n ≥ N with a

sufficiently large N , where µ is the marginal distribution of X on M.

11



Remark 9. The constant C controlling the generalization error in Theorem 2
depends only on the effective manifold dimension de and not on the ambient
dimension D. For large values of D, our result improves existing estimates
from the literature, including Nakada and Imaizumi [19], Chen et al. [16] where
the constant C of the generalization bound depends on the ambient dimension
D (polynomially in [19] and D logD in [16]). Schmidt-Hieber [18] derive the
same decay rate in terms of the manifold dimension d rather than de; their
multiplicative constant C is dependent on D.

4. Proofs of the theorems

4.1. Proof of Theorem 1

We first recall several estimates about the computational complexity of NNs
approximating different types of elementary functions.

We start by recalling the approximation estimate of the function xy which
is due to Yarotsky [29]. For consistency with our notation, we refer the reader
to Lu et al. [22].

Lemma 1 (Lemma 4.2 in [22]). For any N,L ∈ N and a, b ∈ R with a < b,
there exists a NN Φxy with width 9N + 1, depth L and scale (b− a)2 such that

|R(Φxy)(x, y)− xy| ≤ 6(b− a)2N−L for x, y ∈ [a, b].

Remark 10. In particular, if x = 0 or y = 0, then R(Φxy)(x, y) = 0.

The lemma below constructs a NN to approximate the product function
f(x1, · · · , xd) =

∏d
i=1 xi on [0, 1]d.

Lemma 2 (Lemma 5.3 in [22]). For any N,L, d ∈ N with d ≥ 2, there exists
a NN Φmult with width 9(N +1)+ d− 1, depth 7d(d− 1)L and scale 2 such that∣∣∣∣∣R(Φmult)(x)−

d∏
i=1

xi

∣∣∣∣∣ ≤ 9(N + 1)−7dL for x = (x1, x2, · · · , xd) ∈ [0, 1]d.

The following theorem constructs NNs approximating functions in the space
H(β, [0, 1]d,M), for β ∈ (0, 1] and the statement is similar to [21, Theorem 1.1]
and [25, Corollary 1.3]. However, our proof is more straightforward than the
argument used in [21, 25] and adapts an idea from Yarotsky [29, Theorem 1] to
derive an estimate in terms of N and L. The approximation rate is optimal up
to a constant as shown by [25, Theorem 2.4].

Theorem 3. For d ∈ N, β ∈ (0, 1], M > 0 with d ≥ 4, take any f0 ∈
H(β, [0, 1]d,M). For any N,L ∈ N, there is a NN Φf0 with width 2d/β+1(6d +

47)N , depth (28d2 − 16)L and scale 3⌈2d/β
(
N2 log3(N + 2)

)1/d⌉⌈L2/d⌉ ∨M2

such that

max
x∈[0,1]d

|R(Φf0)(x)− f0(x)| ≤ 6(M2 + 1)dβ/2
(
N2L2 log3(N + 2)

)−β/d
.
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Proof. The proof involves four steps. Firstly, we create a partition of unity
and construct a NN to approximate it. Secondly, we build a NN to estimate
the target function f0. Thirdly, we estimate the approximation error. Lastly,
we determine the size of the NN of the approximator of the target function f0.

Let K ∈ N. Consider a partition of unity formed by a grid of (K + 1)d

functions ρm on [0, 1]d: ∑
m

ρm(x) ≡ 1, x ∈ [0, 1]d, (10)

where m = (m1, · · · ,md) ∈ {0, 1, · · · ,K}d, and the function ρm is defined as
follows:

ρm(x) =

d∏
i=1

ψ
(
3K

(
xi −

mi

K

))
, (11)

where

ψ(x) =


1, |x| < 1

2− |x|, 1 ≤ |x| ≤ 2

0, |x| > 2

. (12)

We observe that
∥ρm∥∞ = 1 (13)

and the support of ρm is contained in the set{
x :

∣∣xi − mi

K

∣∣ ≤ 2
3K , i = 1, · · · , d

}
⊂
{
x :

∣∣xi − mi

K

∣∣ ≤ 1
K , i = 1, · · · , d

}
.
(14)

A NN approximation of ρm in (11) is

Φρm :=Φmin ⊙ P (((0, 1)), ((1, 0)))⊙ ((1,−9
(
2⌈N (d−3)/d⌉+ 1

)−7d⌈L(d−2)/d⌉
), (1, 0), (1, 0))

⊙ Φmult ⊙ Φψ ⊙ ((3K, 0))⊙
((
Id×d,−m

K

))︸ ︷︷ ︸
=:Φy

, (15)

where Id×d is the identity matrix of size d; Φmult is defined in Lemma 2; Φmin :=
(−1, 0) ⊙ Φmax ⊙

((−1 0
0 −1

)
, ( 00 )

)
and Φmax is defined by (5); Φψ is the NN

realizing the function ψ in (12), that is,

Φψ := ((A,b))⊙ P (((1, 2), (1, 0), (1, 0)), ((1, 1), (1, 0), (1, 0)),

((1,−1), (1, 0), (1, 0)), ((1,−2), (1, 0), (1, 0))), (16)

where A =

(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)
and b = (0, 0, 0, 0)T .

By Lemma 2, there is a NN with width, depth and scale satisfying

N (Φmult) ≤ 9
(
2⌈N (d−3)/d⌉+ 1

)
+ d− 1, L(Φmult) ≤ 7d(d− 1)⌈L(d−2)/d⌉,

and B(Φmult) ≤ 2, (17)
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such that

max
x∈[0,1]d

∣∣R(Φmult)(R(Φy)(x))− ρm(x)
∣∣ ≤ 9

(
2⌈N (d−3)/d⌉+ 1

)−7d⌈L(d−2)/d⌉
,

(18)
where Φy is given by (15).

Applying (15) and (18), we have

R(Φρm)(x) ∈ [0, 1] for ∀x ∈ [0, 1]d; (19)

supp(R(Φρm)) ⊆
{
x : ∥x− m

K ∥∞ ≤ 1
K

}
; (20)

max
x∈[0,1]d

|R(Φρm)(x)− ρm(x)| ≤ 9
(
2⌈N (d−3)/d⌉+ 1

)−7d⌈L(d−2)/d⌉
. (21)

By Remark 1, Remark 2, Remark 4, (15) and (17), we have that

N (Φρm) ≤ 9
(
2⌈N (d−3)/d⌉+ 1

)
+ 2d, L(Φρm) ≤ 7d(d− 1)⌈L(d−2)/d⌉+ 15,

and B(Φρm) ≤ 3K. (22)

Using the partition of unity (11), we decompose the target function f0 ∈
H(β, [0, 1]d,M) as:

f0 =
∑
m

ρm f0. (23)

Next, for any m ∈ {0, 1, · · · ,K}d, we approximate the function ρmf0 using
ρm f0

(
m
K

)
. We show below that we can control the approximation error by

choosing

K = ⌈2d/β
(
N2 log3(N + 2)

)1/d⌉︸ ︷︷ ︸
=:n

⌈L2/d⌉︸ ︷︷ ︸
=: l

−1. (24)

Observing that d,N,L ∈ N and β ∈ (0, 1], we get K ∈ N, which satisfies the
assumption of K made at the beginning of the proof.

Let φ denote the bijective map φ : {0, 1, · · · ,K}d →
[
(K + 1)d

]
. By (15),

(23) and (24), we can approximate ρm f0, with φ(m) = i on [0, 1]d, using the
NN

Φi := Φxy ⊙ P
(
ΦId1,L∗ ⊙

(
0, f0

(
φ−1(i)
K

))
,Φρφ−1(i)

)
. (25)

where ΦId1,L∗ , with L∗ = 7d(d−1)⌈L(d−2)/d⌉+14, is the identity function defined
in Definition 6; by Lemma 1, there exists a NN Φxy with width, depth and scale
satisfying

N (Φxy) ≤ 9
(
2⌈N (d−3)/d⌉+ 1

)
+ 1, L(Φxy) ≤ 2d

(
⌈L(d−2)/d⌉+ 1

)
,

and B(Φxy) ≤ (M − 1)2 (26)

such that ∣∣R(Φxy)(R(Φρm)(x), f0(
m
K ))−R(Φρm)(x)f0(

m
K )
∣∣

≤ 6(M − 1)2(2⌈N (d−3)/d⌉+ 1)−2d(⌈L(d−2)/d⌉+1), (27)
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where the inequality also uses by (19), i.e., maxx∈[0,1]d |R(Φρm)(x)| ≤ 1 and the

hypothesis f0 ∈ H(β, [0, 1]d,M).
Using Remark 1, Remark 2, Remark 3, (25) and (26), we get

N (Φi) ≤ 9
(
2⌈N (d−3)/d⌉+ 1

)
+ 2d+ 2,

L(Φi) ≤ (7d2 − 5d)⌈L(d−2)/d⌉+ 2d+ 16,

B(Φi) ≤ 3K ∨ (M − 1)2. (28)

For simplicity, we define Φi→j with i, j ∈ [(K + 1)d] and i < j as follows:

Φi→j := (((1, · · · , 1︸ ︷︷ ︸
j−i+1

), 0))⊙ P (Φi,Φi+1, · · · ,Φj). (29)

Applying Remark 1, Remark 2, (28) and (29), we obtain that

N (Φi→j) ≤ (j − i+ 1)
(
9
(
2⌈N (d−3)/d⌉+ 1

)
+ 2d+ 2

)
,

L(Φi→j) ≤ (7d2 − 5d)⌈L(d−2)/d⌉+ 2d+ 17,

B(Φi→j) ≤ 3K ∨ (M − 1)2. (30)

By (29), we construct a NN Φsimul to approximate
∑

m ρm f0
(
m
K

)
as illus-

trated in Figure 1, given by,

Φsimul = ((ed+1, 0))

⊙ FP (((Id×d,0
T )), (((1, 1), 0)))⊙ FP (P (ΦIdd,L1

,Φ(l−1)n+1→ln),ΦId1,L3
)

...

⊙ FP (((Id×d,0
T )), (((1, 1), 0)))⊙ FP (P (ΦIdd,L1

,Φ2n+1→3n),ΦId1,L3
)

⊙ FP (((Id×d,0
T )), (((1, 1), 0)))⊙ FP (P (ΦIdd,L1

,Φn+1→2n),ΦId1,L3
)

⊙ FP (((Id×d,0
T )), (((1, 1), 0)))⊙ P (ΦIdd,L1

,Φ1→n,ΦIdd,L2
⊙ ((0, 0))),(31)

where 0 = (0, · · · , 0︸ ︷︷ ︸
d

); ed+1 = (0, · · · , 0︸ ︷︷ ︸
d

, 1); Id×d is the identity matrix of size

d; ΦIdd,L1
and ΦId1,L3

are L(Φ1→n)-layer identity function of the NN defined in

Definition 6; ΦIdd,L2
is (L(Φ1→n)− 1)-layer identity function of the NN.

From Remark 1, Remark 2, Remark 3, (30) and (31), we have

N (Φsimul) ≤ n
(
9
(
2⌈N (d−3)/d⌉+ 1

)
+ 2d+ 2

)
+ 4d,

L(Φsimul) ≤ l
(
(7d2 − 5d)⌈L(d−2)/d⌉+ 2d+ 19

)
,

B(Φsimul) ≤ 3K ∨ (M − 1)2 ∨M, (32)

where n and l are given by (24).
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Figure 1: This NN computes Φsimul where sm =
∑m

i=1 R(Φi)(x) and tm = sm − sm−1 for
m ∈ N.

We next define the NN Φf0 := Φbound ⊙ Φsimul to approximate f0, where

Φbound := Φmin ⊙ P (((0,M)), ((1, 0)))⊙ Φmax ⊙ P (((0,−M)), ((1, 0))),

Φmax is defined by (5), Φmin is defined in below (15). We also observe that
R(Φbound)(t) = min{max{−M, t},M} for all t ∈ R and

N (Φbound) = 4, L(Φbound) = 9, B(Φbound) =M. (33)

We remark that the definition of Φbound leads to maxx∈[0,1]d
∣∣R(Φf0)(x)∣∣ ≤

M and we will use this property in the proof of Theorem 2.
The total approximation error is bounded by

max
x∈[0,1]d

∣∣R(Φf0)(x)− f0(x)
∣∣

= max
x∈[0,1]d

∣∣R(Φsimul)(x)− f0(x)
∣∣

= max
x∈[0,1]d

∣∣∣∣∣∑
m

(
R(Φxy)

(
R(Φρm)(x), f0(

m
K )
)
− ρm(x)f0(x)

)∣∣∣∣∣
≤ max

x∈[0,1]d

∑
m

∣∣R(Φxy) (R(Φρm)(x), f0(
m
K )
)
− ρm(x)f0(x)

∣∣
≤ max

x∈[0,1]d

∑
m

∣∣R(Φxy) (R(Φρm)(x), f0(
m
K )
)
−R(Φρm)(x)f0(

m
K )
∣∣

︸ ︷︷ ︸
E1

+ max
x∈[0,1]d

∑
m

∣∣R(Φρm)(x)f0(
m
K )− ρm(x)f0(

m
K )
∣∣

︸ ︷︷ ︸
E2

+ max
x∈[0,1]d

∑
m

∣∣ρm(x)f0(
m
K )− ρm(x)f0(x)

∣∣
︸ ︷︷ ︸

E3

= E1 + E2 + E3. (34)
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Our next task is to estimate E1, E2 and E3. By (27), we have

E1 := max
x∈[0,1]d

∑
m

∣∣R(Φxy) (R(Φρm)(x), f0(
m
K )
)
−R(Φρm)(x)f0(

m
K )
∣∣

(i)
=

∑
{
m:∥x−m

K ∥∞≤ 1
K

}
∣∣R(Φxy) (R(Φρm)(x), f0(

m
K )
)
−R(Φρm)(x)f0(

m
K )
∣∣

(ii)

≤ 2d × 6(M − 1)2
(
2⌈N (d−3)/d⌉+ 1

)−2d(⌈L(d−2)/d⌉+1)
, (35)

where (i) uses (20) and Remark 10; (ii) follows from the observation that, for
x ∈ [0, 1]d, #

{
m ∈ {0, 1, · · · ,K}d : ∥x− m

K ∥∞ ≤ 1
K

}
≤ 2d.

Similarly, we deduce that

E2 := max
x∈[0,1]d

∑
m

∣∣R(Φρm)(x)f0(
m
K )− ρm(x)f0(

m
K )
∣∣

(i)
=

∑
{
m:∥x−m

K ∥∞≤ 1
K

}
∣∣R(Φρm)(x)f0(

m
K )− ρm(x)f0(

m
K )
∣∣

=
∣∣f0(mK )

∣∣ ∑
{
m:∥x−m

K ∥∞≤ 1
K

} |R(Φρm)(x)− ρm(x)|

(ii)

≤ 2d × 9M
(
2⌈N (d−3)/d⌉+ 1

)−7d⌈L(d−2)/d⌉
, (36)

where (i) is obtained by (14) and (20); (ii) follows from (21) and the hypothesis
f0 ∈ H(β, [0, 1]d,M).

Using ρm(x) ∈ [0, 1] for all x ∈ [0, 1]d and the hypothesis f0 ∈ H(β, [0, 1]d,M),
we have

E3 := max
x∈[0,1]d

∑
m

∣∣ρm(x)f0(
m
K )− ρm(x)f0(x)

∣∣
(i)
=

∑
{
m:∥x−m

K ∥∞≤ 1
K

}
∣∣ρm(x)f0(

m
K )− ρm(x)f0(x)

∣∣
= |ρm(x)|

∑
{
m:∥x−m

K ∥∞≤ 1
K

}
∣∣f0(mK )− f0(x)

∣∣
(ii)

≤ 2d ×M(
√
d
K )β

(iii)

≤ 2d × 2M2−ddβ/2N−2β/d (log3(N + 2))
−β/d

L−2β/d, (37)

where (i) uses (14); (ii) follows from ∥ρm∥∞ = 1 in (13), the observation

∥x−m
K ∥2 ≤

√
d
K and the hypothesis f0 ∈ H(β, [0, 1]d,M); (iii) follows by the def-

inition of K in (24), which leads to K = ⌈2d/β
(
N2 log3(N + 2)

)1/d⌉⌈L2/d⌉−1 ≥
1
2⌈2

d/β
(
N2 log3(N + 2)

)1/d⌉⌈L2/d⌉ − 1 ≥ 2d/β

2 N2/d (log3(N + 2))
1/d

L2/d.
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Recall that, for N,L ∈ N, d ≥ 4 and β ∈ (0, 1],(
2⌈N (d−3)/d⌉+ 1

)−7d⌈L(d−2)/d⌉

≤
(
2⌈N (d−3)/d⌉+ 1

)−2d(⌈L(d−2)/d⌉+1)

≤
(
2⌈N (d−3)/d⌉+ 1

)−2d

2−2d⌈L(d−2)/d⌉

≤ 2−2d⌈N (d−3)/d⌉−2d⌈L(d−2)/d⌉−2d

≤ 2−dN−2β/d (log3(N + 2))
−β/d

L−2β/d. (38)

Combining (35), (36), (37) and (38), we have

max
x∈[0,1]d

∣∣R(Φf0)(x)− f0(x)
∣∣

≤ E1 + E2 + E3

≤ 2d · 6(M − 1)2
(
2⌈N (d−3)/d⌉+ 1

)−2d(⌈L(d−2)/d⌉+1)

+ 2d · 9M
(
2⌈N (d−3)/d⌉+ 1

)−7d⌈L(d−2)/d⌉

+ 2d · 2M2−ddβ/2N−2β/d (log3(N + 2))
−β/d

L−2β/d

≤
(
6(M − 1)2 + 9M + 2M

)
dβ/2N−2β/d (log3(N + 2))

−β/d
L−2β/d

≤ 6(M2 + 1)dβ/2
(
N2L2 log3(N + 2)

)−β/d
.

By Remark 1, (32), (33) and Φf0 := Φbound ⊙ Φsimul, we observe that

N (Φf0) ≤ n
(
9
(
2⌈N (d−3)/d⌉+ 1

)
+ 2d+ 2

)
+ 4d

= ⌈2d/β
(
N2 log3(N + 2)

)1/d⌉(18⌈N (d−3)/d⌉+ 2d+ 11
)
+ 4d

≤ 2d/β+1 (6d+ 47)N,

L(Φf0) ≤ l
(
(7d2 − 5d)⌈L(d−2)/d⌉+ 2d+ 19

)
+ 10

(i)

≤ (28d2 − 16)L,

B(Φf0) ≤ 9 ∨ 3⌈2d/β
(
N2 log3(N + 2)

)1/d⌉⌈L2/d⌉ ∨M2

(ii)
= 3⌈2d/β

(
N2 log3(N + 2)

)1/d⌉⌈L2/d⌉ ∨M2,

where n and l are defined in (24), (i) comes from the hypothesis d ≥ 4 and (ii)
follows from the observation that - since dδ ∈ N and β ∈ (0, 1] - we have the

inequality 3⌈2dδ/βN2/dδ⌉⌈(log3(N + 2))
1/d⌉⌈L2/dδ⌉ ≥ 9. 2

As indicated above, our proof of Theorem 1 requires an extension of the
celebrated Johnson-Lindenstrauss lemma to the manifold setting, that we apply
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to preserve pairwise ambient distances, up to a controllable distortion, when
we project points from a manifold M ⊂ RD into a lower dimensional target
space. Our theorem below is a slight modification of a result by Eftekhari
and Wakin [26], providing additional control on the size of the entries of the
random projection matrix as compared to the original result in [26]. We use
this property in the proof of Theorem 1 to bound the scale of the approximating
NN. We postpone the proof of Theorem 4 to Appendix A.

Theorem 4. Let M be a compact K-dimensional Riemannian submanifold of
RD having condition number 1/τ and volume VM, satisfying

VM
τK

≥
(

21

2
√
K

)K
. (39)

Fix ϵ ∈ (0, 1/3] and ρ ∈ (0, 1). Let A be a random dϵ×D matrix populated with
i.i.d. random variables ai,j where

aij =

{
+ 1√

dϵ
with probability 1

2

− 1√
dϵ

with probability 1
2

and

dϵ =

⌈
92ϵ−2 max

{
24K + 2K log

(√
K

τϵ2

)
+ log(2V 2

M), log

(
20

ρ

)}⌉
. (40)

Then with probability at least 1−ρ the following statement holds: for every pair
of points x1, x2 ∈ M,

(1− ϵ)∥x1 − x2∥2 ≤ ∥Ax1 −Ax2∥2 ≤ (1 + ϵ)∥x1 − x2∥2.

Remark 11. Theorem 4, exactly as the original theorem by Eftekhari and
Wakin [26], assumes inequality (39) which imposes a mild geometric condition
on the reach. As observed in Remark 6, this condition is easily satisfied for
the hyper-sphere. It is observed in [26] that one can relax inequality (39) and
the result of the theorem would still hold even though with a possibly larger
constants in (40).

We will also need the following extension result for function in Hölder spaces,
which is similar to Lemma 4.1 in [21].

Lemma 3 (Extension Lemma). Let f ∈ H(β,E,M), where 0 < β ≤ 1,
M > 0 and E ⊆ [0, 1]d is a closed set with d ∈ N. Then there exists a function
g ∈ H(β, [0, 1]d, 2dβ/2M) such that g(x) = f(x) for any x ∈ E.
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Proof. For x ∈ [0.1]d, we define

g(x) := sup
z∈E

(
f(z)−M∥z− x∥β2

)
. (41)

Since f ∈ H(β,E,M), we have that f(z)−M∥z−x∥β2 ≤ f(x) for any x, z ∈ E.
This implies that g(x) ≤ f(x), for x ∈ E. Together with the observation

g(x) := sup
z∈E

(
f(z)−M∥z− x∥β2

)
≥ f(x)−M∥x− x∥β2 = f(x),

for any x ∈ E, it follows that f(x) = g(x), for any x ∈ E.
By the observation

sup
z∈E

f1(z)− sup
z∈E

f2(z) ≤ sup
z∈E

(f1(z)− f2(z)),

we have that

g(x1)− g(x2) ≤ sup
z∈E

(
f(z)−M∥z− x1∥β2

)
− sup

z∈E

(
f(z)−M∥z− x2∥β2

)
≤ sup

z∈E

(
M∥z− x1∥β2 −M∥z− x2∥β2

)
≤ M∥x1 − x2∥β2 ,

for any x1,x2 ∈ [0, 1]d, where the last inequality comes from the fact that, for
any β ∈ (0, 1] and a, b ∈ R, we have the inequality |a+ b|β ≤ |a|β + |b|β .

Similarly, for any x1,x2 ∈ [0, 1]d, we have g(x2) − g(x1) ≤ M∥x1 − x2∥β2 ,
which implies

|g(x1)− g(x2)| ≤M∥x1 − x2∥β2 .
From the definition of g(x) in (41), using the assumption that f ∈ H(β,E,M)
and the inequality ∥x − y∥2 ≤

√
d for any x,y ∈ [0, 1]d, we have that, for any

x ∈ [0, 1]d,
|g(x)| ≤ (dβ/2 + 1)M ≤ 2dβ/2M.

2

With the above preparation, we can now prove Theorem 1.

Proof (Proof of Theorem 1). By Theorem 4, there exists a matrix A ∈
Rdϵ×D, with dϵ given by (40), such that for every pair of points x1, x2 ∈ M,
we have

(1− ϵ)∥x1 − x2∥2 ≤ ∥Ax1 −Ax2∥2 ≤ (1 + ϵ)∥x1 − x2∥2. (42)

For any x1, x2 ∈ M, using inequality (42), we have that

||Ax1 −Ax2||∞
(i)

≤ ∥Ax1 −Ax2∥2
≤ (1 + ϵ)∥x1 − x2∥2
≤ (1 + ϵ) diam(M)

(ii)

≤ 2 diam(M), (43)
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where (i) follows from the observation that, for any z = (z1, · · · , zdϵ)T ∈ Rdϵ ,
we have |zi| ≤

√
z21 + · · ·+ z2dϵ for i = 1, · · · , dϵ; inequality (ii) follows from the

assumption that ϵ ≤ 1/3.
Next, we use the matrix A to construct an affine transformation Ψ : M 7→

[0, 1]dϵ as

Ψ(x) :=
1

4 diam(M)
Ax− 1

4 diam(M)
y0, (44)

where we choose y0 ∈ Rdϵ such that A(M) ⊆ {4 diam(M)y+ y0 | y ∈ [0, 1]dϵ}
and, for any x ∈ M. By construction, we have that Ψ(M) ⊆ [0, 1]dϵ .

We can define a NN Ψ̂ that realizes Ψ(x) exactly by setting

Ψ̂ :=

((
1

4 diam(M)
A,− 1

4 diam(M)
y0

))
. (45)

By (42) and (44), we have

1− ϵ

4 diam(M)
∥x1 − x2∥2 ≤ ∥Ψ(x1)− Ψ(x2)∥2 ≤ 1 + ϵ

4 diam(M)
∥x1 − x2∥2. (46)

We will next define a unique low-dimensional function g0, with values on
[0, 1]dϵ , to represent the function f0 defined on M. For any y ∈ Ψ(M) ⊆ [0, 1]dϵ ,
we define

g0(y) := f0(xy), where xy = {x ∈ M
∣∣Ψ(x) = y, y ∈ Ψ(M)}. (47)

Note that, by inequality (46), we have that the map Ψ is injective and, hence,
it is bijective from M onto Ψ(M).

We claim that the function g0 defined by (47) is a Hölder continuous function.
To show that this is the case, we first observe that, by the hypothesis of

Theorem 1, the norm of f0 in (47) is bounded by M . It follows that

|g(y)| ≤M, for any y ∈ Ψ(M). (48)

Next, we observe that, for y1,y2 ∈ Ψ(M), there are x1,x2 ∈ M defined by
xi = {x ∈ M|Ψ(xi) = yi}, i = 1, 2. Using (46), it follows that

|g0(y1)− g0(y2)|
= |f0(x1)− f0(x2)|
≤ M∥x1 − x2∥β2

≤ M

((
4 diam(M)

1−ϵ

)β
∥Ψ(x1)− Ψ(x2)∥β2

)
≤

(
4 diam(M)

1−ϵ

)β
M∥y1 − y2∥β2 . (49)

Combining (48) with (49), we conclude that g0 ∈ H
(
β, Ψ(M),

(
4 diam(M)

1−ϵ

)β
M

)
.
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Using Lemma 3, we now extend the function g0, originally defined on Ψ(M),
to a Hölder function g̃0 defined on [0, 1]dϵ . Note that the Hölder norm of g̃0 is

bounded by 8
(

diam(M)
1−ϵ

)β
dϵ
β/2M and, thus, g̃0 belongs to the Hölder space

H
(
β, [0, 1]dϵ , 8

(
diam(M)

1−ϵ

)β
dϵ
β/2M

)
.

We next show that we can approximate g̃0 using an appropriate NN. Using
Theorem 3, there exists a NN Φg̃0 with width, depth and scale satisfying

N (Φg̃0) ≤ 2dϵ/β+1 (6dϵ + 47)N, L(Φg̃0) ≤ (28d2ϵ − 16)L,

B(Φg̃0) ≤ 3⌈2dϵ/β
(
N2 log3(N + 2)

)1/dϵ⌉⌈L2/dϵ⌉ ∨ 64
(

diam(M)
1−ϵ

)2β
dϵ
βM2,

(50)

so that

max
y∈[0,1]dϵ

|R(Φg̃0)(y)− g̃0(y)|

≤
(
384

(
diam(M)

1−ϵ

)2β
dϵ
βM2 + 6

)
dβ/2ϵ

(
N2L2 log3(N + 2)

)−β/dϵ
. (51)

We can finally approximate f0 using a NN. Namely, using the above NN Φg̃0

and the NN Ψ̂ given in (45), we define the NN Φf0 = Φg̃0 ⊙ Ψ̂ .
For any x ∈ M, given any ϵ > 0, we have that

|f0(x)−R(Φf0)(x)|
(i)
= |g0(Ψ(x))−R(Φg̃0)(Ψ(x))|
(ii)
= |g̃0(Ψ(x))−R(Φg̃0)(Ψ(x))|
(iii)

≤
(
384

(
diam(M)

1−ϵ

)2β
dϵ
βM2 + 6

)
dβ/2ϵ

(
N2L2 log3(N + 2)

)−β/dϵ
,

where equality (i) follows from the definition of g0 and Φf0 ; (ii) follows from
the definition of g̃0; (iii) follows from (51).

By Remark 1, (50) and Φf0 = Φg̃0 ⊙ Ψ̂ , we obtain

N (Φf0) ≤ 2dϵ/β+1 (6dϵ + 47)N, L(Φf0) ≤ (28d2ϵ − 16)L+ 1 ≤ (28d2ϵ − 15)L,

B(Φf0) ≤ C0 ∨ 3⌈2dϵ/β
(
N2 log3(N + 2)

)1/dϵ⌉⌈L2/dϵ⌉ ∨ 64
(

diam(M)
1−ϵ

)2β
dϵ
βM2,

where we claim that C0, the scale parameter associated with the NN Ψ̂ , given
by (45), satisfies C0 = max{ 1

2 ,
1

4 diam(M)}. In fact, by the definition of Ψ̂ , we

have that

C0 = max

{∥∥∥∥V ec( 1

4 diam(M)
A

)∥∥∥∥
∞
,

∥∥∥∥ 1

4 diam(M)
y0

∥∥∥∥
∞

}
,
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where y0 is the displacement vector. Using Theorem 4, we can bound each
entry of random matrix A by 1. By the hypothesis 0 ∈ M and (43), we get

1
4 diam(M)A(M) ⊆ [−1/2, 1/2]dϵ . So we can take y0 ∈ [−2 diam(M), 2 diam(M)]dϵ

such that A(M) ⊆ {4 diam(M)y + y0 |y ∈ [0, 1]dϵ}. This shows that C0 =
max{ 1

2 ,
1

4 diam(M)}.
We finally show that, for an appropriate choice of ρ, we can express dϵ in

terms of ϵ, d, VM and τ . In fact, by taking

ρ =
10τ2dϵ4d

(e24d)dV 2
M
, (52)

a direct calculation gives the following equality(
24d+ 2d log

(√
d

τϵ2

)
+ log(2V 2

M)
)
= log

(
20
ρ

)
,

so that, by (40), we have

dϵ =
⌈
92ϵ−2

(
24d+ 2d log

(√
d

τϵ2

)
+ log(2V 2

M)
)⌉
,

where there is no dependence on ρ. Additionally, by the condition VM
τd ≥

(
21
2
√
d

)d
in the hypothesis, it follows that

ρ =
10τ2dϵ4d

(e24d)dV 2
M

≤ 10 ·
(

4ϵ4

441e24

)d
,

showing that ρ is very small. The proof is completed by choosing ϵ = 1/3 and
identifying de = d1/3. 2

4.2. Proof of Theorem 2

Our proof of Theorem 2 adapts ideas from [19, 30] in combination with
classical techniques [31]. We present the entire argument for completeness.

We recall the definition of the image of a measure (cf. [32], Sec. 3.4).

Definition 8. Let X and Y be two sets with σ-algebras A and B defined on X
and Y , respectively, and let f be a (A,B)-measurable mapping from X into Y .
Then, for any bounded (or bounded from below) measure µ on A, the formula

f#µ : B 7→ µ
(
f−1(B)

)
, B ∈ B,

defines a measure on B called the image of the measure µ under the mapping f .

We also need the following change of variables lemma (Theorem 3.6.1 in [32]).

Lemma 4. Let X and Y be two sets with σ-algebras A and B defined on X
and Y , respectively, and let µ be a non-negative measure on A. A B-measurable
function g on Y is integrable with respect to the measure f#µ precisely when the
function g ◦ f is integrable with respect to µ. In addition, we have∫

Y

g d(f#µ) =

∫
X

g ◦ f dµ.
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We also recall the definition of covering number (cf. Definition 4.2.2 in [33]
or [34], p.41).

Definition 9 (Covering number). Given a metric or pseudo-metric space
(T, dist) and a set K ⊂ T , for any ϵ > 0, the covering number n∗(ϵ,K, dist)
is the smallest number of closed balls of radius ϵ needed to cover K. That is,
denoting a closed balls of radius ϵ as β(t, ϵ) := {s ∈ T : dist(s, t) ≤ ϵ}, we have

n∗(ϵ,K, dist) := min

{
n : there exist t1, · · · , tn ∈ T such that K ⊆

n⋃
i=1

β(ti, ϵ)

}
.

Clearly, if a subset K of a metric space (T, dist) is precompact, then we
have that n∗(ϵ,K, dist) < ∞ and the covering number is a measure of the
compactness of K. From the above definition, specializing to the function class
of NNs, we define the covering number for a NN class.

Definition 10 (Covering number of a NN class). Given a NN class F(N,L,B)
of mappings f : [0, 1]d → R, where N,L ∈ N and B ∈ R are fixed, its covering
number n∗(ϵ,F(N,L,B), ∥ · ∥) is the smallest number of ∥ · ∥-balls of radius ϵ
that covers F(N,L,B), where ∥ · ∥ is a norm on F(N,L,B). That is, denoting
a ∥ · ∥-ball of radius centered at f ∈ F(N,L,B) as β(f, ϵ) := {g ∈ F(N,L,B) :
∥f − g∥ ≤ ϵ}, then

n∗(ϵ,F(N,L,B), ∥ · ∥)

:= min

{
n : F(N,L,B) ⊆

n⋃
i=1

β(fi, ϵ) for some f1, · · · , fn ∈ F(N,L,B)

}
,

in which case we call the set {β(fi, ϵ)}ni=1 a minimal ϵ-cover of F(N,L,B).

In practice, the norm ∥·∥ in Definition 10 that we consider below for functions
f ∈ F(N,L,B) is either the infinity-norm ∥ · ∥∞ or the empirical norm ∥ · ∥n.
We recall that, given n observations {Xi : i = 1, . . . n} ⊆ [0, 1]d, the empirical
norm of f ∈ F(N,L,B) is

∥f∥n :=

√√√√ 1

n

n∑
i=1

f(Xi)2. (53)

The following lemma gives an upper bound of n∗(ϵ,F(N,L,B), ∥·∥∞). Sim-
ilar results can be found in [16], [19], [31], [35].

Lemma 5. Let F(N,L,B) be a NN class of mappings R(Φ) : [0, 1]d → R with
B > 0 and N,L ∈ N satisfying BN > 2. For any ϵ > 0, we have

n∗(ϵ,F(N,L,B), ∥ · ∥∞) ≤
(
4(L+ 1)(B + 2)BL+1NL+1

ϵ

)W
,

where W := (d+1)N+(L−1)N2+LN+1 is the maximum number of non-zero
parameters of NN class F(N,L,B).
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Proof. We consider two NNs Φ,Φ′ ∈ F(N,L,B) where Φ = ((A1, b1), · · · , (AL+1, bL+1))
and Φ′ = ((A′

1, b
′
1), · · · , (A′

L+1, b
′
L+1)). Under the assumptions that all param-

eters of Φ and Φ′ are at most h away from each other, we have

sup
x∈[0,1]d

|R(Φ)(x)−R(Φ′)(x)|

= ∥(AL+1 · ϱ(AL · · · ϱ(A1x+ b1) · · ·+ bL) + bL+1)

− (A′
L+1 · ϱ(A′

L · · · ϱ(A′
1x+ b′1) · · ·+ b′L) + b′L+1)∥∞

≤ ∥bL+1 − b′L+1∥∞ + ∥AL+1 −A′
L+1∥1 ∥AL · · · ϱ(A1x+ b1) · · ·+ bL∥∞

+ ∥A′
L+1∥1 ∥(AL · · · ϱ(A1x+ b1) + bL)−(A′

L · · · ϱ(A′
1x+b

′
1) · · ·+ b′L)∥∞

(i)

≤ h+ hN∥AL · · · ϱ(A1x+ b1) · · ·+ bL∥∞
+ BN∥(AL · · · ϱ(A1x+ b1) · · ·+ bL)−(A′

L · · · ϱ(A′
1x+ b′1) · · ·+ b′L)∥∞(54)

where inequality (i) follows from the observation that the width of their hidden
layers and output layer is at most N . To bound the term ∥AL · · · ϱ(A1x +
b1) · · ·+ bL∥∞, we observe that

∥AL · · · ϱ(A1x+ b1) · · ·+ bL−1∥∞ ≤ ∥AL(· · · ϱ(A1x+ b1) · · · )∥∞ + ∥bL∥∞
≤ ∥AL∥1 ∥AL−1 · · · ϱ(A1x+ b1) · · ·+ bL−1∥∞ +B

≤ BN∥AL−1 · · · ϱ(A1x+ b1) · · ·+ bL−1∥∞ +B

(ii)

≤ (BN)L · 1 +B

L−1∑
i=0

(BN)i

≤ (BN)L +B(BN)L, (55)

where inequality (ii) follows by induction and the observation that ∥x∥∞ ≤
1; the last inequality follows by observing that BN > 2 and

∑L−1
i=0 (BN)i ≤

1−(BN)L

1−BN ≤ (BN)L.
Now, combining (54) and (55) yields that

sup
x∈[0,1]d

|R(Φ)(x)−R(Φ′)(x)|

≤ BN∥(AL · · · ϱ(A1x+ b1) · · ·+ bL)−(A′
L · · · ϱ(A′

1x+ b′1) · · ·+ b′L)∥∞
+ h+ hN∥AL · · · ϱ(A1x+ b1) · · ·+ bL∥∞
≤ BN∥(AL · · · ϱ(A1x+ b1) · · ·+ bL)−(A′

L · · · ϱ(A′
1x+ b′1) · · ·+ b′L)∥∞

+ h+ hN
(
(BN)L +B(BN)L

)
≤ BN∥(AL · · · ϱ(A1x+ b1) · · ·+ bL)−(A′

L · · · ϱ(A′
1x+ b′1) · · ·+ b′L)∥∞

+ hN(B + 2)(BN)L

(iii)

≤ (BN)L∥(A1x+ b1)−(A′
1x+ b′1)∥∞ + LhN(B + 2)(BN)L

≤ (L+ 1)hN(B + 2)(BN)L, (56)

where (iii) is obtained by the induction.
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Finally, we discretize the non-zero parameters of the NN using step-size
h = ϵ/(2(L + 1)N(B + 2)(BN)L), so that we have 2B/h discretization points
(recall that parameters range in the interval [−B,B]). Observing that there
are at most (2B/h)W possible assignments, where the number of the non-zero
parameters is at most W = (d + 1)N + (L − 1)N2 + LN + 1, we obtain the
following bound for the minimal ϵ/2-covering of F(N,L,B):

n∗(ϵ,F(N,L,B), ∥ · ∥∞) ≤
(
2B

h

)W
=

(
4(L+ 1)(B + 2)BL+1NL+1

ϵ

)W
.

2

The next result extends Lemma 5 to the situation where the covering number
is defined in terms of the empirical norm (53) rather than the infinity-norm.

Lemma 6. Let F(N,L,B) be a NN class of mappings R(Φ) : [0, 1]d → R with
B > 0 and N,L ∈ N satisfying BN > 2. For any ϵ > 0, we have

n∗(ϵ,F(N,L,B), ∥ · ∥n) ≤
(
4(L+ 1)(B + 2)BL+1NL+1

ϵ

)W
,

where W , as in Lemma 5, is the maximum number of non-zero parameters of
NN class F(N,L,B) and ∥ · ∥n is the empirical norm (53).

Proof. We consider two NNs Φ,Φ′ ∈ F(N,L,B) as in the proof of Lemma 5.
We also assume that all parameters of Φ and Φ′ are at most h away from each
other. By the definition of empirical norm (53), for Xi ∈ [0, 1]d, i = 1, · · · , n,
we have that

∥R(Φ)−R(Φ′)∥n=

√√√√ 1

n

n∑
i=1

(R(Φ)(Xi)−R(Φ′)(Xi))
2≤ sup

x∈[0,1]d
|R(Φ)(x)−R(Φ′)(x)|.

(57)
Combining inequality (56) with inequality (57), we have

∥R(Φ)−R(Φ′)∥n ≤ (L+ 1)hN(B + 2)(BW )L.

The proof is completed by the same argument as the last part of the proof of
Lemma 5. 2

We will also need the following result [33, Theorem 2.8.4].

Theorem 5 (Bernstein’s inequality for bounded distributions). Consider
n independent random variables U1, . . . , Un satisfying E[Ui] = 0 and |Ui| ≤ c
for all i = 1, . . . , n. Then, for any t ≥ 0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− n2t2

2κ2 + 2cnt
3

)
, (58)

where κ2 =
∑n
i=1E[U2

i ] is the variance of the sum.
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We can now prove Theorem 2.

Proof (Proof of Theorem 2). The proof includes the following steps.

Step 1: we apply the affine transformation Ψ , given by (8), to map f0 into

a function g0 defined in the lower dimensional space Ψ(M) ⊆ [0, 1]de .

Step 2: we apply a bias-variance decomposition of the squared loss in
Ψ(M).

Step 3: we estimate the variance term using the empirical norm and then
applying the Borell-Sudakov-Tsirelson concentration inequality.

Step 4: we estimate the bias term using Theorem 1.

We remark that Steps 2 and 3 adapt a similar structure to the proof of Theorem
7 in [19] and include some ideas from the proof of Theorem 1 in [30].

Step 1. Similar to the definition (47) in the proof of Theorem 1, we map the
D-dimensional function f0 into a lower dimensional space by defining g0(y) :=
f0(xy), where

xy = {x ∈ M
∣∣Ψ(x) = y, y ∈ Ψ(M)}

holds for any y ∈ Ψ(M) ⊆ [0, 1]de and Ψ is given by (8).

By the definition of f̂ in equation (9), there exists a function ĝ ∈ F(N1, L1, B1),

for appropriate values of the parameters N1, L1 and B1, such that f̂ = ĝ ◦ Ψ .
Since ĝ ∈ F(N1, L1, B1), ĝ is also a continuous function. Since Ψ is a bounded

affine transformation, f̂ is continuous and f0 ∈ H(β,M,M), it follows that (f̂−
f0)

2 is continuous on the compact set M and, thus, maxx∈M

(
f̂(x)− f0(x)

)2
<

∞. It also follows that∫
M

(
f̂(x)− f0(x)

)2
dµ(x) ≤

∫
M

max
x∈M

(
f̂(x)− f0(x)

)2
dµ(x)

≤ max
x∈M

(
f̂(x)− f0(x)

)2
µ(M)

(i)

≤ max
x∈M

(
f̂(x)− f0(x)

)2
<∞,

where inequality (i) holds since µ is a probability measure. Thus, we have that

(f̂ − f0)
2 is integrable with respect to µ and, by Lemma 4, we have that

∥f̂ − f0∥2L2(M,µ) = ∥ĝ ◦ Ψ − g0 ◦ Ψ∥2L2(M,µ)

=

∫
M

(ĝ ◦ Ψ − g0 ◦ Ψ)2 dµ

=

∫
Ψ(M)

(ĝ − g0)
2
d(Ψ#µ)

= ∥ĝ − g0∥2L2(Ψ(M),Ψ#µ)
. (59)
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Step 2. Our next task is to bound the norm ∥ĝ − g0∥2L2(Ψ(M),Ψ#µ)
. Using

Lemma 3, we extend the function g0, originally defined on Ψ(M), to a Hölder
function g̃0 defined on [0, 1]de . We denote

g∗ := R(Φg̃0) ∈ F(N1, L1, B1). (60)

By Theorem 1 , the Hölder norm of g̃0 is bounded by

K(β,M) := 8

(
3 diam(M)

2

)β
de
β/2M.

Hence, by the definition of Φg̃0 , |g∗| ≤ K(β,M). By the triangle inequality and
the inequality 2ab ≤ a2 + b2, we have

∥ĝ − g0∥2L2(Ψ(M),Ψ#µ)
≤ 2∥ĝ − g∗∥2L2(Ψ(M),Ψ#µ)

+ 2∥g∗ − g0∥2L2(Ψ(M),Ψ#µ)
,

so that, from (59) we obtain

∥f̂ − f0∥2L2(M,µ) ≤ 2∥ĝ − g∗∥2L2(Ψ(M),Ψ#µ)
+ 2∥g∗ − g0∥2L2(Ψ(M),Ψ#µ)

. (61)

We identify the two terms on the left-hand side of the inequality above with a
variance and bias term, respectively.

We start by estimating the variance term ∥ĝ − g∗∥2L2(Ψ(M),Ψ#µ)
.

Step 3. Given any τ > 0, we select functions {g1, · · · , gN} that are centers
of a minimal τ -cover of F(N1, L1, B1) with ∥ · ∥∞ (cf. Definition 10), where
N = n∗(τ,F(N1, L1, B1), ∥ · ∥∞). Accordingly, there exists a gj ∈ {g1, · · · , gN}
such that ∥ĝ − gj∥∞ := supy∈[0,1]de |ĝ − gj | ≤ τ . Without loss of generality, we
can assume that |gj | ≤ K(β,M). By the triangle inequality and the inequality
2ab ≤ a2 + b2, we deduce that

∥ĝ − g∗∥2L2(Ψ(M),Ψ#µ)

≤ 2∥ĝ − gj∥2L2(Ψ(M),Ψ#µ)
+ 2∥gj − g∗∥2L2(Ψ(M),Ψ#µ)

≤ 2∥ĝ − gj∥2∞ + 2∥gj − g∗∥2L2(Ψ(M),Ψ#µ)

≤ 2τ2 + 2∥gj − g∗∥2L2(Ψ(M),Ψ#µ)
. (62)

Hence, to control ∥ĝ − g∗∥2L2(Ψ(M),Ψ#µ)
, we need to derive a bound for ∥gj −

g∗∥2L2(Ψ(M),Ψ#µ)
.

Given the observations {(Xi, Yi)}ni=1 ⊆ M × R, by setting Zi = Ψ(Xi) for
i = 1, · · · , n, equation (7) can be reformulated as follows:

Yi = g0(Zi) + εi, Zi ∼ Ψ#µ. (63)

Take any gj ∈ {g1, · · · , gN}. Given ν > 0 (to be determined later), let

t = max

{
ν,

1

2
∥gj − g∗∥2L2(Ψ(M),Ψ#µ)

}
and Ui = (gj(Zi)−g∗(Zi))2−E[(gj(Zi)−g∗(Zi))2].
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We note that E[Ui] = 0. We also note that, by our observations above, we have
that |gj | ≤ K(β,M), |g∗| ≤ K(β,M) and, thus, |Ui| ≤ 8K(β,M)2. A direct
calculation shows that

E[U2
i ] = E

[(
(gj(Zi)− g∗(Zi))

2 − E[(gj(Zi)− g∗(Zi))
2]
)2]

(i)

≤ E
[
(gj(Zi)− g∗(Zi))

4
]

= E
[
(gj(Zi)− g∗(Zi))

2(gj(Zi)− g∗(Zi))
2
]

≤ 4K(β,M)2E[(gj(Zi)− g∗(Zi))
2]

≤ 4K(β,M)2 ∥gj − g∗∥2L2(Ψ(M),Ψ#µ)

(ii)

≤ 8K(β,M)2t,

where (i) uses the fact that, for any random variable Z and C ∈ R, E[(Z −
E[Z])2] ≤ E[(Z − C)2]; (ii) follows from our choice of t.

We can now apply Theorem 5 to Ui = (gj(Zi) − g∗(Zi))
2 − E[(gj(Zi) −

g∗(Zi))
2] with c = 8K(β,M)2. We obtain that

P
(
∥gj − g∗∥2L2(Ψ(M),Ψ#µ)

≥ ∥gj − g∗∥2n + t
)
≤ exp

(
− 3nν

64K(β,M)2

)
, (64)

where ∥ · ∥n is the empirical norm (53).
By our selection of t above, we have that t ≤ ν + 1

2∥gj − g∗∥2L2(Ψ(M),Ψ#µ)

where ν > 0. Thus, by setting ν = 64K(β,M)2(nde/(2β+de) + logN)/(3n), we
have

∥gj − g∗∥2n + t ≤ ∥gj − g∗∥2n +
64K(β,M)2n−2β/(2β+de)

3

+
64K(β,M)2 logN

3n
+

1

2
∥gj − g∗∥2L2(Ψ(M),Ψ#µ)

.

Combining the last inequality with expression (64) it follows that

∥gj − g∗∥2L2(Ψ(M),Ψ#µ)

≤ 2∥gj − g∗∥2n +
128K(β,M)2n−2β/(2β+de)

3
+

128K(β,M)2 logN

3n

holds with probability at least 1 − exp
(
−nde/(2β+de)

)
uniformly for all gj ∈

{g1, · · · , gN}.
We can now go back to equation (62). Using the last inequality and setting
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τ = n−β/(2β+de), we deduce that

∥ĝ − g∗∥2L2(Ψ(M),Ψ#µ)

≤ 2τ2 + 4

(
∥gj − g∗∥2n +

64K(β,M)2τ2

3
+

64K(β,M)2 logN

3n

)
≤ 2τ2 + 4

(
2∥ĝ − gj∥2n + 2∥ĝ − g∗∥2n +

64K(β,M)2τ2

3
+

64K(β,M)2 logN

3n

)
≤ 2τ2 + 4

(
2τ2 + 2∥ĝ − g∗∥2n +

64K(β,M)2τ2

3
+

64K(β,M)2 logN

3n

)
≤ 10n−2β/(2β+de) + 8

(
∥ĝ − g∗∥2n + 32K(β,M)2n−2β/(2β+de)

3 + 32K(β,M)2 logN
3n

)
≤ 10n−2β/(2β+de) + 8

(
∥ĝ − g∗∥2n + 32K(β,M)2n−2β/(2β+de)

3

+ 32K(β,M)2W
3n log

4(L1+1)(B1+2)B
L1+1
1 N

L1+1
1

n−β/(2β+de)

)
(65)

holds with probability at least 1− exp
(
−nde/(2β+de)

)
, where the last inequality

follows by the definition of N = n∗(τ,F(N1, L1, B1), ∥ · ∥∞) and Lemma 5 and

W := (de + 1)N1 + (L1 − 1)N2
1 + L1N1 + 1. (66)

Our next task is to bound the empirical norm ∥ĝ − g∗∥2n.
With g∗ given by (60), we denote the set resulting from the translation of

F(N1, L1, B1) by g
∗ as

G(g∗) := {(g − g∗) : g ∈ F(N1, L1, B1)} .

Similarly, for any γ > 0, we define

Gγ(g∗) := {(g − g∗) : ∥g − g∗∥n ≤ γ, g ∈ F(N1, L1, B1)} .

Using the observation that Gγ(g∗) ⊆ G(g∗) and Lemma 6, we have

n∗(ϵ, Gγ(g∗), ∥ · ∥n) ≤ n∗(ϵ, G(g∗), ∥ · ∥n)
= n∗(ϵ, F(N1, L1, B1), ∥ · ∥n)

≤
(

4(L1+1)(B1+2)B
L1+1
1 N

L1+1
1

ϵ

)W
. (67)

Using the observations Z1, · · · , Zn, given by (63), we define the Gaussian
stochastic process 1

n

∑n
i=1 εig(Zi), where g ∈ Gγ(g∗) and the terms εi, given

by (7), are normally distributed independent random variables with mean 0
and variance σ2. In fact, this stochastic process is a sub-Gaussian process with
respect to the ∥ · ∥n, as shown by Lemma 5 in [30]. We refer to [34, Sec. 2.1.2]
for definitions and basic results about sub-Gaussian stochastic processes.
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Using the Borell-Sudakov-Tsirelson concentration inequality [34, Thm. 2.5.8],
we have that for any u ∈ R

P

(
sup

g∈Gγ(g∗)

| 1n
n∑
i=1

εig(Zi)| ≥ E

[
sup

g∈Gγ(g∗)

| 1n
n∑
i=1

εig(Zi)|

]
+ u

)
≤ exp

(
−nu2

2σ2γ2

)
,

(68)
where σ2 is the variance of the terms εi in (7). Next, using the chaining argu-
ment, cf. [34, Thm 2.3.6], and inequality (67), we deduce that

E

[
sup

g∈Gγ(g∗)

∣∣∣∣∣ 1n
n∑
i=1

εig(Zi)

∣∣∣∣∣
]

≤ 4
√
2σ√
n

∫ γ

0

√
log 2n∗(ϵ,Gγ(g∗), ∥ · ∥n) dϵ

≤ 4
√
2σ√
n

∫ γ

0

√√√√log 2

(
4(L1 + 1)(B1 + 2)BL1+1

1 NL1+1
1

ϵ

)W
dϵ

≤ 4
√
2Wσ√
n

∫ γ

0

√
log 2

4(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

ϵ
dϵ

≤ 4
√
2Wσ√
n

∫ γ

0

log
8(L1 + 1)(B1 + 2)BL1+1

1 NL1+1
1

ϵ
dϵ

=
4
√
2Wσγ√
n

(
log

8(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

γ
+ 1

)
. (69)

Using (68) and (69), we now have that for any u ∈ R

sup
g∈Gγ(g∗)

∣∣∣∣∣ 1n
n∑
i=1

εig(Zi)

∣∣∣∣∣
≤ 4

√
2Wσγ√
n

(
log

8(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

γ
+ 1

)
+ u

≤ 1

128
γ2 + 211σ2W

n

(
log

8(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

γ
+ 1

)2

+ u,

holds with probability at least 1−exp
(
−nu2/(2σ2γ2)

)
, where the last inequality

is a consequence of the algebraic inequality ab ≤ (1/32)a2 + 16b2.
By setting u = 2−7γ2 in the last inequality, it follows that

sup
g∈Gγ(g∗)

∣∣∣∣∣ 1n
n∑
i=1

εig(Zi)

∣∣∣∣∣≤ γ2

64
+211

σ2W

n

(
log

8(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

γ
+ 1

)2

(70)
with probability at least 1− exp

(
−nγ2/(215σ2)

)
.
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We now claim that

∥ĝ − g∗∥2n ≤ 9∥g∗ − g0∥2n + 214σ2W

n

(
log

(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

16
√
2σn−β/(2β+de)

+ 1

)2

+ 212σ2n−2β/(2β+de). (71)

To prove the claim, we set

γ = max
{√

215σ2n−2β/(2β+de), 2∥ĝ − g0∥n
}
. (72)

and we consider the two cases ∥ĝ − g∗∥n ≤ γ and ∥ĝ − g∗∥n ≥ γ separately.
When ∥ĝ − g∗∥n ≤ γ, we have

∥ĝ − g∗∥2n
≤ 2∥ĝ − g0∥2n + 2∥g0 − g∗∥2n
(i)

≤ 4∥g0 − g∗∥2n + 4 sup
g∈Gγ(g∗)

∣∣∣∣∣ 1n
n∑
i=1

εig(Zi)

∣∣∣∣∣
(ii)

≤ 4∥g0 − g∗∥2n + 213σ2W

n

(
log

8(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

γ
+ 1

)2

+
γ2

16

≤ 4∥g∗ − g0∥2n + 213σ2W

n

(
log

(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

16
√
2σn−β/(2β+de)

+ 1

)2

+
1

16

(√
215σ2n−2β/(2β+de)

)2
+

1

16
(2∥ĝ − g0∥n)2

≤ 4∥g∗ − g0∥2n + 213σ2W

n

(
log

(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

16
√
2σn−β/(2β+de)

+ 1

)2

+211σ2n−2β/(2β+de) +
1

2
∥ĝ − g∗∥2n +

1

2
∥g∗ − g0∥2n, (73)

where (i) follows from

∥ĝ − g0∥2n ≤ ∥g∗ − g0∥2n +
2

n

n∑
i=1

εi (ĝ(Zi)− g∗(Zi)) , (74)

and (ii) follows from inequality (70). To justify inequality (74), we observe that,
by the definition of ĝ, ∥Y − ĝ∥2n ≤ ∥Y − g∥2n for any g ∈ F(N1, L1, B1), i.e.,

1

n

n∑
i=1

(Yi − ĝ(Zi))
2 ≤ 1

n

n∑
i=1

(Yi − g(Zi))
2
. (75)

Substituting Yi = g0(Zi) + εi, defined by (63), into (75), we obtain

1

n

n∑
i=1

(g0(Zi) + εi − ĝ(Zi))
2 ≤ 1

n

n∑
i=1

(g0(Zi) + εi − g(Zi))
2
,
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which, after a direct calculation, yields the following inequality

∥ĝ − g0∥2n ≤ ∥g − g0∥2n +
2

n

n∑
i=1

εi (ĝ(Zi)− g(Zi)) .

Inequality (71) follows from simplifying inequality (73).
When ∥ĝ−g∗∥n ≥ γ, by the definition of γ in (72), it follows that 2∥ĝ−g0∥n ≤

∥ĝ − g∗∥n. Then we deduce that

∥ĝ − g∗∥2n ≤ 2∥ĝ − g0∥2n + 2∥g∗ − g0∥2n ≤ 1

2
∥ĝ − g∗∥2n + 2∥g∗ − g0∥2n.

By the above inequality, we easily get ∥ĝ − g∗∥2n ≤ 4∥g∗ − g0∥2n. Thus, inequal-
ity (71) holds for ∥ĝ − g∗∥n ≥ γ.

Step 4. Using estimates (65) and (71) into (61), we have that

∥f̂ − f0∥2L2(M,µ) ≤
(
20 + 216σ2 +

29K(β,M)2

3

)
n−2β/(2β+de)

+ 218σ2W

n

(
log

(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

16
√
2σn−β/(2β+de)

+ 1

)2

+
29K(β,M)2W

3n
log

4(L1 + 1)(B1 + 2)BL1+1
1 NL1+1

1

n−β/(2β+de)

+ 144 max
y∈Ψ(M)

|g∗(y)− g0(y)|+ 2∥g∗ − g0∥2L2(Ψ(M),Ψ#µ)
,(76)

with probability at least 1− 2 exp
(
−nde/(2β+de)

)
.

By Theorem 1, we can find a NN f∗ ∈ F̂(N1, L1, B1) such that

sup
y∈Ψ(M)

|g∗(y)− g0(y)| = max
x∈M

|f∗(x)− f0(x)| ≤ n−β/(2β+de), (77)

where f∗ = g∗ ◦ Ψ and g∗ ∈ F(N1, L1, B1).
Since ∥g∗−g0∥2L2(Ψ(M),Ψ#µ)

≤ maxy∈Ψ(M) |g∗(y)−g0(y)|, it follows by apply-

ing (66) and (77) into (76) that there is a constant C = C(σ, β, de,M, diam(M))
such that

∥f̂ − f0∥2L2(M,µ) ≤ Cn−2β/(2β+de)(1 + log n)2,

with probability at least 1− 2 exp
(
−nde/(2β+de)

)
. 2

Appendix A. Proof of Theorem 4.

Theorem 4 slightly modifies Theorem 2 in [26] by changing the family of
random projections that are used to map points from a manifold M in RD
into a lower dimensional space. Namely, while the original random projections
matrices were assumed to have entries with zero mean normal random variables,
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here we assume a different random distribution that allows us a better control
on the size of the entries.

Since our proof follows closely the structure of the original proof in [26], we
only report below the new elements and indicate how the original proof needs
to be modified.

We start by recalling some useful definitions and observations, cf. [36].

Definition 11 (Sub-Gaussianity). For any σ > 0, a zero-mean random vari-
able X is σ2-sub-Gaussian if, for all λ ∈ R,

E[eλX ] ≤ exp
(
λ2σ2

2

)
.

Proposition 1 (Sums of sub-Gaussians). For i = 1, . . . , n, let ai, σi ∈ R, σi >
0 and Xi be independent, mean zero σ2

i -sub-Gaussian random variables. Then∑n
i=1 aiXi is

∑n
i=1 a

2
iσ

2
i -sub-Gaussian.

Definition 12 (Sub-exponential). A mean-zero random variable X is (τ2, b)-
sub-exponential, with τ, b > 0, if, for all |λ| ≤ 1

b ,

E[eλX ] ≤ exp
(
λ2τ2

2

)
.

Proposition 2 (Sums of sub-exponentials). For i = 1, . . . , n, let τi ∈ R,,
bi > 0 and Xi be independent (τ2i , bi)-sub-exponential random variables. Then∑n
i=1Xi is (

∑n
i=1 τ

2
i , b∗)-sub-exponential, where b∗ = maxi bi. In addition,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[Xi]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−min

{
nt2

2 1
n

∑n
i=1 τ

2
i

,
nt

2b∗

})
.

Adapting the argument in [37, Appendix B], we have the following proposi-
tion.

Proposition 3. If random variable X is σ2-sub-Gaussian, then X2 is (18σ4, 18σ2)-
sub-exponential.

Proof. For any integer r ≥ 1, the moments of the σ2-sub-Gaussian variable X
are bounded by the inequality

E[|X|r] ≤ r 2r/2 σr Γ(r/2), (A.1)

where Γ is the Gamma function.
Using a power series expansion, inequality (A.1) and the observation that
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Γ(r) = (r − 1)! for an integer r ≥ 1, we obtain that, for any t ∈ R,

E[et(X
2−E[X2])] = 1 + tE[X2 − E[X2]] +

∞∑
r=2

trE[(X2 − E[X2])r]

r!

= 1 +

∞∑
r=2

trE[(X2 − E[X2])r]

r!

(i)

≤ 1 +

∞∑
r=2

|t|rE[|X|2r]
r!

≤ 1 +

∞∑
r=2

|t|r2r2rσ2rΓ(r)

r!

= 1 +

∞∑
r=2

|t|r2r+1σ2r

= 1 +
8t2σ4

1− 2|t|σ2
, (A.2)

where (i) uses the fact that, for any random variable X and C ∈ R, E[(X −
E[X])2] ≤ E[(X − C)2].

By choosing |t| ≤ 1/(18σ2), we have that 8/(1 − 2|t|σ2) ≤ 9. Finally, using
this observation and the inequality 1 + α ≤ eα, valid for any α ∈ R, from (A.2)
we deduce that, for all |t| ≤ 1/(18σ2), we have

E[et(X
2−E[X2])] ≤ e9 t

2σ4

= exp(t2
18σ4

2
).

2

The key element of the proof is the following lemma which is a modification
of Lemma 17 in [26]. Once this lemma is proved, the proof of Theorem 4 then
follows exactly as in the original proof of Theorem 2 in [26]. Hence the rest of
the argument is omitted.

Lemma 7. Let A = (ai,j) be a Q × D matrix populated with i.i.d. random
variables with entries

aij =

{
+ 1√

Q
with probability 1

2

− 1√
Q

with probability 1
2 .

(A.3)

Fix 0 ≤ λ ≤ 1/3 and λ′ ≥ 1 or λ′ = 0. Then, for fixed y ∈ RD, we have

P{|∥Ay∥ − ∥y∥| > λ∥y∥} ≤ 2 exp

(
−Qλ

2

36

)
(A.4)

P{∥Ay∥ > (1 + λ′)∥y∥} ≤ 2 exp

(
−Qλ

′

36

)
. (A.5)
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Proof. We claim that the random variable X defined in (A.3) is 1
Q -sub-

Gaussian. By taking expectations and using the power series expansion for
the exponential, we obtain

E[eλX ] =
1

2

(
e
− λ√

Q + e
λ√
Q

)
=

1

2

( ∞∑
k=0

(−λ/
√
Q)k

k!
+

∞∑
k=0

(λ/
√
Q)k

k!

)

=

∞∑
k=0

(λ/
√
Q)2k

(2k)!

≤ 1 +

∞∑
k=1

(λ/
√
Q)2k

2kk!

= exp

(
λ2/Q

2

)
.

It is straightforward to verify that, for any y = (yj) ∈ RD, we have E∥Ay∥2 =
∥y∥2. Without loss of generality, we assume that ∥y∥ = 1. Observe that, for

i = 1, . . . , Q, (Ay)i =
∑D
j=1 aijyj and ∥y∥2 =

∑D
j=1 y

2
j = 1. By Proposition 1,

(Ay)i is 1
Q -sub-Gaussian and hence, by Proposition 3, (Ay)2i is ( 18

Q2 ,
18
Q )-sub-

exponential. By Proposition 2, we have that ∥Ay∥2 =
∑Q
i=1(Ay)

2
i is ( 18Q ,

18
Q )-

sub-exponential and, for k > 0,

P
(∣∣∥Ay∥2 − 1

∣∣ ≥ k
)
≤ 2 exp

(
−min

{
Qk2

36
,
Qk

36

})
. (A.6)

By inequality (A.6) and 0 ≤ λ ≤ 1, we then can deduce that

P (∥Ay∥ − 1| ≥ λ) = P (∥Ay∥ ≥ 1 + λ) + P (∥Ay∥ ≤ 1− λ)

≤ P
(
∥Ay∥2 ≥ 1 + λ

)
+ P

(
∥Ay∥2 ≤ 1− λ

)
= P

(∣∣∥Ay∥2 − 1
∣∣ ≥ λ

)
≤ 2 exp

(
−Qλ

2

36

)
.

This establishes inequality (A.4). For inequality (A.5), using inequality (A.6)
and λ′ ≥ 1, we obtain that

P (∥Ay∥ ≥ 1 + λ′) = P
(
∥Ay∥2 ≥ (1 + λ′)2

)
≤ P

(
∥Ay∥2 ≥ 1 + λ′

)
≤ P

(∣∣∥Ay∥2 − 1
∣∣ ≥ λ

)
≤ 2 exp

(
−Qλ

′

36

)
.

2

36



References

[1] R. Bellman, On the theory of dynamic programming, Proceedings of the
national Academy of Sciences 38 (1952) 716–719.
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157 (2022) 101–135.

[26] A. Eftekhari, M. B. Wakin, New analysis of manifold embeddings and sig-
nal recovery from compressive measurements, Applied and Computational
Harmonic Analysis 39 (2015) 67–109.

[27] P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds
with high confidence from random samples, Discrete & Computational
Geometry 39 (2008) 419–441.

38



[28] H. Bolcskei, P. Grohs, G. Kutyniok, P. Petersen, Optimal approximation
with sparsely connected deep neural networks, SIAM Journal on Mathe-
matics of Data Science 1 (2019) 8–45.

[29] D. Yarotsky, Error bounds for approximations with deep relu networks,
Neural Networks 94 (2017) 103–114.

[30] T. Suzuki, Fast generalization error bound of deep learning from a kernel
perspective, in: International Conference on Artificial Intelligence and
Statistics, PMLR, 2018, pp. 1397–1406.

[31] M. Anthony, P. L. Bartlett, P. L. Bartlett, et al., Neural network learning:
Theoretical foundations, volume 9, cambridge university press Cambridge,
1999.

[32] V. I. Bogachev, M. A. S. Ruas, Measure theory, volume 1, Springer, 2007.

[33] R. Vershynin, High-dimensional probability: An introduction with appli-
cations in data science, volume 47, Cambridge university press, 2018.
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