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WAVELETS WITH COMPOSITE DILATIONS

KANGHUI GUO, DEMETRIO LABATE, WANG-Q LIM, GUIDO WEISS, AND EDWARD
WILSON

Abstract. A wavelet with composite dilations is a function generating an
orthonormal basis or a Parseval frame for L2(Rn) under the action of lattice
translations and dilations by products of elements drawn from non-commuting
matrix sets A and B. Typically, the members of B are shear matrices (all eigen-
values are one) while the members of A are matrices expanding or contracting
on a proper subspace of Rn. These wavelets are of interest in applications
because of their tendency to produce “long, narrow” window functions well
suited to edge detection. In this paper, we discuss the remarkable extent to
which the theory of wavelets with composite dilations parallels the theory of
classical wavelets, and present several examples of such systems.

1. Introduction

There is considerable interest, both in mathematics and its applications, in the
study of efficient representations of multidimensional functions. The motivation
comes partly from signal processing, including applications in image compression
and feature extraction, and from the investigation of certain classes of singular
integral operators. In particular, it was pointed out in several recent research papers
that oriented oscillatory waveforms play a fundamental role in the construction of
representations for multidimensional functions and signals (cf. [1], [3], [5], and
articles in [11]). For example, it was shown that, in order to be optimally sparse
in a certain sense, such representations must contain basis elements with many
locations, scales, shapes and directions, unlike the trigonometric bases or even the
“classical” wavelets, which are made of essentially isotropic oscillatory bumps at
various scales and locations (cf. [2]).

In this paper, we introduce a new class of representation systems which have
exactly the features we have described, as well as several other properties which
have great potential in applications. These systems, that we call affine systems
with composite dilations, have the form

(1.1) ΨAB = {Da Db Tk ψ` : k ∈ Zn, b ∈ B, a ∈ A, ` = 1, . . . , L},
where ψ` ∈ L2(Rn), Tk are the translations, defined by Tk f(x) = f(x−k), Da are
the dilations, defined by Da f(x) = | det a|−1/2 f(a−1x), and A, B are countable
subsets of GLn(R). By choosing ψ`, A, and B appropriately, we can make ΨAB
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an orthonormal (ON) basis or, more generally, a Parseval frame (PF) for L2(Rn).
In this case, we call Ψ = {ψ1, . . . , ψL} an ON AB-multiwavelet or a PF AB-
multiwavelet, respectively. If the system has only one generator, that is, L = 1,
then we use the expression wavelet rather than multiwavelet in this definition.

As we will show, the mathematical theory of these systems provides a simple
and flexible framework for the construction of several classes of bases and Parseval
frames. For example, in Sections 3.3 and 3.4, we construct composite wavelets with
good time-frequency decay properties, whose elements contain “long and narrow”
waveforms with many locations, scales, shapes and directions. These examples have
similarities to the curvelets [1] and contourlets [4], which have been recently intro-
duced in order to obtain efficient representations of natural images. Our approach
is more general and presents a simple method for obtaining orthonormal bases and
Parseval frames that exhibit these and other geometric features. In particular,
our approach extends naturally to higher dimensions and allows a multiresolution
construction which is well suited to a fast numerical implementation.

Before embarking on our presentation, it is useful to establish some notation
and definitions. Recall that a countable family {ψi}i∈I of elements in a separable
Hilbert space H is a Parseval frame (PF) for H, if

‖f‖2 =
∑

i∈I
|〈f, ψi〉|2

for each f ∈ H. We adopt the convention that an element x ∈ Rn is a column
vector, while ξ ∈ R̂n is a row vector. A vector x multiplying a matrix a ∈ GLn(R)
on the right, is understood to be a column vector, while a vector ξ multiplying a

on the left is a row vector. Thus, ax ∈ Rn and ξa ∈ R̂n. The Fourier transform is
defined as

f̂(ξ) =
∫

Rn

f(x) e−2πiξx dx.

For any E ⊂ R̂n, we denote by L2(E)∨ the space {f ∈ L2(Rn) : supp f̂ ⊂ E}.
2. AB-MRA

Let B be a countable subset of S̃Ln(Z) = {b ∈ GLn(R) : | det b| = 1} and A =
{ai : i ∈ Z}, where ai ∈ GLn(R), We say that a sequence {Vi} of closed subspaces
of L2(Rn) is an AB-multiresolution analysis (AB-MRA) if the following holds:

(i) Db Tk V0 = V0, for any b ∈ B, k ∈ Zn.
(ii) For each i ∈ Z, Vi ⊂ Vi+1,, where Vi = D−1

ai
V0.

(iii)
⋂

Vi = {0} and
⋃

Vi = L2(Rn).
(iv) There exists φ ∈ L2(Rn) such that ΦB = {Db Tk φ : b ∈ B, k ∈ Zn} is a

semi-orthogonal PF for V0, that is, ΦB is a PF for V0 and, in addition,
Db Tk φ⊥Db′ Tk′ φ for any b 6= b′, b, b′ ∈ B, k, k′ ∈ Zn.

The space V0 is called an AB scaling space and the function φ is an AB scaling
function for V0. If, in addition, ΦB is an orthonormal basis for V0, then φ is an
ON AB scaling function. Also, let W0 be the orthogonal complement of V0 in
V1, that is, V1 = V0

⊕
W0. We cite the following elementary result [6]:

Theorem 2.1. (i) Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) be such that {Db Tk ψ` :
b ∈ B, ` = 1, . . . L, k ∈ Zn} is a PF for W0. Then Ψ is a PF AB-
multiwavelet.
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(ii) Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) be such that {Db Tk ψ` : b ∈ B, k ∈
Zn, ` = 1, . . . , L} is an orthonormal basis for W0. Then Ψ is an ON AB-
multiwavelet.

In the situation described by the hypotheses of this Theorem (where Ψ is not
only a PF for L2(Rn), but is also derived from an AB-MRA), we say that Ψ is a
PF MRA AB-multiwavelet or an ON MRA AB-multiwavelet, respectively.

In most cases of interest, the set A ⊂ GLn(R) has the form A = {ai = ai : i ∈ Z},
where a ∈ GLn(R), and B is a subgroup of S̃Ln(Z) which satisfies aBa−1 ⊆ B.
For the remainder of this section, we will make this assumption.

We say that the PF MRA AB-wavelet ψ is of finite filter (FF) type if there
exists an AB scaling function φ for V0 and a finite set {b1, . . . , bk} ⊂ B such that

φ̂(ξa) =
k∑

j=1

m
(j)
0 (ξ) φ̂(ξ bj), ψ̂(ξa) =

k∑

j=1

m
(j)
1 (ξ) φ̂(ξ bj),

where m
(j)
0 ,m

(j)
1 , 1 ≤ j ≤ k, are periodic functions. Similarly, the ON MRA AB-

multiwavelet Ψ is of finite filter (FF) type if there exists an AB scaling function φ
for V0 and a finite set {b1, . . . , bk} ⊂ B such that

φ̂(ξa) =
k∑

j=1

m
(j)
0 (ξ) φ̂(ξ bj), ψ̂`(ξa) =

k∑

j=1

m
(j)
1,`(ξ) φ̂(ξ bj), ` = 1 . . . , L,

where m
(j)
0 , m

(j)
1,`, 1 ≤ j ≤ k, are periodic functions.

It turns out that, while it is possible to construct a PF AB-wavelet using a single
generator, that is, Ψ = {ψ}, in the case of orthonormal MRA AB-multiwavelets,
multiple generators are needed, that is, Ψ = {ψ1, . . . , ψL}, where L > 1. This
situation is similar to the classical MRA and, as in that case, such restriction is not
needed if the system does not come from an MRA (cf., for example, [12]). We refer
to [6] for a proof of the following theorems.

Theorem 2.2. Let Ψ = {ψ1, . . . , ψL} be an ON MRA AB-multiwavelet for L2(Rn),
and let N = |B/aBa−1| (= the order of the quotient group B/aBa−1). Assume
that | det a| ∈ N. Then L = N | det a| − 1.

Theorem 2.3. Let B ⊂ S̃Ln(Z) and a ∈ GLn(Z) with aBa−1 ⊆ B. Let L =
N |det a| − 1, where N = |B/aBa−1|. Assume that φ ∈ L2(Rn) is an ON AB

scaling function for V0 = span {Db Tk φ : k ∈ Zn, b ∈ B}. Then:

(i) There exist ON MRA AB-multiwavelets Ψ = {ψ1, . . . , ψL} with scaling
space V0.

(ii) If φ̂ = χU , where U ⊂ Rn is a measurable set, then there are sets T` ⊂ Rn,
` = 1, . . . , L, for which Ψ = {ψ` = (χT`

)∨ : ` = 1, . . . , L} is an ON MRA
AB-multiwavelet and Ψ is of FF type.

Remark 2.4. Let a ∈ GLn(Z). Under additional assumptions on B (which are
satisfied, for example, by the examples in Section 3), there exist sets S ⊂ R̂n such
that ψ is a ON AB-wavelet for L2(Rn), where ψ̂ = χS . It is clear, by Theorem 2.2,
that these AB-wavelets are not of MRA type.
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3. Examples

This section shows that there are several examples of affine systems with compos-
ite dilations forming ON bases or PFs for L2(Rn). In particular, Sections 3.1 and 3.2
contain examples of PF MRA AB-multiwavelets and ON MRA AB-multiwavelets
for L2(R2), respectively; Sections 3.3 and 3.4 describe how to construct PF AB-
wavelets which are well-localized both in R2 and R̂2; Section 3.5 describes gener-
alizations of these examples for dimensions n > 2; finally, Section 3.6 describes a
class of singly generated (non MRA) ON AB-wavelets. More details about these
constructions are found in [6].

3.1. Example 1. Let B = {bj =
(

1 j
0 1

)
: j ∈ Z}. For 0 ≤ α < β, let S(α, β) =

{ξ = (ξ1, ξ2) ∈ R̂2 : α ≤ |ξ1| < β} and let T (α, β) = T+(α, β)
⋃

T−(α, β),
where T+(α, β) is the trapezoid with vertices (α, 0), (α, α), (0, β) and (β, β), and
T−(α, β) = {ξ ∈ R̂2 : −ξ ∈ T+(α, β)}. Observe that T (0, β) is the union of two tri-
angles. A simple computation shows that T (α, β) is a B-tiling region for S(α, β),
that is, S(α, β) is the disjoint union, modulo null sets, of the sets T (α, β) b, b ∈ B.

Now let a =
(

c d
0 e

)
∈ GL2(R), with |c| > 1, S0 = S(0, 1/(2|c|)), Si = S0 ai,

i ∈ Z, and define a sequence {Vi}i∈Z of nested subspaces of L2(R2) by Vi = L2(Si)∨,
i ∈ Z. Also, let U = T (0, (2|c|)−1) and φ = (χU )∨. Since U is a B-tiling region
for S0, then span {Db Tk φ : k ∈ Z2, b ∈ B} = L2(S0)∨ = V0. This shows that the
spaces {Vi} form an AB–MRA and φ is the AB scaling function for V0. In addition,
for R = T ((2|c|)−1, 2−1), the function ψ = (χR)∨ is a PF MRA AB–wavelet, since
{Db Tk ψ : b ∈ B, k ∈ Z2} is a PF for W0 = L2(S1 \ S0)∨. Observe that W0 is the
orthogonal complement of V0 in V1. Also, ψ is of FF type, since U a−1 and R a−1

are contained in
⋃k−1

j=0 Ubj for k ≥ |c|.

3.2. Example 2. Let B, S(α, β), and T (α, β) be defined as in Example 1. Let a =(
k1 k2

0 k3

)
∈ GL2(Z), with k1 > 1 and N = |k1/k3| ∈ N, and let L = | det a|N−1 =

k2
1 − 1. Similarly to Example 1, let S0 = S(0, 1), Si = S0 ai, i ∈ Z, and define a

sequence of spaces {Vi}i∈Z by Vi = L2(Si)∨, i ∈ Z. Let U = T (0, 1) and φ = (χU )∨.
Then φ is an ON basis for span {Db Tk φ : k ∈ Zn, b ∈ B} = L2(S0)∨ = V0, and the
spaces {Vi}i∈Z form an AB–MRA where φ is the corresponding ON AB scaling
function.

Observe that the set R = T (1, k1) is a B-tiling region for S1 \ S0. We can pick
disjoint subsets R`, ` = 1, . . . , L of R such that R =

⋃L
`=1 R` and, for each `,

R` is a fundamental domain for Z2. Figure 1 illustrates this construction in the
special case where k1 = 1 and, thus, L = 3. Now let Ψ = {ψ1, . . . , ψL}, where
ψ` = (χR`

)∨, ` = 1, . . . , L. Since {Db Tk ψ` : b ∈ B, ` = 1, . . . , L, k ∈ Z2} is a ON
basis for W0 = L2(S1 \ S0)∨, and W0 is the orthogonal complement of V0 in V1,
it follows that Ψ is an ON MRA AB–multiwavelet. In addition, Ψ is of FF type,
since the sets U a−1 and R` a−1, ` = 1, . . . , L, are contained in

⋃k1−1
j=0 U bj .

The examples described in Sections 3.1 and 3.2 are well–localized in R̂n, since
the AB–multiwavelets that we constructed are band-limited, but they do not have
good localization in Rn, since they decay only as fast as |x|−1 when |x| → ∞. The
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Figure 1. The sets U , R and R`, ` = 1, 2, 3, in Example 2, where
L = 3.

examples described in the next two sections, on the contrary, are well–localized
both in Rn and R̂n.

3.3. Example 3. Let ψ1 ∈ L2(R) be a (one-dimensional) dyadic band-limited
wavelet with supp ψ̂1 ⊂ [−Ω, Ω], Ω > 0, and ψ2 ∈ L2(R) be another band-limited
function with supp ψ̂2 ⊂ [−1, 1] and satisfying

(3.1)
∑

j∈Z
|ψ̂2(ξ + j)|2 = 1 a.e. ξ ∈ R.

As we will show later on, there are several choices of functions ψ1 and ψ2 satisfying
these properties.

For any ω = (ω1, ω2) ∈ R2, ω1 6= 0, define ψ ∈ L2(R2) by

(3.2) ψ̂(ω) = ψ̂1(2s ω1) ψ̂2

(ω2

ω1

)
,

where s ∈ Z satisfies 2s ≥ 2Ω. It turns out that ψ is a PF AB–wavelet, where

A = {ai =
(

2i 0
0 1

)
: i ∈ Z} and B = {bj =

(
1 j
0 1

)
: j ∈ Z}. The proof of

this fact is based on an application of a result from [7], where the characterization
equations for a very general class of Parseval frames are obtained.

As we mentioned before, there are many choices for the functions ψ1 and ψ2

that satisfy the assumptions we have described above. For example, we can choose
ψ1 to be the Lemariè-Meyer wavelet (see [8, Sec.1.4]), defined by ψ̂1(ξ) = eiπξ b(ξ),
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where

b(ξ) =





sin(π
2 (3|ξ| − 1)) 1

3 ≤ |ξ| ≤ 2
3

sin( 3π
4 ( 4

3 − |ξ|)) 2
3 < |ξ| ≤ 4

3

0 otherwise.
In order to construct ψ2, let φ be a compactly supported C∞ bump function, with
supp φ ⊂ [−1, 1] (examples can be found in [10, Sec. 3.3] or [9, Sec. 1.4]), and define
ψ2 by

ψ̂2(ξ) =
φ(ξ)√∑

k∈Z |φ(ξ + k)|2 .

It is clear that ψ2 ∈ C∞(R) and satisfies (3.1). It follows that ψ̂, given by (3.2), is
in C∞(R2) and this implies that |ψ(x)| ≤ KN (1 + |x|)−N , KN > 0, for any N ∈ N.

The following example shows how to construct MRA AB-wavelet for L2(R2)
which are well–localized both in Rn and R̂n.

3.4. Example 4. Let ψ1 ∈ L2(R) be a (one-dimensional) dyadic band-limited
MRA wavelet with supp ψ̂1 ⊂ [−Ω,Ω], Ω > 0, and φ1 be its associated scaling func-
tion. Let m0 and m1 be the low pass and high pass filters, respectively, associated
with φ1 and ψ1, that is, m0, m1 are the periodic functions satisfying the equations

φ̂1(ω1) = m0(
ω1

2
) φ̂1(

ω1

2
) and ψ̂1(ω1) = m1(

ω1

2
) φ̂1(

ω1

2
).

Let ψ2 ∈ L2(R) be defined by

ψ2(x) = ei(N+1)πx
( sin πx

πx

)N+1

,

where N ∈ N. That is, ψ̂2 is a basic spline of order N (cf. [8]).
For ω = (ω1, ω2) ∈ R2, ω1 6= 0, let φ ∈ L2(R2) be defined by

φ̂(ω) = φ̂1(2s ω1)
ψ̂2(ω2

ω1
)√∑

m∈Z
∣∣ψ̂2(ω2

ω1
+ m)

∣∣2
,

where s ∈ Z satisfies 2s ≥ 4Ω (N
2 + 1). This assumption on s ensures that

supp
{

φ̂1(2s ω1) ψ̂2(
ω2

ω1
)
}
⊂ [−1

4
,
1
4
]2.

Also, let ψ ∈ L2(R2) be defined by:

ψ̂(ω) =
N+1∑

k=0

d
(N)
k m1(2s−1ω1)M0(a−1ω) φ̂((bT )−ka−1 ω),

where the matrices a and b are as in Section 3.3, d
(N)
k = 2−N

(
N+1

k

)
, and M0(ω)

is the Z2-periodic function which, restricted to the fundamental region [− 1
2 , 1

2 ]2, is
given by

M0(ω) =

( ∑
m∈Z

∣∣ψ̂2(ω2
ω1

+ m)
∣∣2

∑
m∈Z

∣∣ψ̂2(2−1 ω2
ω1

+ m)
∣∣2

)1/2

, ω ∈ [−1
2
,
1
2
]2.

It turns out that ψ is a PF MRA AB wavelet for L2(R2). Indeed the spaces {Vj : j ∈
Z}, where Vj = D−j

a V0, j ∈ Z, and V0 = span {Db Tm φ : b ∈ B, m ∈ Z2}, form an
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AB MRA. Observe, however, that this system is somewhat different from those de-
scribed in Section 2, since the spaces V0 and W0 = span {Db Tm ψ : b ∈ B, m ∈ Z2}
are not mutually orthogonal. Also, by construction, ψ̂ ∈ CN (R̂2), so |ψ(x)| ≤
KN (1 + |x|)1−N , for some KN > 0.

3.5. Extensions for n > 2. For n > 2, there are several generalizations of the
examples described in the previous sections. The general idea is to write R̂n = F⊕E
and to define matrices a, b such that:

(i) Ea ⊆ E;
(ii) the induced action of a on R̂n/E is expanding;
(iii) b is the identity map on E and b− I maps F to E.

This allows us to construct a space V0 = L2(S)∨ as we did in the 2-dimensional
examples, for strip domains S = c×E, where c ⊂ F is contained in a neighborhood
of the origin.

In particular, in order to extend Examples 1 and 2, Let n = k + `, and A = {ai :

i ∈ Z}, where a =
(

a0 a1

0 a2

)
∈ GLn(R), and a0 ∈ GLk(R) is an expanding matrix.

The matrices B can be chosen according to one of the following patterns.

(i) Let k = 1, ` = n− 1 and B = {bj =
(

1 j
0 I`

)
: j ∈ Z`}. Then ψ = (χR)∨,

where R = {(ξ0, . . . , ξ`) ∈ Rn : 1
2|a0| ≤ |ξ0| < 1

2 , 0 ≤ ξi/ξ0 < 1, for 1 ≤ i ≤
`}, is a PF MRA AB wavelet.

(ii) Let k ≥ ` > 0 and B = {bj1,...,j`
=




Ik−` 0 0

0 I`




j1 . . . 0
. . .

0 . . . j`




0 0 I`




: ji ∈

Z, for each 1 ≤ i ≤ `}. To illustrate this example, let k = 3, ` = 2, and a0

be a diagonal matrix with diagonal entries c0, c1, c2 and |ci| > 1, i = 0, 1, 2.
Then ψ = (χR)∨, where R = {(ξ0, . . . , ξ4) ∈ Rn : 1

2|ci| ≤ |ξi| < 1
2 , i =

0, 1, 2, and 0 ≤ ξi+2/ξi < 1, for i = 1, 2}, is a PF MRA AB wavelet. The
construction is similar for any k ≥ `.

(iii) Let k = 1, ` = n − 1 and B = {bj1,...,j`
=




1 j1 . . . 0 0

0 1
. . . 0 0

. . . . . . . . .
0 0 . . . 1 j`

0 0 . . . 0 1




: ji ∈

Z, 1 ≤ i ≤ `}. Then ψ = (χR)∨, where R = {(ξ0, . . . , ξ`) ∈ Rn : 1
2|a0| ≤

|ξ0| < 1
2 , 0 < ξi/ξi−1 < 1, for 1 ≤ i ≤ `}, is a PF MRA AB wavelet.

Observe that, unlike the cases (i) and (ii), here the matrices B do not form
a group.

In order to generalize Examples 3 and 4 to dimensions n > 2, we can pro-
ceed as follows. Again, let n = k + ` and A = {ai : i ∈ Z}, where a =
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





a1 . . . 0
. . .

0 . . . ak


 0

0 I`


 ∈ GLn(R) and |ai| > 1, for each i = 1, . . . , k. The matri-

ces B can be chosen according to one of the following patterns.

(i) Let k = 1, ` = n− 1 and B = {bj =
(

1 j
0 I`

)
: j = (j1, . . . , j`) ∈ Z`}. Let

ψ1 ∈ L2(R) be a (one-dimensional) band-limited wavelet with respect to the
dilation a1, having supp ψ̂1 ⊂ [−Ω,Ω], Ω > 0; and let ψ2, . . . ψn ∈ L2(R)
be also band-limited functions with supp ψ̂i ⊂ [−1, 1], i = 2, . . . , n, and
satisfying

(3.3)
∑

j∈Z
|ψ̂i(ξ + j)|2 = 1 for a.e. ξ ∈ R, for any i = 2, . . . , n.

Now, for any ω = (ω1, . . . , ωn) ∈ Rn, ω1 6= 0, define ψ ∈ L2(Rn) by

ψ̂(ω) = ψ̂1(as
1 ω1) ψ̂2

(ω2

ω1

)
× · · · × ψ̂n

(ωn

ω1

)
,

where s ∈ Z satisfies as
1 ≥ 2Ω. Then one can show that ψ is a PF AB–

wavelet.

(ii) Let n = 2k and B = {bj =




Ik




j1 . . . 0
. . .

0 . . . jk




0 Ik


 : j = (j1, . . . , jk) ∈

Zk}. Let ψ1, . . . ψk ∈ L2(R) be band-limited wavelets with respect to the
dilations a1, . . . ak, respectively, having supp ψ̂i ⊂ [−Ωi, Ωi], Ωi > 0; and let
ψk+1, . . . ψn ∈ L2(R) be also band-limited functions with supp ψ̂i ⊂ [−1, 1],
i = k + 1, . . . , n, and satisfying (3.3) for any i = k + 1, . . . , n. Now, for any
ω = (ω1, . . . , ωn) ∈ Rn, ω1, . . . , ωk 6= 0, define ψ ∈ L2(Rn) by

ψ̂(ω) = ψ̂1(as1
1 ω1)× · · · × ψ̂k(ask

k ωk) ψ̂k+1

(ωk+1

ω1

)
× · · · × ψ̂n

(ω2k

ωk

)
,

where sk ∈ Z satisfies ask

k ≥ 2Ωk. Then one can show that ψ is a PF
AB–wavelet.

3.6. Composite wavelet sets. In this section, we consider AB wavelets where
ψ ∈ L2(Rn) is given by ψ̂ = χS , where S ⊂ R̂n. These systems are the analog of
the so-called MSF wavelets in the classical wavelet theory.

As a specific example of such systems, let us consider, for simplicity, the case n =

2. Let B = {bj =
(

1 j
0 1

)
: j ∈ Z}, and A = {ai : i ∈ Z}, where a =

(
a1 0
0 a2

)
,

with |a1| > 1 and a2 6= 0. Given any 0 < δ ≤ 1, let S = {(ξ1, ξ2) ∈ R2 : δ ≤ |ξ1| ≤
δ |a1|, and 0 ≤ ξ2 ≤ |ξ1|}, and define ψ by ψ̂ = χS . A direct computation shows
that:

(3.4) Ω =
⋃

i,j∈Z
S bj ai = {(ξ1, ξ2) ∈ R2 : ξ 6= 0},

where the union is disjoint, and this implies that ψ is a PF AB–wavelet.
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Figure 2. A singly generated ON AB wavelet (Section 3.6).

If, in addition, we take a ∈ GLn(Z), then, by choosing S appropriately, we
can construct systems which are not only PF but even ON bases for L2(Rn). For
example, let T (0, α) be as in Example 1, and let T (0, α)+(β, γ) denote the triangle

obtained by translating T (0, α) by (β, γ) ∈ R2. Let a =
(

2 0
0 2

)
, B as above, and

ψ be given by ψ̂ = χS , where S = S+
⋃

S− ⊂ R2, and S+ is defined by:

S+ = T (0, 1) \
∞⋃

k=1

(
T (0, 2−k) + (1− 2−k+1) (1, 1)

)
∪

∪
( ∞⋃

k=1

(
T (0, 2−k) + (2− 2−k+1) (1, 1)

))

This construction is illustrated in Figure 2. It is easy to see that S is a fundamental
domain for Z2-translations and equation (3.4) is satisfied. This shows that ψ is a
ON AB-wavelet.

Observe that, since this orthonormal system is generated by a single function, it
follows by Theorem 2.2 that ψ is not an ON MRA AB-wavelet.

For a =
(

2 0
0 1

)
, one can construct an analogous unbounded set S. Again, ψ,

where ψ̂ = χS , is not an ON MRA AB-wavelet by Theorem 2.2. Higher dimensional
generalizations of these examples can also be obtained.
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