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Abstract

In this paper we present a constructive proof that the set of Gabor frames is path-

connected in the L2(Rn)-norm. In particular, this result holds for the set of Gabor Parseval

frames as well as for the set of Gabor orthonormal bases. In order to prove this result, we

introduce a construction which shows exactly how to modify a Gabor frame or Parseval

frame to obtain a new one with the same property. Our technique is a modification of a

method used in [6] to study the connectivity of affine Parseval frames.
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1 Introduction

The study of the topological properties of Gabor and affine systems is an important topic in

the wavelet and Gabor theory. Some special prominence has been given in the literature to

the problem of connectivity. This question was originally raised in [1], where the significance

of the problem is also emphasized. Despite several important contributions to the study of

this problem (for example in [16], [15], [5], [6]) there are still a number of open questions.

In this paper, we are concerned with the problem of the connectivity for Gabor sys-

tems. In [5], [4], Gabardo, Han and Larson used an abstract result from the theory of von

Neumann algebras to prove that the sets of Gabor Parseval frames and Gabor frames are

path connected in the norm topology of L2. Unfortunately, their proof is not constructive

and this is a limitation since, in many situations, one would like to explicitly construct the

path connecting any Gabor Parseval frame or frame to a fixed element in the same set. The

main contribution of this paper is to present a constructive proof of these results. Unlike the

abstract Hilbert space method in [5], [4], our approach involves an explicit deformation gt,

t ∈ [0, 1], of an arbitrary frame generator g0, connecting g0 to a fixed band-limited generator

g1. If g0 ∈ L2(Rn) ∩Lp(Rn), 1 ≤ p < ∞, such deformation is continuous in Lp, 1 ≤ p < ∞.

Furthermore, we obtain an explicitly controlled deformation of the Gabor frame coefficients

by uniformly continuous functions. The techniques developed in this paper are relevant to

different problems, including the study of the stability of frames under perturbation.

To illustrate our technique, consider the one-dimensional Gabor systems

Gb(g) = {e2πibmx g(x− k) : k, m ∈ Z},

where g ∈ L2(R), 0 < b < 1. For E = [0, b), let g1 = (χE)∨. Then the system Gb(g1) is a

Parseval frame for L2(R). In our approach, we connect any g0 such that Gb(g0) is a Parseval

frame for L2(R) to g1 in the following way. For 0 ≤ t ≤ 1, let Et = [0, bt) and define a

deformation gt by

ĝt(ξ) =





ĝ0(ξ), ξ ∈ R̂ \ τb(Et)

1, ξ ∈ Et,

where τb(Et) = ∪k∈Z(Et + bk). As we mentioned, we can show that this deformation is

continuous in Lp, 1 ≤ p < ∞.

Before describing our approach in details, it will be useful to establish some notation

and definitions.
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1.1 Preliminaries

In this paper, GLn(R) denotes the n × n invertible matrices with real coefficients and,

similarly, GLn(Q) denotes the n × n invertible matrices with rational coefficients. The

Fourier transform is defined as f̂(ξ) =
∫
Rn f(x) e−2πiξ·x dx and the inverse Fourier transform

is f̌(x) =
∫
Rn f(ξ) e2πix·ξ dξ. Throughout the paper, the space Tn will be identified with

[0, 1)n. The Lebesgue measure of a measurable set Ω ⊂ Rn is denoted by µ(Ω).

Λ is a lattice in Rn if Λ = AZn, where A ∈ GLn(R). Given a measurable set Ω ⊆ Rn

and a lattice Λ in Rn, we say that Ω tiles Rn by Λ, or Ω is a fundamental domain of Λ,

if the following two properties hold:

(i)
⋃

`∈Λ(Ω + `) = Rn a.e.;

(ii) µ
(
(Ω + `) ∩ (Ω + `′)

)
= 0 for any ` 6= `′ in Λ.

We say that Ω packs Rn by Λ if only (ii) holds. Equivalently, Ω tiles Rn by Λ if and only if
∑

`∈Λ

χΩ(x− `) = 1 for a.e. x ∈ Rn, (1.1)

and Ω packs Rn by Λ if and only if
∑

`∈Λ

χΩ(x− `) ≤ 1 for a.e. x ∈ Rn. (1.2)

Clearly, µ(Ω) = |det A| if Ω tiles by Λ, and µ(Ω) ≤ |det A| if Ω packs by Λ. Furthermore,

if Ω packs Rn by Λ and µ(Ω) = | detA|, then Ω necessarily tiles Rn by Λ.

We need the following facts from the theory of frames. A countable sequence {gi}i∈I
of elements in a separable Hilbert space H is a Bessel sequence if there exists a constant

β > 0 so that ∑

i∈I
|〈f, gi〉|2 ≤ β ‖f‖2 for all f ∈ H.

If, in addition, there is a constant 0 < α ≤ β so that

α ‖f‖2 ≤
∑

i∈I
|〈f, gi〉|2 ≤ β ‖f‖2 for all f ∈ H,

then {gi}i∈I is a frame for H. The numbers α, β are called the lower and upper frame

bounds, respectively. The frame is tight if α and β can be chosen so that α = β, and is a

Parseval frame if α = β = 1. Given a frame {gi}i∈I of H with frame bounds α and β, the

frame operator S, defined by S f =
∑

i∈I〈f, gi〉 gi, is a bounded, invertible and positive

mapping of H onto itself. This provides the frame decomposition:

f =
∑

i∈I
〈f, S−1gi〉 gi =

∑

i∈I
〈f, gi〉S−1gi, for all f ∈ H, (1.3)
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with convergence inH. The sequence {S−1gi}i∈I is also a frame forH, called the canonical

dual frame of {gi}i∈I , and has upper and lower frame bounds β−1 and α−1, respectively.

If the frame is tight, then S−1 = α−1 I, where I is the identity operator, and the frame

decomposition becomes:

f =
1
α

∑

i∈I
〈f, gi〉 gi for all f ∈ H, (1.4)

with convergence in H. Equations (1.3) and (1.4) show that a frame provides a basis-like

representation. In general, however, a frame need not be a basis, and the elements {gi} need

not to be linearly independent. In particular, if {gi}i∈I is a Parseval frame, then ‖gi‖ ≤ 1

for all i ∈ I, and the frame is an orthonormal basis for H if and only if ‖gi‖ = 1 for all

i ∈ I (cf. [10, Ch.8]). We refer to [3, 10] for additional information about frames.

The Gabor systems generated by g ∈ L2(Rn) and associated with the matrices B,C ∈
GLn(R) are the collections

GB,C(g) = {MBm TCk g : m, k ∈ Zn}, (1.5)

where Ty, Mz, y, z ∈ Rn, are, respectively, the translation and modulation operators,

which are defined by

Tyf(x) = f(x− y), Mzf(x) = e2πiz·xf(x).

If we change the order in which the translations and modulations are applied, we ob-

tain the systems G̃B,C(g) = {TCk MBm g : m, k ∈ Zn}. Simple calculations show that

TCk MBm g = e−2πiBm·Ck MBm TCk g, for every m, k ∈ Zn, and that (TC k MBm g)∧ =

M−Ck TBm ĝ, for every m, k ∈ Zn. These observations immediately imply that

Lemma 1.1. (a) GB,C(g) is a frame for L2(Rn) if and only if G̃B,C(g) is a frame for L2(Rn);

furthermore, the frame constants α and β can be taken to be the same.

(b) GB,C(g) is a frame for L2(Rn) if and only if GC,B(ĝ) is a frame for L2(Rn); further-

more, the frame constants α and β can be taken to be the same.

Even though (1.5) is the customary definition of a Gabor system, it is easy to see that,

by re-scaling the functions g, one can represent the same system using only one matrix

(instead of the two matrices B and C). To show that this is the case, observe that

MBm TCk g(x) = e2πiBm·x g(x− Ck) = e2πiBm·x |det C|−1/2 | detC|1/2 g(C(C−1x− k)).

Using the change of variables y = C−1x and the new function g′(x) = g(C x), we have that

MBm TCk g(x) = MCT Bm Tk g′(y). Thus, we have:

GB,C(g) = GCT B(g′) = {MCT Bm Tk g′ : m, k ∈ Zn}.
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Therefore, without loss of generality, any Gabor system can be represented as

GB(g) = {MBm Tk g : m, k ∈ Zn}, (1.6)

where B ∈ GLn(R). In order to simplify the notation, we will adopt this definition of Gabor

systems in the following.

The Gabor frame operator SB(g), associated with the system GB(g), g ∈ L2(Rn), is

given by

SB(g) f =
∑

m∈Zn

∑

k∈Zn

〈f, MBm Tk g〉MBm Tk g(x).

We can consider the operator SB(g) as a sesquilinear form 〈f, f〉 7→ 〈SB(g) f, f〉 on L2(Rn)×
L2(Rn). For i, j ∈ Zn, let

γi,j(ξ, ĝ) =
∑

k∈Zn

ĝ(ξ + i−Bk) ĝ(ξ + j −Bk),

and let Γ(ξ) be the matrix whose (i, j)-entries are the functions γi,j(ξ, ĝ). Observe that these

functions satisfy γi,j(ξ, ĝ) = γ0,j−i(ξ + i, ĝ). We, thus, have the “matrix representation” for

SB(g) that was obtained by Ron and Shen in [14] (cf. also [7, Sec. 6.3]):

〈
SB(g) f, f

〉
=

∑

j∈Zn

∑

i∈Zn

∫

[0,1)n

γi,j(ξ, ĝ) f̂(ξ + i) f̂(ξ + j) dξ. (1.7)

Observe that this representation is well-defined for all f ∈ D, where

D =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact

}
(1.8)

is dense in L2(Rn). This representation of the Gabor frame operator is used to derive

the following complete characterization of the functions g ∈ L2(Rn) such that SB(g) is a

Parseval frame or, more generally, a frame for L2(Rn).

Theorem 1.2 ([14]). (a) The system GB(g) is a Parseval frame for L2(Rn) if and only if,

for all m ∈ Zn,

γ0,m(ξ, ĝ) =
∑

k∈Zn

ĝ(ξ −Bk) ĝ(ξ −Bk + m) = δ0,m (1.9)

for a.e. ξ ∈ Rn.

(b) The system GB(g) is a frame for L2(Rn) if and only if α = ess infξ∈Rn ‖Γ(ξ, ĝ)‖op > 0

and β = ess supξ∈Rn ‖Γ(ξ, ĝ)‖op < ∞, where α and β are the frame bounds for GB(g).

Theorem 1.2 implies the following:

Corollary 1.3. If GB(g) is a Parseval frame for L2(Rn) then | detB| ≤ 1, and GB(g) is an

orthonormal basis if and only if | det B| = 1.
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Proof. Let GB(g) be a Parseval frame and Ω be a fundamental domain for B Zn. Then,

by Theorem 1.2, part (a),

‖g‖ =
∑

k∈Zn

∫

Ω+B k
|ĝ(ξ)|2 dξ =

∫

Ω

∑

k∈Zn

|ĝ(ξ + B k)|2 dξ = µ(Ω) = | detB|.

The proof now easily follows since, as we mentioned before, if GB(g) is a Parseval frame,

then ‖Tk MBm g‖ = ‖g‖ ≤ 1 for all m, k ∈ Zn, and is an orthonormal basis if and only if

‖g‖ = 1. 2

More generally one can show that, if |det B| > 1, then the Gabor system GB(g) cannot

be a frame. This result is known as Rieffel’s theorem (cf. [13], [11]).

2 Connectivity in the set of Gabor frames

In this section, we show that the set of Gabor frames is pathwise connected under the

L2–norm. In particular, the set of Gabor Parseval frames is also pathwise connected.

Let FB (resp., PFB) be the sets of all functions g ∈ L2(Rn) such that GB(g), given by

(1.6), is a frame (resp., Parseval frame) for L2(Rn). This is the main result of this paper:

Theorem 2.1. Let B ∈ GLn(Q) and suppose that | detB| ≤ 1. Then the following is true:

(a) the set FB is path connected in the norm topology of L2(Rn);

(b) the set PFB is path connected in the norm topology of L2(Rn).

Before presenting the proof of this theorem, let us make a few remarks. As we explained

before, this theorem was originally proved in [5] as an application from the theory of von

Neumann algebras. Unlike the original argument, however, we will present a constructive

proof of this result. Observe that the assumption B ∈ GLn(Q) is needed in the construction

that we use in our proof. We will make additional comments about this in Section 2.3.

Finally, recall that, by Rieffel’s theorem, the assumption | detB| ≤ 1 is a necessary condition

for the Gabor systems GB(g) to form a frame.

Our proof of Theorem 2.1 is based on a new general result, which shows how to modify

an element g ∈ FB in such a way that the modified function g′ is in the same set; this result

is discussed in Section 2.1. The proof of Theorem 2.1 is presented in Section 2.2.

2.1 Basic concepts

It is easy to see from equations (1.9) that if J is a fundamental domain of BZn, then the

Gabor system GB(gJ), where ĝJ = χJ is a Parseval frame (and, thus, a frame) for L2(Rn).

In order to prove the connectivity in the set FB, we have to join any given g ∈ FB to gJ
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through a continuous path inside the set FB. The idea that we will use is to move points

from the support of ĝ into J in such a way that the conditions of Theorem 1.2 are preserved.

A similar idea was used in [15] and [6] to prove a number of connectivity results about affine

systems.

We will need the following definition. Given B ∈ GLn(R), we denote the orbit space

with respect to B of a measurable set E ⊂ Rn as the set

τB(E) =
⋃

k∈Zn

(E + B k).

If B = I, we simply write τ(E) = τI(E).

The following properties of the orbit space of a set will be useful.

Lemma 2.2. Let {Ek : k ≥ 1} ⊂ Rn be measurable sets. We have the following:

(a) τB(
⋃

k≥1 Ek) =
⋃

k≥1 τB(Ek).

(b) τB(E1) \ τB(E2) ⊆ τB(E1 \ E2).

Proof. (a) If ξ ∈ τB(
⋃

k≥1 Ek), then ξ = η +Bm, for some η ∈ ⋃
k≥1 Ek, m ∈ Zn. Thus

η ∈ Ek0 , for some k0 ≥ 1, and, as a consequence, ξ = η + Bm ∈ τB(Ek0). It follows that

ξ = η + Bm ∈ ⋃
k≥1 τB(Ek). Conversely, if ξ ∈ ⋃

k≥1 τB(Ek), then ξ ∈ τB(Ek0) for some

k0 ≥ 1. Then ξ = η + Bm, for some η ∈ Ek0 , m ∈ Zn. As a consequence, η ∈ ⋃
k≥1 Ek and,

hence, ξ = η + Bm ∈ τB(
⋃

k≥1 Ek).

(b) If ξ ∈ τB(E) \ τB(F ), then ξ = e + Bm, with e ∈ E, m ∈ Zn, but e /∈ F ,

otherwise it would be ξ = e + Bm ∈ τB(F ). Thus e ∈ E \ F and, as a consequence,

ξ = e + Bm ∈ τB(E \ F ). 2

We now deduce a proposition which shows how to modify a function g ∈ FB to obtain

a new one. For a measurable set E ⊂ Rn, let gE be defined by

ĝE(ξ) =





ĝ(ξ), ξ ∈ Rn \ τB(E)

χE(ξ), ξ ∈ τB(E).
(2.1)

In other words, we have ĝE = χE + ĝ χRn\τB(E). We have the following result:

Proposition 2.3. Let g ∈ FB, with lower and upper frame bounds α and β, respectively,

and E ⊂ Rn be a measurable set with µ(E) < ∞. Assume that

(i) E packs Rn by Zn,

(ii) E packs Rn by BZn,
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(iii) τ
(
τB(E)

)
= τB(E).

Then gE, given by (2.1), is also an element of FB with lower and upper frame bounds αE

and βE, respectively, where

αE = α, βE = β, if µ(E) = 0, (2.2)

αE = βE = 1, if µ(τB(E)) = 0, (2.3)

αE = min(1, α), βE = max(1, β), otherwise. (2.4)

Proof. It follows immediately from (iii) that both τB(E) and Rn \ τB(E) are unions of

orbits for translations by Zn + B Zn. Thus, if ξ ∈ τB(E), then ξ + `−Bk ∈ τB(E) for any

`, k ∈ Zn. Similarly, if ξ ∈ Rn \ τB(E), then ξ + `−Bk ∈ Rn \ τB(E) for any `, k ∈ Zn.

It follows that, for any i, j ∈ Zn, if ξ ∈ Rn \ τB(E), then

γi,j(ξ, ĝE) =
∑

k∈Zn

ĝE(ξ + i−Bk) ĝE(ξ + j −Bk) = γi,j(ξ, ĝ),

and, if ξ ∈ τB(E), then

γi,j(ξ, ĝE) =
∑

k∈Zn

χE(ξ + i−Bk) χE(ξ + j −Bk).

Because of assumptions (i) and (ii), this last equation is zero, unless i = j. Thus, combining

these observations, we have:

γi,j(ξ, ĝE) =





γi,j(ξ, ĝ) if ξ ∈ Rn \ τB(E)

δi,j if ξ ∈ τB(E).
(2.5)

Let f ∈ D, where D is given by (1.8). Using the matrix representation of the Gabor

frame operator, given by (1.7), and equation (2.5) we have:

〈
SB(gE) f, f

〉
=

∑

i∈Zn

∫

[0,1)n
⋂

τB(E)
f̂(ξ + i) f̂(ξ + i) dξ+

+
∑

i,j∈Zn

∫

[0,1)n\τB(E)
γi,j(ξ, ĝ) f̂(ξ + i) f̂(ξ + j) dξ. (2.6)

By a simple periodization argument (cf. [11, Sec. 4]), we have that
∑

i∈Zn

∫
[0,1)n ĥ(ξ + i) ĥ(ξ+

i) dξ = ‖h‖2, for all h ∈ L2(Rn), and, similarly, if E ⊂ [0, 1]n,

∑

i∈Zn

∫

[0,1)n∩E
ĥ(ξ + i) ĥ(ξ + i) dξ =

∫

τ(E)
|ĥ(ξ)|2 d ξ = ‖ĥ‖2

L2(τ(E)), (2.7)
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for all h ∈ L2(Rn). Using the assumption (iii), we have that τ
(
[0, 1]n ∩ τB(E)

)
= τB(E)

and τ
(
[0, 1]n \ τB(E)

)
= R̂n \ τB(E). Thus, using these observations and equation (2.7) in

(2.6), we have 〈
SB(gE) f, f

〉
= ‖f̂‖L2(τ(E)) +

〈
SB(g) fS , fS

〉
, (2.8)

where f̂S = χS f̂ and S = R̂n \ τB(E). Since g ∈ FB, then, for all f̂S = χS f̂ where f ∈ D
we have: 〈

SB(g) fS , fS

〉 ≥ α ‖fS‖2 and
〈
SB(g) fS , fS

〉 ≤ β ‖fS‖2.

The extension of these inequalities to all f ∈ L2(Rn) follows by a standard density argument.

These observations, together with (2.8), show that gE ∈ FB and that the frame bounds αE

and βE are given by (2.2), (2.3) or (2.4), depending on the set E. 2

In the special case when one starts from a function g ∈ PFB, then Proposition 2.3 shows

that also gE ∈ PFB, since, in this situation, αE = α = 1 and βE = β = 1. Furthermore,

in the case of Parseval frames, we can deduce an even stronger result which gives necessary

and sufficient condition so that, if g ∈ PFB, then also gE ∈ PFB. The following proposition

is inspired by [6, Prop. 2.1], where a similar result is proved in the case of affine systems.

Proposition 2.4. If g ∈ PFB and E ⊂ Rn is a measurable set, then gE, given by (2.1), is

also an element of PFB if and only if:

(i) E packs Rn by Zn,

(ii) E packs Rn by BZn

(iii) µ
(
supp ĝ

⋂(
τ(E) \ τB(E)

))
= 0.

In addition, we have that ‖g‖ = ‖gE‖.

Remark 2.5. Observe that, if the hypotheses of Proposition 2.3 are satisfied, then also

conditions (i), (ii) and (iii) in Proposition 2.4 are satisfied.

In addition, observe that, since a Gabor Parseval frame G(g) is an orthonormal basis if

and only if ‖g‖ = 1, then Proposition 2.4 also implies that G(gE) is an orthonormal basis

whenever G(g) is an orthonormal basis.

Proof. For g ∈ L2(Rn) and m ∈ Zn, define

tm(ξ, ĝ) =
∑

k∈Zn

ĝ(ξ −Bk) ĝ(ξ −Bk + m). (2.9)

Observe that tm(ξ, ĝ) is constant on each orbit τB(ξ) = {ξ′ ∈ Rn : ξ′ = ξ + B k, k ∈ Zn},
and that tm(ξ, ĝ) = t−m(ξ + m, ĝ). Recall that, by Theorem 1.2, tm(ξ, ĝ) = δm,0 for a.e.
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ξ ∈ Rn. By the same theorem we also have that gE ∈ PFB if and only if tm(ξ, ĝE) = δm,0

for a.e. ξ ∈ Rn.

We consider first the case m = 0. If ξ ∈ Rn \ τB(E), then ξ −Bk ∈ Rn \ τB(E) for each

k ∈ Zn and

t0(ξ, ĝE) = t0(ξ, ĝ) = 1 for a.e. ξ ∈ Rn \ τB(E).

On the other hand, if ξ ∈ τB(E), then ξ−Bk ∈ τB(E) for each k ∈ Zn. Since ĝE(ξ) = χE(ξ),

when ξ ∈ τB(E), then

t0(ξ, ĝE) = χE +
∑

k 6=0

χE(ξ + B k).

It follows that t0(ξ, ĝE) = 1 for ξ ∈ τB(E) if and only if E is a packing set by BZn. We

have thus proved that t0(ξ, ĝE) = 1 for a.e. ξ ∈ Rn if and only if E is a packing set by BZn.

Let us consider now the function tm(ξ, ĝE) for m 6= 0. By the argument in the case m =

0, we can now assume that E is a packing set by BZn. Fix m 6= 0. If (ξ−Bk) ∈ Rn \ τB(E)

and (ξ −Bk + m) ∈ Rn \ τB(E), for some k ∈ Zn, then

tm(ξ, ĝE) = tm(ξ, ĝ) = 0.

Suppose now that ξ − Bk ∈ τB(E). Then ξ ∈ τB(E) and we can write ξ = η − Bk0 for

η ∈ E, k0 ∈ Zn. Thus, with the change of indices k′ = k + k0, since E packs Rn by BZn,

we have:

tm(ξ, ĝE) =
∑

k∈Zn

ĝE(ξ −Bk) ĝE(ξ −Bk + m)

=
∑

k∈Zn

ĝE(η −B(k + k0)) ĝE(η −B(k + k0) + m)

=
∑

k′∈Zn

ĝE(η −Bk′) ĝE(η −Bk′ + m)

= χE(η) ĝE(η + m).

Now there are two cases to consider: either η + m ∈ τB(E) or η + m /∈ τB(E). If η + m ∈
τB(E), then

tm(ξ, ĝE) = χE(η) ĝE(η + m) = χE(η)χE(η + m),

and this quantity is zero if and only if E packs Rn by Zn. On the other hand, if η + m /∈
τB(E), then η +m must be in (E +Zn)\τB(E) and so tm(ξ, ĝE) = 0 if and only if condition

(iii) holds. Finally, consider the case (ξ − Bk + m) ∈ τB(E). In this situation, we have

ξ + m ∈ τB(E) and, since tm(ξ, ĝE) = t−m(ξ + m, ĝE), the analysis of this case is exactly

the same as the previous case.
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We have thus proved that, for m 6= 0, tm(ξ, ĝE) = 0 for a.e. ξ ∈ Rn if and only if

conditions (ii) and (iii) hold.

To show that ‖g‖2 = ‖gE‖2, observe that

‖g‖2 − ‖gE‖2 =
∫

τB(E)
|ĝ(ξ)|2 dξ −

∫

τB(E)
χE(ξ) dξ =

∫

E

∑

k∈Zn

|ĝ(ξ + Bk)|2 dξ − µ(E).

Since G(g) is a Parseval frame, then, by Theorem 1.2,
∑

k∈Zn |ĝ(ξ + Bk)|2 = 1 a.e., and,

thus, ‖g‖2 − ‖gE‖2 = 0. 2

2.2 Proof of the main theorem

We will now construct a family of sets ES satisfying the assumptions of Proposition 2.3.

The following basic result, which is due to Han and Wang [9], will be useful.

Theorem 2.6. Let Λ1 = A1Zn and Λ2 = A2Zn be two lattices in Rn such that | detA1| ≤
| detA2|. Then there exists a measurable set J ⊆ Rn such that J tiles Rn by Λ1 and packs

Rn by Λ2. Furthermore, if A1 and A2 are in GLn(Q), then J can be chosen to be a finite

union of congruent hyper-rectangles in Rn.

Let B ∈ GLn(R) with | detB| ≤ 1, and let J ⊂ Rn be a measurable set such that J tiles

Rn by BZn and packs Rn by Zn. By Theorem 2.6, such a set exists. For a measurable set

S ⊆ J , define

ES = τB

(
τ(S)

) ⋂
J. (2.10)

Since ES ⊂ J , the assumptions (i) and (ii) of Proposition 2.3 are satisfied. We need to show

that condition (iii) of Proposition 2.3 is also satisfied. Since J is a fundamental domain for

the B Zn translations, then each point η ∈ τB

(
τ(S)

)
is of the form η = ξ + B k, for some

k ∈ Zn and ξ ∈ ES . This implies that τB(ES) = τB

(
τ(S)

)
. Therefore, we have that

τ
(
τB(ES)

)
= τ

(
τB

(
τ(S)

))
= τB

(
τ
(
τ(S)

))
= τB

(
τ(S)

)
= τB(ES),

and, as a consequence, the set ES satisfies condition (iii) of Proposition 2.3. For ES con-

structed as above, let gES
be defined by

ĝES
(ξ) =





ĝ(ξ), ξ ∈ Rn \ τB(ES)

χES
(ξ), ξ ∈ τB(ES).

(2.11)

Thus, using Propositions 2.3 and 2.4, we immediately deduce:

Proposition 2.7. Let g ∈ L2(Rn), B ∈ GLn(R) with | detB| ≤ 1, and gES
be given by

(2.11). Then:

(a) if g ∈ FB, then also gES
∈ FB;

(b) if g ∈ PFB, then also gES
∈ PFB.
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We are now ready to prove Theorem 2.1

Proof of Theorem 2.1

(a) We will prove that, for a given g ∈ FB, there is a continuous path {gt : 0 ≤ t ≤ 1}
connecting g to g1 = (χJ)∨, where J = B[0, 1)n (this is a fundamental domain by BZn).

This implies that the set FB is path–connected. We will achieve this in a few steps.

Step 1. We will start by constructing a continuous set-valued function S(t), where

0 ≤ t ≤ 1, such that S(0) is a set of measure zero, S(1) = J , and S(t) ⊆ S(t′) for each

t′ > t.

Since B ∈ GLn(Q), using the Smith canonical form (cf. [12]) we can find unimodular

integral matrices U and V such that UBV is diagonal, that is

UBV =




p1

q1
0 · · · 0

0 p2

q2
· · · 0

...
...

. . . 0

0 0 · · · pn

qn




, (2.12)

where pi and qi are relatively prime for each i. Thus, without loss of generality, we can

assume that B is diagonal as in (2.12) (this is equivalent to making a change of variables that

maps that lattice BZn into UBV Zn and the lattice Zn into itself). Now, by Theorem 2.6,

the set J can be chosen to be a finite union of congruent hyper-rectangles Rk in Rn with

sides parallel to the coordinate axes, that is J =
⋃M

k=1 Rk. For each hyper-rectangle Rk, let

` be the side length and xk = (xk1, · · · , xkn) be the coordinate of the lower left vertex. For

each k, 1 ≤ k ≤ M , let Rk(t) be the hyper-rectangle in Rn whose lower left vertex is the

same as the lower left vertex of Rk, and whose side length is t`, with 0 ≤ t ≤ 1. Hence, for

each 1 ≤ k ≤ M , Rk(0) = {xk}, Rk(1) = Rk, and R(t) ⊆ R(t′) for each t′ > t. Now let

S(t) =
M⋃

k=1

Rk(t).

It immediately follows from this construction that S(0) = {x1, . . . , xM}, S(1) = J , and

S(t) ⊆ S(t′) for each t′ > t. To show that S(t) is continuous, let 0 ≤ t < t′ ≤ 1, then, for

each k, 1 ≤ k ≤ M , we have

µ
(
Rk(t′) \Rk(t)

)
= (t′)n − tn

= (t′ − t)((t′)n−1 + (t′)n−2t + · · ·+ t′tn−2 + tn−1)

≤ n (t′ − t) → 0

as t′ − t → 0, and, thus, also µ
(
S(t′)− S(t)

) → 0.

13



Now define Et = ES(t), where the set ES(t) is given by (2.10), with S = S(t) and, finally,

set gt = gEt , where gEt is given by (2.1), with E = Et.

By Proposition 2.7, gt ∈ FB for each t ∈ [0, 1]. In particular, for t = 0, g0 = g a.e., since

E0 = {x1, . . . , xk} and, for t = 1, g1 = (χJ)∨, since E1 = J and τB(E1) = τB(J) = Rn.

Step 2. We now need to show the path {gt : 0 ≤ t ≤ 1} is continuous in the L2–norm.

That is, we have to show that:

lim
t→t′

‖gt − gt′‖2 = 0, (2.13)

for 0 ≤ t < t′ ≤ 1.

Observe that, since S(t) ⊆ S(t′) for t′ > t, then, for all 0 ≤ t < t′ ≤ 1, we have

Et = ES(t) = τB

(
τ(S(t))

) ∩ J ⊆ τB

(
τ(S(t′))

) ∩ J = Et′ . (2.14)

For 0 ≤ t < t′ ≤ 1, we can show that ĝt = ĝt′ on the set (Rn \ τB(Et′))∪ τB(Et). In fact, by

(2.14), ĝt = ĝ = ĝt′ on Rn \ τB(Et′) and ĝt = χEt = ĝt′ on τB(Et). Thus, we have:

‖gt − gt′‖2
2 = ‖ĝt − ĝt′‖2

2 =
∫

τB(Et′ )\τB(Et)
|ĝt(ξ)− χEt′ (ξ)|2 dξ. (2.15)

Since |ĝt(ξ)− χEt′ (ξ)|2 ≤ 2 (|ĝt(ξ)|2 + χEt′ (ξ)
2), from (2.15) we obtain:

‖gt − gt′‖2
2 ≤

∫

τB(Et′ )\τB(Et)
2

(
|ĝt(ξ)|2 + χEt′ (ξ)

)
dξ. (2.16)

Observe that
∫

τB(Et′ )\τB(Et)
χEt′ (ξ) dξ ≤

∑

k∈Zn

∫

Et′\Et

χEt′ (ξ −Bk) dξ

=
∫

Et′\Et

χEt′ (ξ) dξ

= µ
(
Et′ \Et

)
. (2.17)

Also observe that, since g ∈ FB, then, by Theorem 1.2,
∑

k∈Zn |ĝ(ξ − Bk)|2 ≤ β for a.e.

ξ ∈ Rn, where β < ∞ is the upper frame bound for the Gabor frame GB(g). Thus:
∫

τB(Et′ )\τB(Et)
|ĝt(ξ)|2 dξ ≤

∑

k∈Zn

∫

Et′\Et

|ĝt(ξ −Bk)|2 dξ

=
∫

Et′\Et

∑

k∈Zn

|ĝ(ξ −Bk)|2 dξ

≤ β µ
(
Et′ \Et

)
. (2.18)

Therefore, from equation (2.16), using (2.17) and (2.18), we obtain:

‖gt − gt′‖2
2 ≤ 2 (β + 1) µ

(
Et′ \Et

)
. (2.19)
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Thus, to complete the proof, we have to show that µ(Et′ \Et) approaches zero as |t−t′| → 0.

Since S(t) =
⋃M

k=1 Rk(t), then

Et = τB

(
τ(S(t))

)⋂
J =

( M⋃

k=1

Rk(t) + Zn + BZn
) ⋂

J.

For each hyper-rectangle Rk(t), 1 ≤ k ≤ M , we have

Rk(t) = Ixk1
(t)× · · · × Ixkn

(t),

where Ixki
(t) is the interval [xki, xki + t`). Thus, using the fact that Z+pi/qiZ = 1/qi (qiZ+

piZ) = 1/qi Z, we have:

Et =
( M⋃

k=1

(
Ik
x1

(t)× · · · × Ik
xn

(t)
)

+ Zn + BZn
)⋂

J

=
( M⋃

k=1

(
Ik
x1

(t) + Z+ p1/q1Z
)× · · · × (

Ik
xn

(t) + Z+ pn/qnZ
))⋂

J

=
( M⋃

k=1

(
Ik
x1

(t) + 1/q1Z
)× · · · × (

Ik
xn

(t) + 1/qnZ
)) ⋂

J

=
( M⋃

k=1

Rk(t) + Q−1Zn
)⋂

J,

= τQ−1

(
S(t)

) ⋂
J,

where Q =




q1 0 · · · 0

0 q2 · · · 0
...

...
. . . 0

0 0 · · · qn




. Since S(t) is continuous, this quantity tends to zero as

(t′ − t) → 0. Thus, by (2.19), the path {gt : 0 ≤ t ≤ 1} is also continuous, and this

completes the proof of part (a).

(b) Let us choose any g ∈ PFB and let g1 = (χJ)∨, where J = B[0, 1)n, as in part (a).

Observe that g1 ∈ PFB. The proof that g is path–connected to g1 then follows exactly as

in part (a). 2

From Remark 2.5 we also deduce the following.

Corollary 2.8. The set of Gabor orthonormal bases for L2(Rn) is path connected in the

norm topology of L2(Rn).

Remark 2.9. A simple modification of the proof of Theorem 2.1 shows that, if we assume

that g ∈ L2(Rn) ∩ Lp(Rn), 1 ≤ p < ∞, then we can prove that the path gt, 1 ≤ t ≤ 1 is

continuous not only in the L2 norm, but also in Lp, 1 ≤ p < ∞.
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2.3 Irrational Gabor frames

The construction that we have used in the previous section cannot be extended, in general,

to the case of Gabor systems GB(g) where B ∈ GLn(R) rather than B ∈ GLn(Q). We point

out, however, that this is a limitation of the constructive proof, and that Theorem 2.1 holds

for all B ∈ GLn(R), as shown in [4].

In order to show that the constructive proof breaks down, let us consider, for the mo-

ment, the one-dimensional case. As in the previous section, let J = [0, b), S = S0 ⊆ J , and

let the sets {Sk : k ≥ 0} and ES be defined by (2.10). The following Lemma shows that

when b /∈ Q and S has measure larger than zero, then the sequence of sets {Sk : k ≥ 0}
converges very rapidly to J .

Lemma 2.10. Let J = [0, b), with b /∈ Q. If µ(S) > 0 and S has nonempty interior, then

ES = [0, b).

Proof. Without loss of generality, let S = [0, τ), 0 < τ < b (if τ = b, then there is

nothing to prove). Given 0 < ε < τ/2, choose x0 such that ε < x0 < τ − ε. Now take

y0 ∈ (0, b). We can show that there is a point y ∈ (y0 − ε, y0 + ε), where y = x + k + lb, for

some x ∈ (x0− ε, x0 + ε), k, l ∈ Z. In fact, given y ∈ (y0− ε, y0 + ε), since {k + lb : k, l ∈ Z}
is a dense set in R, we can find k, l ∈ R such that

|(y − x0)− (k + l)| < ε.

Hence, there is an x ∈ (x0 − ε, x0 + ε) ∈ S so that y = x + k + lb, for those k, l ∈ Z. Since

S2 = S +Z+ bZ, this implies that y ∈ S2. The same construction can be repeated for each

y ∈ (0, b), since ε > 0 can be chosen arbitrarily small. 2

As a consequence of this lemma, if we define the path S(t) = t[0, b), Et = ES(t), as we

did before, we will not be able to obtain a continuous path. In fact, if b /∈ Q, the set-valued

function E jumps from E0 = {0} to Et = [0, b) when t > 0.

In the higher dimensions, we have different cases. Let W be the maximal subspace of

Rn such that (Zn + B Zn)
⋂

W is dense in W . If B ∈ GLn(Q), then W is a lattice, and

we have the situation that we have considered in the Section 2.2. On the other hand, if

B ∈ GLn(R) and B /∈ GLn(Q), we can distinguish two cases: Zn + B Zn is either dense in

Rn or is not. In the first case, we have W = Rn and the argument of Lemma 2.10 shows

that the construction of Section 2.2 fails. In the second case, we have 1 ≤ dim (W ) ≤ n and

it is possible to extend the argument of Section 2.2 to this situation.
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