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Several strategies have been applied for the recovery of the missing parts in an
image, with recovery performance depending significantly on the image type and
the geometry of missing data. To provide a deeper understanding of such im-
age restoration problem, King and al. recently introduced a rigorous multiscale
analysis framework and proved that a shearlet based inpainting approach out-
performs methods based on more conventional multiscale representations when
missing data are line singularities. In this paper, we extend and improve the
analysis of the inpainting problem to the more realistic and more challenging
setting of images containing curvilinear singularities. We derive inpainting per-
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appropriate functional representations of the image. Our proof relies critically
on the microlocal and sparsity properties of the shearlet representation.
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1. Introduction

The term inpainting, originally referred to the art of repairing damaged
paintings, describes in signal processing a technique for digitally recovering miss-
ing blocks of data in images or streamed videos. Due to its broad range of ap-
plications (e.g., restoration of damaged old photos, photo editing, text removal,
dis-occlusion in vision analysis), a variety of inpainting methods have been pro-
posed in the literature. State-of-the-art methods for inpainting include most
prominently representation-based methods that set up the inpainting problem
as an optimization task in a transform domain, e.g., using wavelets, curvelets
or shearlets [1, 6, 8, 10, 22]. Other successful methods use PDEs or variational
principles to recover the missing data from the close neighborhood of the region
to be filled by imposing a criterion of regularity [2, 3, 4, 9]. More recently,
following their success in many image processing applications, convolutional
neural networks have also been applied to image inpainting with promising re-
sults [5, 24, 25, 26]. The performance of existing algorithms depends generally
on the type of images considered and the geometry of the missing data.

To provide a deeper understanding of inpainting and assess the ultimate per-
formance of different algorithmic strategies, a rigorous mathematical analysis of
the inpainting problem was recently proposed by King et al. [19]. In their work,
the inpainting problem is formulated in continuous-domain as the problem of
recovering an unknown image x in a Hilbert space H under the assumption
that only a masked object xK = PKx is known; here PK denotes the orthog-
onal projection into a known subspace HK ⊂ H. To solve this problem, King
et al. [19] proposed an approach relying on microlocal analysis and sparse ap-
proximations. Under the assumption that the unknown image x is sparse with
respect to a certain representation system Φ, they search among all possible
solutions x∗ such that PKx

∗ = xK for the one that minimizes the `1-norm of
the representation coefficients of x∗ with respect to Φ. Since images found in
many applications are dominated by edges, it is reasonable to consider an image
model consisting of distributions supported on curvilinear singularities. King
et al. [19] proved that, if the missing information is a line segment, an `1-norm
minimization approach in combination with an appropriate function represen-
tation Φ is able to recover the missing information, asymptotically, provided
the gap size is not too large. Remarkably, the theoretical performance of the
recovery depends on the sparsifying and microlocal properties of the represen-
tation system Φ, namely, asymptotically perfect recovery is achieved if the gap
size in the line singularity is asymptotically smaller than the size of the struc-
ture elements in Φ. In particular, it is proved that inpainting using the shearlet
system – a multiscale anisotropic system that provides nearly optimally sparse
representation of cartoon-like images [12, 20] – outperforms wavelets and similar
conventional multiscale systems. A generalization using a more general shearlet
system is given in [11].

The result by King et al. offers a rigorous theoretical assessment of the
expected performance of a representation-based inpainting method. However,
their approach makes a strong simplifying assumptions on the image model,
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namely, that the singularity to be inpainted is linear. King et al. remarked
in [19] that, even though their proof is limited to linear singularities, it could
possibly be extended to the curvilinear case using the Tubular Neighborhood
Theorem [7], since the principles of geometric separation from [7] apply to more
general singularities. However this task is far from trivial and no extension of
the inpainting result to curvilinear singularities was developed to date.

In this paper, we remove the image model restriction of King et al. [19]
and consider more realistic images containing general curvilinear singularities
while adopting the same continuous-domain formulation of the inpainting prob-
lem. Handling this more general type of singularities requires significant and
non-trivial changes in the proofs. While our arguments involve the same con-
cept of clustered sparsity employed in [19] and originally introduced in [7], the
fundamental technical elements of our proof are novel, and rely critically on mi-
crolocal properties of shearlets and techniques from the analysis of oscillatory
integrals associated with the continuous shearlet transform developed by some
of the authors in [16, 18]. Our main result generalizes and extends the result
of King et al. to images containing curvilinear singularities where a section of
the singularity curve is missing. Similar to [19], we consider two strategies for
inpainting: one based on `1 minimization and one based on thresholding. Using
`1 minimization in combination with a shearlet representation, our result recov-
ers the same rate found by King et al. [19] in the case of linear singularities.
Interestingly, when a thresholding strategy is applied, we can improve the origi-
nal result achieving a better convergence rate, i.e., we prove that our inpainting
is successful even for a larger gap than the one allowed in [19].

The rest of the paper is organized as follows. In Section 2, we state our main
results, namely, Theorems 1-4. In Section 3, we prove some lemmas that are
needed for the proofs of our main theorems. We prove Theorems 1 and 2 about
wavelets in Section 4, and prove Theorems 3 and 4 about shearlets in Section 5.

We start by establishing some notation and useful definitions.

1.1. Notation and basic definitions.

In the following, we adopt the convention that x ∈ R2 is a column vector,

i.e., x =

(
x1

x2

)
, and that ξ ∈ R̂2 (in the frequency domain) is a row vector,

i.e., ξ = (ξ1, ξ2). A vector x multiplying a matrix A ∈ GL2(R) on the right is
understood to be a column vector, while a vector ξ multiplying A on the left is
a row vector. Thus, Ax ∈ R2 and ξA ∈ R̂2.

Given two sequences a = {aj}∞j=1, b = {bj}∞j=1, we write a ' b if there are
constants C1 6= 0, C2 6= 0 such that C1 bj ≤ aj ≤ C2 bj for all large j. We write
a = O(b) if the limit limj→∞

aj
bj

exists and a = o(b) if the limit limj→∞
aj
bj

= 0.

The Fourier transform of f ∈ L1(R2) is defined as f̂(ξ) =
∫
R2 f(x) e−2πiξx dx,

where ξ ∈ R̂2, and the inverse Fourier transform is f̌(x) =
∫
R̂2 f(ξ) e2πiξx dξ.

A set E = {eλ : λ ∈ Λ} in a Hilbert space H is a frame if there are constants
0 < A ≤ B <∞ such that A ‖f‖2 ≤

∑
λ∈Λ |〈f, eλ〉|2 ≤ B ‖f‖2 for all f ∈ H. A
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frame is tight if A = B and is a Parseval frame if A = B = 1. Given a frame
E ⊂ H, the frame synthesis operator F is the operator

F : `2(I)→ H, F ({cλ}λ∈Λ) =
∑
λ∈Λ

cλeλ.

The dual operator of F , denoted by F ∗, is the frame analysis operator

F ∗ : H → `2(I), F ∗f = {〈f, eλ〉 : λ ∈ Λ}.

If E is a Parseval frame then, for any f ∈ H, FF ∗f =
∑
λ∈Λ〈f, eλ〉 eλ = f.

For any measurable set Q in R2 and any f in L2(R2), we define PQ f to be
the orthogonal projection of f onto the set Q, that is,

PQf(x) = 1Q(x)f(x) =

{
f(x) if x ∈ Q
0 if x /∈ Q

Finally, we use the convention that the same symbol C can be used to denote
different generic constants in different expressions.

1.2. Multiscale representations: wavelets and shearlets

In this section, we introduce appropriate multiscale representations for the
images we want to inpaint. Namely we consider smooth Parseval frames of
wavelets and shearlets consisting of smooth band-limited functions.

For the wavelet system, we consider a Parseval frame of Meyer wavelets
Φ = {φλ : λ ∈ Λ} ⊂ L2(R2), where Λ =

⋃
j∈Z Λj =

⋃
j∈Z{λ = (j, k), k ∈ Z2}

and the functions φλ = φj,k are defined in the Fourier domain by

φ̂j,k(ξ) = 2−2jW (2−2jξ) e2πi2−2jξk; (1)

here W ∈ C∞0 (R̂2) is an even function with support supp (W ) ⊂ [− 1
2 ,

1
2 ]2 \

[− 1
16 ,

1
16 ]2 and satisfying the condition

∑
j∈Z |W (2−2jξ)|2 = 1, for a.e. ξ ∈ R̂2.

Hence the functions Wj := W (2−2j ·), with j ∈ Z, have supports inside the
Cartesian coronae

Qj := [−22j−1, 22j−1]2 \ [−22j−4, 22j−4]2 ⊂ R̂2. (2)

Our Parseval frame of shearlets is constructed as in [16] and is obtained by
refining the Fourier-domain decomposition of the Parseval frame of wavelets (1)
by adding an appropriate directional filtering. This operation has the effect
of generating highly anisotropic waveforms ranging over multiple scales and
orientations. More precisely, let us consider the following cone-shaped regions
in the Fourier domain R̂2

C1 =

{
(ξ1, ξ2) ∈ R̂2 : |ξ2

ξ1
| ≤ 1

}
, C2 =

{
(ξ1, ξ2) ∈ R̂2 : |ξ2

ξ1
| > 1

}
,
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and let V ∈ C∞0 (R) be chosen so that suppV ⊂ [−1, 1] and |V (u−1)|2+|V (u)|2+
|V (u + 1)|2 = 1 for |u| ≤ 1. Let G(1)(ξ1, ξ2) = V ( ξ2ξ1 ) and G(2)(ξ1, ξ2) = V ( ξ1ξ2 ),
and let W be the same window function used for the wavelet system above.
Hence the shearlet systems associated with the cone-shaped regions Cν , ν = 1, 2
are defined as the countable collection of functions

{ψ(ν)
j,`,k : j ≥ 0,−2j ≤ ` ≤ 2j , k ∈ Z2},

where

ψ̂
(ν)
j,`,k(ξ) = |detA(ν)|−j/2W (2−2jξ)G(ν)(ξA

−j
(ν)B

−`
(ν)) e

2πiξA−j
(ν)
B−`

(ν)
k
, (3)

and

A(1) =

(
4 0
0 2

)
, B(1) =

(
1 1
0 1

)
, A(2) =

(
2 0
0 4

)
, B(2) =

(
1 0
1 1

)
.

A Parseval frame of shearlets Ψ = {ψη : η ∈ M}, where M is a countable
index set, is obtained by combining the shearlet systems associated with the
cone-shaped regions Cν together with a coarse scale system and appropriate
boundary shearlets. The boundary shearlets are slightly modified versions of

the functions ψ
(ν)
j,`,k, for ` = ±2j , where the modification is needed to en-

sure that all elements of system are C∞0 in the Fourier domain. Their reg-
ularity and localization properties are very similar to those of the shearlet

functions ψ
(ν)
j,`,k. The index set M is expressed as M = MC ∪ MF , where

MC = {k ∈ Z2} are the index set associated with coarse-scale shearlets and
MF = {η = (j, `, k, ν) : j ≥ 0, |`| ≤ 2j , k ∈ Z2, ν = 1, 2} is the set associ-
ated with fine-scale shearlets. We refer to [15] for additional details about this
construction. We recall here that shearlets offer nearly optimally sparse approx-
imations properties, in a precise sense, for the class of cartoon-like images – an
idealized model of images with edges [12, 14]. Another remarkable property is
that the continuous shearlet transform associated with the shearlet represen-
tation provides a precise characterization of curvilinear singularities due to its
microlocal properties [13, 18, 17, 21]. These properties of shearlets underpin
several results derived in this paper.

2. Main results

Similar to [19], we adopt a continuous image model where the missing in-
formation to be recovered is associated with singularities in the plane R2 that
are defined as distributions. We next present our two strategies to recover the
missing information, namely `1 minimization and thresholding

2.1. Mathematical model of inpainting

Let S be a simple closed smooth curve contained in [−1, 1]2 ⊂ R2 that has
nonvanishing curvature everywhere. We define a distribution T ∈ S ′(R2) acting
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on the class of Schwartz functions φ ∈ S(R2) and supported on S by

〈T , φ〉 =

∫
S

φ(s) g(s) dσ(s)

where g is a real-valued smooth function defined on the curve S.
For h > 0, we denote as Mh the horizontal strip domain Mh = {(x1, x2) ∈

R2 : |x2| ≤ h} and, correspondingly, we consider the masked function

f = PR2\Mh
T .

This is the model of the image we wish to inpaint. Clearly, we could also assume
that the region to be inpainted is contained in a vertical strip domain of width
h and our arguments below could be carried out in a very similar way.

To address the inpainting problem, it is convenient to decompose the image
into frequency subbands. Hence, we project T into the subband regions asso-
ciated with the Cartesian coronae Qj , j ∈ Z, given by (2). For j ∈ Z, we let
Tj ∈ L2(R2) ⊂ S ′(R2) be defined in the Fourier domain by

T̂j(ξ) = T̂ (ξ)W (2−2jξ),

where W (2−2j ·) is band-pass filter that appears in (1). Correspondingly, we
have a sequence of masked images

fj = PR2\Mhj
Tj ,

where now hj depends on the scale parameter j
Following [19], we consider two strategies to recover Tj , j ∈ Z, from the

masked image: one based on `1 minimization and another one based on thresh-
olding. In both cases, we will establish a procedure to construct an approximate
solution Rj and show that we can recover Tj asymptotically as

‖Rj − Tj‖2
‖Tj‖2

→ 0, as j →∞

provided hj = o(2−αj) for an appropriate α > 0. We will prove that if the
reconstruction approach is based on shearlets then α can be taken significantly
smaller than in an analogous scheme based on wavelets. This indicates that, as
compared with wavelets, shearlets can (asymptotically) recover an image where
the width of the missing region is significantly larger.

The `1 minimization process to recover an approximate solution has the form

R`j = argmin Tj‖F
∗Tj‖1 subject to fj = PR2\Mhj

Tj ,

where F is the frame operator associated with a Parseval frame of wavelets or
shearlets.

For the thresholding strategy, given a Parseval frame of wavelets or shearlets
E = {eλ}λ∈Λ and a sequence of thresholds σj , j ∈ Z, we let Ij = {λ ∈ Λ :
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|〈f, eλ〉| ≥ σj}. Then the reconstructed image with respect to E is Rτj =
F (1IjF

∗Tj).
For the `1 minimization approach with wavelets, and for the thresholding

approach with both wavelets and shearlets, we will follow [19] and assume the
projection into the missing region to be PMhj

f(x) = 1|x2|≤hjf(x). However, for

the `1 minimization with shearlets, for a technical reason, we slightly modify the
setting in [19] by choosing PMhj

f(x) = h∆0
j 1|x2|≤hjf(x), for some fixed small

∆0 > 0.

Our main results are the following theorems.

Theorem 1. Let Φ be a Parseval frame of wavelets on L2(R2) as defined in Sec-
tion 1.2 and let R`j be the reconstructed image of Tj obtained via `1 minimization

where we assume that hj = o(2−2j). Then

‖R`j − Tj‖2
‖Tj‖2

→ 0, as j →∞.

Theorem 2. Let Φ be a Parseval frame of wavelets on L2(R2) as defined in
Section 1.2 and let Rτj be the reconstructed image of Tj obtained via thresholding

where we assume that 0 ≤ σj ≤ 2−4j and hj = o(2−j). Then

‖Rτj − Tj‖2
‖Tj‖2

→ 0, as →∞.

Theorem 3. Let Ψ be a Parseval frame of shearlets on L2(R2) as defined in
Section 1.2 and let R`j be the reconstructed image of Tj obtained via `1 mini-

mization where we assume that hj = o(2−j). Then

‖R`j − Tj‖2
‖Tj‖2

→ 0, as j →∞.

Theorem 4. Let Ψ be a Parseval frame of shearlets on L2(R2) as defined in
Section 1.2 and let Rτj be the reconstructed image of Tj obtained via thresholding

where we assume that 0 ≤ σj ≤ 2−4j and hj = o(2−
3
4 j). Then

‖Rτj − Tj‖2
‖Tj‖2

→ 0, as j →∞.

Remark 1. Our estimates for the `1 minimization case (Theorems 1 and 3)
match those found by King et al. [19] under the simpler assumption that the
missing information is a straight line segment. To extend such results to the
more challenging setting where the missing information is curvilinear, our proof
uses different techniques relying in part on ideas introduced by the authors in [16]
and [18]. In the thresholding case (Theorems 2 and 4), our estimates improve
those found by King et al. [19] indicating a better inpainting performance (i.e.,
the size of the missing gap can be larger) than `1 minimization for both wavelets
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and shearlets. We remark that our proofs of Theorems 2 and 4 do not require the
assumption of nonvanishing curvature. Hence our result includes the situation
where the missing region is a line segment and, thus, improves the result in [19].
Unlike the original argument, our proofs of Theorems 2 and 4 mainly rely on
space domain techniques.

Our estimates show that the size of the gap that can be filled by shearlets with
asymptotically high precision is larger than the corresponding one for wavelets.
King et al. [19] prove that, in the thresholding case (for linear gaps) the wavelet
rate cannot be improved showing that shearlets perform better than wavelets.
There is currently no proof of a similar negative wavelet result in the `1 case.

Finally we remark that our results can be directly extended to cartoon-like
images with a smooth boundary of nonvanishing curvature since one can apply
the divergence theorem to map the Fourier transform of a cartoon-like image to
the Fourier transform of its boundary, as done in [13].

3. Useful technical results

Using a smooth partition of unity, we can decompose a curve as S =
⋃M

1 Sm.
We assume that each curve segment Sm has non vanishing curvature. For each
1 ≤ m ≤ M , we can parametrize locally each curve Sm either as a vertical
curve (f(u), u) or a horizontal curve (u, f(u)), where u ∈ (am, bm) and f ∈
C∞(am, bm). In either case, there is a constant κ > 0 such that

|f ′′(u)| ≥ κ > 0 for u ∈ [am, bm],

any m ∈ [1,M ], due to the nonvanishing curvature assumption. Here we assume
that a vertical curve is defined so that the slope of the tangent lines to the curve
is greater than or equal to 2 so that |f ′(u)| ≤ 1

2 ; similarly a horizontal curve
is such that the slope of the tangent line to the curve is smaller than or equal
to 2 so that |f ′(u)| ≤ 2. According to this assumption, the function y = 1

2x
2,

for x ∈ (−1, 1), is a horizontal curve while y2 = 8x, for y ∈ (−1, 1) is a vertical
curve and will be written as ( 1

8u
2, u), u ∈ (−1, 1).

Corresponding to each curve Sm, 1 ≤ m ≤ M , we have a smooth density
function gm ∈ C∞0 (Sm) so that, for any φ ∈ S(R2), we have

〈T , φ〉 =

∫
S

φ(s) g(s) dσ(s) =

M∑
m=1

∫
Sm

φ(s) gm(s) dσ(s) =

M∑
m=1

〈Tm, φ〉,

where, for each m, Tm is a distribution defined either by

〈Tm, φ〉 =

∫ bm

am

φ(f(u), u) gm(u) du if Sm is a vertical curve

or by

〈Tm, φ〉 =

∫ bm

am

φ(u, f(u)) gm(u) du if Sm is a horizontal curve.

8



Consistently with the notation that we have introduced above, we let Tm,j
be defined in the Fourier domain by T̂m,j(ξ) = W (2−2jξ)T̂m(ξ) so that T̂j(ξ) =∑M
m=1 T̂m,j(ξ). Finally, it is convenient in many calculations to use polar coor-

dinates where, for any ξ = (ξ1, ξ2) ∈ R̂2, we write ξ = ρΘ(θ) with ρ = |ξ| =√
ξ2
1 + ξ2

1 and Θ(θ) = (cos θ, sin θ) where Θ(0) = (1, 0) for ξ = (0, 0) since, by
convention, the angle at the origin is zero. Hence, for a vertical curve Sm we
can write

T̂m,j(ρ, θ) = W (2−2jρΘ(θ))

∫ bm

am

e−2πiρΘ(θ)·(f(u),u)gm(u) du. (4)

Similarly for a horizontal curve we have

T̂m,j(ρ, θ) = W (2−2jρΘ(θ))

∫ bm

am

e−2πiρΘ(θ)·(u,f(u))gm(u) du.

Below, we establish some estimates providing the analytical tools needed to
prove our main results. The following lemma is stated for a vertical curve but
a similar result holds for a horizontal curve.

Lemma 1. Assume that the local curve Sm, for a fixed m ∈ [1,M ] is vertical

and let β
(2)
j,`,k = 〈ψ(2)

j,`,k, Tm,j〉, where Tm,j is given above and ψ
(2)
j,`,k is given by (3).

Then, for any N ∈ N, there exists a constant CN , independent of j, `, k such

that |β(2)
j,`,k| ≤ CN 2

5
2 j 2−2Nj .

Proof. Using Plancherel theorem and (4), we have that

β
(2)
j,`,k = 〈ψ̂(2)

j,`,k, T̂m,j〉

= 2−
3
2 j

∫
R̂2

W (2−2jξ)V (2j
ξ1
ξ2
− `) e−2πiξ

(
A−j

(2)
B−`

(2)
k
)
T̂m,j(ξ)dξ

= 2−
3
2 j

∫ ∞
0

∫ 2π

0

|W (2−2jρΘ(θ))|2 V (2j cot(θ)− `) e−2πiρΘ(θ)
(
A−j

(2)
B−`

(2)
k
)

×
∫ bm

am

e2πiρΘ(θ)·(f(u),u)gm(u) du ρdθ dρ.

Since V is supported on [−1, 1], then the integral above is non-zero only if
|2j cot(θ) − `| ≤ 1. This implies | cot(θ)| ≤ 2−j(|`| + 1) ≤ 1 + 2−j , which gives
|θ − π

2 | ≤
π
4 + εj or |θ − 3π

2 | ≤
π
4 + εj with εj → 0 as j → ∞. Also, since W is

supported on [− 1
2 ,

1
2 ]\ [− 1

16 ,
1
16 ], then 1

1622j ≤ ρ ≤ 22j (the last inequality could
be sharpened to ρ ≤ 1√

2
22j). Hence, using these observations we can write

β
(2)
j,`,k = 2−

3
2 j

∫ 22j

1
16 22j

[∫ 3π
4 +εj

π
4−εj

+

∫ 7π
4 +εj

5π
4 −εj

]
|W |2(2−2jρΘ(θ))V (2j cot(θ)− `)

× e
−2πiρΘ(θ)

(
A−j

(2)
B−`

(2)
k
) ∫ bm

am

e2πiρΘ(θ)·(f(u),u)gm(u) du ρdθ dρ
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= 2
5
2 j

∫ 1

1
16

[∫ 3π
4 +εj

π
4−εj

+

∫ 7π
4 +εj

5π
4 −εj

]
|W |2(ρΘ(θ))V (2j cot(θ)− `)

× e
−2πi22jρΘ(θ)

(
A−j

(2)
B−`

(2)
k
)∫ bm

am

e2πi22jρΘ(θ)·(f(u),u)gm(u)du ρdθ dρ. (5)

Let ϕ(u) = Θ(θ) · (f(u), u). Since |f ′(u)| ≤ 1
2 for all u ∈ [a, b], there exists c > 0

such that

|ϕ′(u)| = | cos θf ′(u) + sin θ| ≥ | sin θ| − 1

2
| cos θ| ≥ c,

for all θ ∈ [π4 − εj ,
3π
4 + εj ]

⋃
[ 5π

4 − εj ,
7π
4 + εj ] and all u ∈ [a, b]. Finally, using

repeated integration by parts N times with respect to the variable u in (5) yields
that, for every N ∈ N, there is a constant CN , dependent on N such that

|β(2)
j,`,k| ≤ CN2

5
2 j 2−2Nj . 2

The following lemma is a special case of the classical method of stationary
phase (cf. Proposition 3 in [23, Chapter VIII]).

Lemma 2. Let ϕ and ψ be smooth functions. Suppose ϕ′(u0) = 0 and ϕ′′(u0) 6=
0. If ψ is supported in a sufficiently small neighborhood of u0, then

J(λ) =

∫
R
ei λ ϕ(u) ψ(u) du = λ−1/2 ei λ ϕ(u0)

(
a(u0) +O(λ−

1
2 )
)
,

as λ→∞, where a(u0) =
(

2πi
ϕ′′(u0)

) 1
2

ψ(u0).

Remark 2. In the following, we will apply Lemma 2 for estimates where a(u0)
appears in absolute value. Thus, in the statement above it is irrelevant the choice
of a particular square root.

We will also need the following lemma (cf. Proposition 2 and its corollary
in [23, Chapter VIII]).

Lemma 3. (Van der Corput Lemma) Let k ≥ 2, λ > 0, and φ(x) be a real-
valued function defined on [a, b] such that |φ(k)(x)| ≥ 1 for all x ∈ [a, b]. Also,
let ψ be smooth and compactly supported in [a, b]. Then∣∣∣∣∣

∫ b

a

eiλφ(x)ψ(x)dx

∣∣∣∣∣ ≤ Ckλ− 1
k

(
|ψ(b)|+

∫ b

a

|ψ′(x)|dx

)
,

where Ck depends only on k.

Lemma 4. With the notation introduced above, for any j ∈ Z, we have

‖Tj‖2 ' 2j .
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Proof. Using the decomposition Tj =
∑M
m=1 Tm,j , it is straightforward to see

that ‖Tj‖2 '
∑M
m=1 ‖Tm,j‖. Hence to prove the lemma it is sufficient to show

that ‖Tm,j‖2 ' 2j for any m. We will consider below the case where Sm is a
vertical curve. The case where Sm is a horizontal curve can be treated similarly.

By a suitable translation and rotation in the definition of Sm, we may assume
that there is an ε > 0 such that curve Sm is vertical with am = −ε, bm = ε,
and that f(0) = 0, f ′(0) = 0 and gm(0) = c 6= 0 for some constant c. Letting
φ(u) = −2π cos θ (f(u) + tan θ u), for u ∈ (−ε, ε), we can write

T̂m,j(ρ, θ) = W (2−2j(ρ cos θ, ρ sin θ))

∫ ε

−ε
eiρφ(u)gm(u) du

where φ′(u) = −2π(cos(θ)f ′(u) + sin(θ)) = −2π cos(θ)(f ′(u) + tan(θ)) and
φ′′(u) = −2π cos(θ)f ′′(u).

We choose ε0 > 0 small enough so that ε0 <
1
2ε and gm(u) 6= 0 on [−ε0, ε0].

Let
θ0 = min{| tan−1(−f ′(−ε0))|, | tan−1(−f ′(ε0))|}.

Remember that tan−1 is increasing. And also, since f ′′ 6= 0 on its domain, f ′

is either increasing or decreasing. Therefore, tan−1(−f ′) is either increasing or
decreasing, hence bijective from [−ε0, ε0] to

[tan−1(−f ′(−ε0)), tan−1(−f ′(ε0))] ⊇ [−θ0, θ0].

Therefore, for any θ ∈ [−θ0, θ0] or θ ∈ [π − θ0, π + θ0] there is a unique uθ ∈
[−ε0, ε0] such that θ = tan−1(−f ′(uθ)). Also since limθ→(π/2+kπ) tan(θ) = ±∞,
then for θ ∈ [−θ0, θ0] or θ ∈ [π − θ0, π + θ0], we see that cos(θ) 6= 0. Thus for
|θ| ≤ θ0, or |θ − π| ≤ θ0, we can apply Lemma 2 to get,

T̂m,j(ρ, θ) = W (2−2j(ρ cos θ, ρ sin θ)) ρ−
1
2

(
a(uθ) e

−2πiρφ(uθ) +O(ρ−
1
2 )
)

(6)

where

a(uθ) =
( 2πi

φ′′(uθ)

) 1
2

gm(uθ) = (i cos θ f ′′(uθ))
− 1

2 gm(uθ) 6= 0.

Since 0 < c1 ≤ |a(uθ)| ≤ c2 for all uθ ∈ [−ε0, ε0], from the conditions on the

support of W (2−2jξ) and omitting the higher order decay term in T̂m,j(ρ, θ) ,
we have that

I1 =

∫
R

[∫
|θ|≤θ0

+

∫
|θ−π|≤θ0

]
|T̂m,j(ρ, θ)|2 dθ ρ dρ

'
∫ 22j

1
16 22j

[∫
|θ|≤θ0

+

∫
|θ−π|≤θ0

]
|W (2−2j(ρ cos θ, ρ sin θ))|2 |a(uθ)|2dθ ρ−1ρ dρ

'
∫ 22j

22j−4

dρ ' 22j .

11



For θ0 ≤ |θ| ≤ π
4 and θ0 ≤ |θ − π| ≤ π

4 and for |u| ≤ ε, we have |φ′′(u)| =
2π| cos θ||f ′′(u)| ≥ c > 0. In this case, we apply Lemma 3 with k = 2 to get

|T̂m,j(ρ, θ)| ≤ C|W (2−2j(ρ cos θ, ρ sin θ))| ρ− 1
2 .

We have

I2 =

∫
R

[∫
θ0≤|θ|≤π4

+

∫
θ0≤|θ−π|≤π4

]
|T̂m,j(ρ, θ)|2 dθ ρ dρ

≤ C

∫ 22j

1
16 22j

[∫
θ0≤|θ|≤π4

+

∫
θ0≤|θ−π|≤π4

]
|W (2−2j(ρ cos θ, ρ sin θ))|2dθ ρ−1ρ dρ

≤ C 22j .

For π
4 ≤ |θ| ≤

π
2 and π

4 ≤ |θ − π| ≤
π
2 and for |u| ≤ ε, we have |φ′(u)| =

2π(| cos θf ′(u) + sin θ|) ≥ c > 0, where we used the assumption that |f ′(u)| ≤ 1
2

for |u| ≤ ε. Thus integration by parts gives∣∣∣∣∫ ε

−ε
eiρφ(u)gm(u) du

∣∣∣∣ ≤ C ρ−1.

Then we have

I3 =

∫
R

[∫
π
4≤|θ|≤

π
2

+

∫
π
4≤|θ−π|≤

π
2

]
|T̂m,j(ρ, θ)|2 dθ ρ dρ

≤ C

∫ 22j

1
16 22j

[∫
π
4≤|θ|≤

π
2

+

∫
π
4≤|θ−π|≤

π
2

]
|W (2−2j(ρ cos θ, ρ sin θ))|2dθ ρ−2ρ dρ

≤ C.

Since ‖Tm,j‖22 = I1 + I2 + I3, we finally have ‖Tm,j‖22 ' 22j and hence
‖Tm,j‖2 ' 2j .

This finishes the proof of the lemma. 2

We also need some preparation for the thresholding strategy of inpainting.
Let H be a Hilbert space and fix x0 ∈ H. Let E = {eλ : λ ∈ Λ} be

a Parseval frame on H and PK , PM be projection operators on H such that
x0 = PKx

0 + PMx
0. Here PKx

0 models the known part of the signal x0 and
PMx

0 the missing part of x0.
The one-step-thresholding algorithm from [19, Section 2.3] (version without

noise) is the following.

Algorithm 1.

• Input: The incomplete signal x = PKx0; the Parseval frame E = {eλ :
λ ∈ Λ}; the thresholding parameter σ.

• Algorithm:

12



1. Compute 〈x, ei〉 for all i;

2. build the set I = {λ ∈ Λ : |〈x, eλ〉| ≥ σ};
3. compute x∗ = F 1I F

∗x.

• Output: The set I of significant coefficients; the approximation x∗ to x0.

The following lemma – originally stated in [19, Proposition 3] – gives an
estimate of the approximation error of the one-step-thresholding algorithm. For
completeness, we include a proof.

Lemma 5. Let I and x∗ be computed via Algorithm 1 with the assumption that
all elements of the Parseval frame E = {eλ : λ ∈ Λ} have equal norm ‖ei‖ = e
for all λ ∈ Λ. Then

‖x∗ − x0‖2 ≤ e (‖1IcF ∗x0‖1 + ‖1IF ∗PMx0‖1).

Proof. Since x∗ = F1IF
∗PKx

0 and

x0 = PKx
0 + PMx

0

= FF ∗PKx
0 + FF ∗PMx

0

= F1IF
∗PKx

0 + F1IcF
∗PKx

0 + F1IF
∗PMx

0 + F1IcF
∗PMx

0,

we have

‖x∗ − x0‖2 = ‖F1IF ∗PKx0 −
(
F1IF

∗PKx
0 + F1IcF

∗PKx
0 + F1IF

∗PMx
0

+ F1IcF
∗PMx

0
)
‖2

= ‖F1IcF ∗PKx0 + F1IcF
∗PMx

0 + F1IF
∗PMx

0‖2
= ‖F1IcF ∗x0 + F1IF

∗PMx
0]‖2

≤ e (‖1IcF ∗x0‖1 + ‖1IF ∗PMx0‖1).

The last inequality follows from the observation that, due to the equal-norm
condition on E, for any x ∈ H we have that

‖F1JF ∗x‖2 = ‖
∑
λ∈J

〈x, eλ〉eλ‖2 ≤
∑
λ∈J

|〈x, eλ〉| ‖eλ‖2 ≤ e‖x‖1. 2

Given a Hilbert space H and a Parseval frame E = {eλ : λ ∈ Λ}, a vector
x ∈ H is δ clustered sparse in E with respect to I ⊂ Λ if there is a δ > 0 such
that

‖1IcF ∗x0‖1 =
∑
λ∈Ic
|〈x0, eλ〉| ≤ δ,

where F ∗ is the frame analysis operator. For the approximation error in Lemma 5
to be small, the signal x0 must be δ clustered sparse in E with respect to I.
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4. Inpainting using wavelets

In this section, we examine image inpainting using the wavelet system Φ =
{φλ : λ ∈ Λ} defined in Section 1.2.

In all arguments below, it will be sufficient to analyze the situation for
a section of the curve Sm, with a fixed m ∈ [1,M ]. Hence, to simplify the
notation, in the following we denote Sm by S and Tm,j by Tj . In addition,
we will only consider the case where the curve section is locally vertical; the
horizontal case can be treated in a very similar way.

4.1. Proof of Theorem 1 (`1 minimization)

We will write the set of the indices of the wavelet coefficients as Λ =
⋃
j∈Z Λj

where Λj = {(j, k) : k ∈ Z2} for each level j ∈ Z. We denote as Sw,j ⊂ Λj the
indices of the cluster of significant wavelet coefficients and we assume it to be
the set

Sw,j = {k = (k1, k2) , |k1| ≤ 2 · 22j , |k2| ≤ 2 · 22j}.

As in [7], corresponding to the sets Sw,j ⊂ Λj , we define the wavelet approxi-
mation error at the level j as

δwj =
∑

λ∈Scw,j

|〈Tj , φλ〉| (7)

and the cluster coherences as

µc(Sw,j , PMhj
Φ; Φ) = max

λ′

∑
λ∈Sw,j

|〈PMhj
φλ, φλ′〉|. (8)

We recall the following useful observation from [19, Lemma 1].

Lemma 6. For any j ∈ Z we have

‖R`j − Tj‖2 ≤
2 δwj

1− 2µc(Sw,j , PMhj
Φ; Φ)

,

where R`j, Tj are defined as in Theorem 2, δwj is given by (7) and µc by (8).

Using the above lemma, Theorem 1 then follows directly from the two propo-
sitions below whose proofs are in the next subsection.

Proposition 1. For any j ∈ Z

δwj = o(2j) = o(‖Tj‖2).

Proposition 2. Assume that hj = o(2−2j). Then

µc(Sw,j , PMhj
Φ; Φ)→ 0 as j →∞.
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4.1.1. Proofs of Propositions 1 and 2.

Proof of Proposition 1.
Letting βj,k = 〈φj,k, Tj〉 we can write (7) as δwj =

∑
k∈Scw,j

|βj,k|. Hence, the

proof is completed if we show that
∑
k∈Scw,j

|βj,k| = o(2j).

Let L be the differential operator

L =

(
I − 1

(2π)2

∂2

∂η2
1

) (
I − 1

(2π)2

∂2

∂η2
2

)
. (9)

Using Lemma 8, for any natural number N we can write

βj,k = 〈φ̂j,k, T̂j〉

= 2−2j

∫ b

a

∫
R̂2

|W (2−2jξ)|2 e2πiξ·(2−2jk+(f(u),u))dξ g(u)du

= 22j

∫ b

a

∫
R̂2

LN [|W (η)|2 ]L−N [e2πiη·(k+22j(f(u),u))] dη g(u)du.

Hence, using (A.1) in the Appendix, we have that, for any N ∈ N, there is a
constant CN independent of j and k such that

|βj,k| ≤ CN22j

∫ b

a

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N |g(u)|du.

(10)
If k ∈ Scw,j , then either |k1| > 2 · 22j or |k2| > 2 · 22j . So, using the fact that

|u|, |f(u)| ≤ 1, it follows that if |k1| > 2 · 22j then

1 + (k1 + 22jf(u))2 ≥ (k1 + 22jf(u))2 ≥ (|k1| − 22j |f(u)|)2 ≥ 24j .

Similarly, if |k2| > 2·22j , then 1+(k2−22j |u|)2 ≥ 24j . We can write Scw,j = A∪B
where A = {(k1, k2) : |k1| > 2 · 22j} and B = {(k1, k2) : |k2| > 2 · 22j}. Using
these observations and inequality (10) for N = 2 we have∑

k∈Scw,j

|βj,k|

≤
∑
k∈A

|βj,k|+
∑
k∈B

|βj,k|

≤ C
∑
k∈A

22j

∫ b

a

(
1 + (k1 + 22jf(u))2

)−2 (
1 + (k2 + 22ju)2

)−2 |g(u)| du

+ C
∑
k∈B

22j

∫ b

a

(
1 + (k1 + 22jf(u))2

)−2 (
1 + (k2 + 22ju)2

)−2 |g(u)| du

≤ C22j

∫ b

a

∑
|k1|≥2·22j

2−4j
(
1 + (k1 + 22jf(u))2

)−1∑
k2∈Z

(
1 + (k2 + 22ju)2

)−2|g(u)|du
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+ C22j

∫ b

a

∑
|k2|≥2·22j

2−4j
(
1 + (k2 + 22ju)2

)−1∑
k1∈Z

(
1 + (k1 + 22jf(u))2

)−2|g(u)|du

≤ C 22j 2−2j = o(2j). 2

Proof of Proposition 2.
Using Plancherel theorems and the Fourier transform of 1Mhj

(see Lemma 9),

we have

〈PMhj
φj,k, φj,k′〉 = 〈1̂Mhj

∗ φ̂j,k, φ̂j,k′〉

= 2hj

∫
R̂2

∫
R

sinc(2πhjη2) φ̂j,k (ξ − (0, η2)) dη2 φ̂j,k′(ξ) dξ

= 2hj2
−4j

∫
R̂2

∫
R
W (2−2j(ξ1, ξ2 − η2)) sinc(2πhjη2)

× e−2πi2−2jη2k2dη2W (2−2jξ) e2πiξ2−2j(k−k′) dξ.

Making the change of variables τ = 2−2jξ and γ2 = 2−2jη2, we obtain

〈PMhj
φj,k, φj,k′〉 = 2hj 22j

∫
R̂2

g(τ) e2πiτ(k−k′) dτ.

where the function

g(τ) =

∫
R
W (τ − (0, γ2))W (τ) sinc(2πhj2

2jγ2) e−2πiγ2k2 dγ2

is smooth and compactly supported. Notice that by dominated convergence:

L(g(τ)) =

∫
R
L
(
W (τ − (0, γ2))W (τ)

)
sinc(2πhj2

2jγ2) e−2πiγ2k2 dγ2

and

|L(g(τ))| ≤
∫
R

∣∣∣L(W (τ − (0, γ2))W (τ)
)∣∣∣ |sinc(2πhj2

2jγ2)| |e−2πiγ2k2 | dγ2

≤
∫
R

∣∣∣L(W (τ − (0, γ2))W (τ)
)∣∣∣ dγ2

which is bounded since W is smooth and compactly supported and |sinc| ≤ 1.
Hence we can apply Lemma 8 with (A.1) and the differential operator L given
by (9) to obtain

〈PMhj
φj,k, φj,k′〉

= 2hj2
2j

∫
R̂2

L (g(τ))L−1
(
e2πiτ(k−k′)

)
dτ

= 2hj2
2j(1 + (k1 − k′1)2)−1(1 + (k2 − k′2)2)−1

∫
R̂2

L (g(τ)) e2πiτ(k−k′)dτ.
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It follows that there is a constant C independent of k, k′ and hj such that

|〈PMhj
φj,k, φj,k′〉| ≤ C 2hj2

2j(1 + (k1 − k′1)2)−1(1 + (k2 − k′2)2)−1.

From the last estimate we have that∑
k∈Sw,j

|〈PMhj
φj,k, φj,k′〉| ≤ C 22j hj

∑
k∈Z2

(1 + (k1 − k′1)2)−1(1 + (k2 − k′2)2)−1

≤ C 22j hj .

Since hj = o(2−2j), then µc(Sw,j , PMhj
Φ; Φ)→ 0, as j →∞. 2

4.2. Proof of Theorem 2 (Thresholding)

We will apply Algorithm 1 to the signal T using the Parseval frame of
wavelets Φ = {φj,k : j ∈ Z, k ∈ Z2} defined in Section 1.2. Note that ‖φj,k‖2 =
‖φ‖2 for all j ∈ Z, k ∈ Z2.

For any j ∈ Z, k ∈ Z2, let γj,k = 〈φj,k, PMhj
Tj〉, βj,k = 〈φj,k, Tj〉 and

αj,k = βj,k − γj,k. For j ≥ 0, 0 ≤ σj ≤ 2−4j , we set Ij = {k ∈ Z2 : |αj,k| ≥ σj}.
By applying Lemma 5, we obtain the following estimate.

Proposition 3. Fix j ∈ Z and let the set of significant coefficients Ij be given
as above. Let the approximation Rj of the function Tj be computed according to
Algorithm 1. Then

‖Rτj − Tj‖2 ≤ ‖φ‖2 (‖1IcjF
∗Tj‖1 + ‖1IjF ∗PMhj

Tj‖1).

Note that ‖1IcjF
∗Tj‖1 =

∑
k∈Icj
|βj,k|, that ‖1IjF ∗PMhj

Tj‖1 =
∑
k∈Ij |γj,k|

and that Rτj = F [1IjF
∗PR2\Mhj

Tj ]. Since ‖1IjF ∗PMhj
Tj‖1 ≤ ‖F ∗PMhj

Tj‖1,

it follows from Proposition 3 that Theorem 2 is proved if the following proposi-
tion holds.

Proposition 4. Fix j ∈ Z. For any 0 ≤ σj ≤ 2−4j and hj = o(2−j), we have

(i) ‖F ∗PMhj
Tj‖1 =

∑
k∈Z2

|γj,k| ≤ C 22j hj = o(‖Tj‖2); (11)

(ii)
∑
k∈Icj

|βj,k| = o(2j) = o(‖Tj‖2), as j →∞. (12)

Proof. Using Plancherel theorem and the change of variables 2−2jξ = η, we
have that

γj,k = 〈φ̂j,k, ̂PMhj
Tj〉

= 2−2j

∫
R̂2

W (2−2jξ) e2πi2−2jξk ̂PMhj
Tj(ξ) dξ

= 22j

∫
R̂2

W (η) e2πiηk ̂PMhj
Tj(22jη) dη. (13)
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A direct computation shows that

Tj(x) =

∫
R̂2

T̂j(ξ) e2πiξx dξ

=

∫
R̂2

W (2−2jξ)

(∫ b

a

e−2πiξ·(f(u),u) g(u) du

)
e2πiξx dξ

=

∫ b

a

(
24j

∫
R̂2

W (η) e2πi22jη·
(
x−(f(u),u)

)
dη

)
g(u)du

= 24j

∫ b

a

W̌
(
22j (x− (f(u), u))

)
g(u) du,

where W̌ is the inverse Fourier Transform of W . It follows that

̂PMhj
Tj(22jη)

=

∫
R2

1Mhj
(x) Tj(x) e−2πi22jηxdx

=

∫
R2

e−2πi22jηx
1Mhj

(x)

∫ b

a

24j W̌ (22j(x− (f(u), u))) g(u) du dx

=

∫ b

a

∫
R2

e−2πi22jηx
1Mhj

(x) 24j W̌ (22j(x− (f(u), u))) dx g(u) du

=

∫ b

a

∫
R2

e−2πi22jη·(x+(f(u),u))
1Mhj

(x+ (f(u), u)) 24j W̌ (22jx) dx g(u) du

=

∫
R2

∫ b

a

e−2πi22jη·(x+(f(u),u))
1Mhj

(x+ (f(u), u)) g(u) du 24j W̌ (22jx) dx

= I1(η) + I2(η), (14)

where, for B∆0 = {x ∈ R2 : |x| ≤ 2−(2−∆0)j} and any ∆0 > 0, we define

I1(η)=

∫
B∆0

24j W̌ (22jx)

∫ b

a

e−2πi22jη·(x+(f(u),u))
1Mhj

(x+ (f(u), u)) g(u)du dx;

I2(η)=

∫
Bc∆0

24j W̌ (22jx)

∫ b

a

e−2πi22jη·(x+(f(u),u))
1Mhj

(x+ (f(u), u)) g(u)du dx.

Substituting (14) into (13), we can then write γj,k = γj,k;I1 + γj,k;I2 , where

γj,k;Ii = 22j

∫
R̂2

W (η) e2πiηk Ii(η) dη, i = 1, 2.

Using Lemma 8 and the differential operator L given by (9), we have

γj,k;I1 = 26j

∫
|x|≤2−(2−∆0)j

∫ b

a

∫
R̂2

L (W (η))L−1
(
e2πiη·(k+22j(x+(f(u),u)))

)
dη
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× 1Mhj
(x+ (f(u), u))g(u) du W̌ (22jx) dx. (15)

A similar computation gives

γj,k;I2 = 26j

∫
|x|>2−(2−∆0)j

∫ b

a

∫
R̂2

L2 (W (η))L−2
(
e2πiη·(k+22j(x+(f(u),u)))

)
dη

× 1Mhj
(x+ (f(u), u))g(u) du W̌ (22jx) dx. (16)

To estimate the term γj,k;I1 , we observe that, since W ∈ C∞c (R2), then, for
any N ∈ N, there is a constant CN > 0 such that |W̌ (x)| ≤ CN (1 + |x|2)−N

for all x ∈ R2. In addition, we have that
∫ b
a
1Mhj

(x+ (f(u), u))|g(u)|du ≤ C hj
where C is a constant independent of |x| ≤ 2−(2−∆0)j . Hence from (15) we have
that

|γj,k;I1 | ≤ 26j

∫
|x|≤2−(2−∆0)j

∫ b

a

∫
R̂2

|L (W (η))| dη

×
(

1 +
(
k1 + 22j(x1 + f(u))

)2)−1 (
1 +

(
k2 + 22j(x2 + u)

)2)−1

× 1Mhj
(x+ (f(u), u)) |g(u)| du

∣∣W̌ (22jx)
∣∣ dx

Since W is a smooth function, for any N ∈ N we derive that there is a CN > 0
such that∑

k∈Z2

|γj,k;I1 |

≤ 26jC

∫
|x|≤2−(2−∆0)j

∫ b

a

∑
k∈Z2

(
1 +

(
k1 + 22j(x1 + f(u))

)2)−1

×
(

1 +
(
k2 + 22j(x2 + u)

)2)−1

1Mhj
(x+ (f(u), u)) |g(u)| du

∣∣W̌ (22jx)
∣∣ dx

≤ 26jC

∫
|x|≤2−(2−∆0)j

∫ b

a

1Mhj
(x+ (f(u), u)) |g(u)| du

∣∣W̌ (22jx)
∣∣ dx

≤ 26jhjCN

∫
|x|≤2−(2−∆0)j

(1 + |22jx|2)−N dx

= 22jhjCN

∫
|u|≤2∆0j

(1 + |u|2)−N du

where CN is a constant independent of j. By choosing N large enough, we
conclude that: ∑

k∈Z2

|γj,k;I1 | ≤ C 22jhj (17)

To estimate the term γj,k;I2 , we proceed similarly, with the difference that

now we use the inequality
∫ b
a
1Mhj

(x+ (f(u), u))|g(u)|du ≤
∫ b
a
|g(u)|du ≤ C for
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some constant C independent of x ∈ R2. Hence from (16) we have that∑
k∈Z2

|γj,k;I2 |

≤ C26j

∫
|x|>2−(2−∆0)j

∫ b

a

∑
k∈Z2

(
1 +

(
k1 + 22j(x1 + f(u))

)2)−1

×
(

1 +
(
k2 + 22j(x2 + u)

)2)−1

1Mhj
(x+ (f(u), u))|g(u)| du

∣∣W̌ (22jx)
∣∣ dx

≤ C26j

∫
|x|>2−(2−∆0)

∣∣W̌ (22jx)
∣∣ dx

≤ CN 22j

∫
|u|>2∆0j

(1 + |u|2)−N du

≤ CN 22j 2−(2N−2)∆0j .

By choosing N large enough in (18) we have 2−(2N−2)∆0j ≤ hj for j sufficiently
large. Thus, combining (17) and (18), we have that there is a constant C
independent of j such that

‖1IjF ∗PMhj
Tj‖1 ≤

∑
k∈Z2

|γj,k| ≤ C 22j hj ,

and this proves (11).
To prove (12), we estimate βj,k. Using Plancherel formula, the change of

variable η = 2−2jξ and Lemma 8, we have that for any N ∈ N

βj,k = 〈φ̂j,k, T̂j〉

= 2−2j

∫
R̂2

|W2−2jξ)|2 e2πi2−2jξk

∫ b

a

e2πiξ·(f(u),u)g(u) du dξ

= 22j

∫ b

a

∫
R̂2

|W (η)|2 e2πiη·(k+22j(f(u),u))dη g(u) du

= 22j

∫ b

a

∫
R̂2

LN
(
|W (η)|2

)
L−N

(
e2πiη·(k+22j(f(u),u))

)
dη g(u) du.

Using the observation that W is a smooth function and (A.1) in Appendix, we
have that, for any N ∈ N, there is a constant CN such that

|βj,k| ≤ CN 22j

∫ b

a

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N |g(u)|du.

(18)

Let Kj = {k : |k1| ≤ 22j+1, |k2| ≤ 22j+1}. If k ∈ Kc
j , then either |k1| > 22j+1

or |k2| > 22j+1. As before, if |k1| > 22j+1, for all |f(u)|, |u| ≤ 1, it follows that

1 + (k1 + 22jf(u))2 ≥ (k1 + 22jf(u))2 ≥ 24j .
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Similarly, if |k2| > 22j+1, we have 1 + (k1 + 22jf(u))2 ≥ 24j . It then follows
from (18) that∑

k∈Kc
j

|βj,k|

≤ CN 22j

∫ b

a

∑
k∈Kc

j

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N |g(u)|du

≤ CN 22j

∫ b

a

∑
|k1|>22j+1,k2∈Z

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N
×

∑
k1∈Z,|k2|>22j+1

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N |g(u)|du

≤ CN 22j

∫ b

a

2(1−N)4j
∑
k∈Z2

(
1 + (k1 + 22jf(u))2

)−1 (
1 + (k2 + 22ju)2

)−N
× 2(1−N)4j

∑
k∈Z2

(
1 + (k1 + 22jf(u))2

)−N (
1 + (k2 + 22ju)2

)−N |g(u)|du

≤ CN2−2(2N−3)j (19)

Next observe that∑
k∈Icj

|βj,k| ≤
∑

k∈Icj
⋂
Kj

|βj,k|+
∑

k∈Icj
⋂
Kc
j

|βj,k|

≤
∑

k∈Icj
⋂
Kj

|αj,k|+
∑

k∈Icj
⋂
Kj

|γj,k|+
∑

k∈Icj
⋂
Kc
j

|βj,k|

≤
∑

k∈Icj
⋂
Kj

|αj,k|+
∑
k∈Z2

|γj,k|+
∑
k∈Kc

j

|βj,k| (20)

We will now examine each term of the sum (20). For the first term, we see that,
if k ∈ Icj , then |αj,k| ≤ σj ≤ 2−4j . It then follows that∑

k∈Icj
⋂
Kj

|αj,k| ≤
∑
k∈Kj

2−4j ≤ C 24j 2−4j ≤ C = o(2j) = o(‖Tj‖).

For the second term, we apply (19) with N = 2 to get∑
k∈Kc

j

|βj,k| ≤ C ≤ o(‖Tj‖) as j →∞.

For the third term, we apply (17) and use the assumption that hj = o(2−j) to
get ∑

k∈Z2

|γj,k| ≤ C 22j hj = o(2j) = o(‖Tj‖) as j →∞.

Combining these observations, we obtain (12). 2
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5. Inpainting using shearlets

In this section, we examine the inpainting problem using the shearlet system
Ψ = {ψη : η ∈M} defined in Section 1.2.

For this study, we need to analyze the coefficients 〈ψ(ν)
j,`,k, Tm,j〉, ν = 1 or

ν = 2, in four different cases:

(1) ψ
(1)
j,`,k is horizontal and the curve for Sm is vertical,

(2) ψ
(2)
j,`,k is vertical and the curve for Sm is vertical,

(3) ψ
(1)
j,`,k is horizontal and the curve for Sm is horizontal,

(4) ψ
(2)
j,`,k is vertical and the curve for Sm is horizontal.

Since cases (1) and (2) are analogous to cases (3) and (4), we need only to
consider cases (1) and (2). We also remark that boundary shearlets have lo-

calization and regularity properties very similar to the shearlet functions ψ
(ν)
j,`,k,

ν = 1, 2, hence the same argument holds for such elements. Also, as in Section 4,
we can fix m for the locally vertical curve Sm and to simplify the notation –
since no horizontal curve need to be examined – we will denote Sm by S and
Tm,j by Tj in the following.

5.1. Proof of Theorem 3 (`1 minimization)

Let Ψ = {ψη : η ∈ M} be the shearlet system where M = {η = (j, `, k, ν) :
j ≥ 0, |`| ≤ 2j , k ∈ Z2, ν = 1, 2}. We can write M = M (1)∪M (2), where M (i) =

{η = (j, `, k, ν) ∈ M : ν = i}, for i = 1, 2, and, for each i, M (i) =
⋃
j≥0M

(i)
j ,

where M
(i)
j = {(j′, `, k) ∈M (i) : j′ = j}.

As in Section 4, for each j ∈ Z, we denote as Ss,j the set of indices of the
cluster of significant shearlet coefficients (at scale j). The explicit definition
of this set will be given below, in the proof of Proposition 6. Corresponding
to this set, we define the shearlet approximation error at the level j as δsj =∑
η∈Scs,j

|〈Tj , ψη〉| and the cluster coherence as

µc(Ss,j , PMhj
Ψ; Ψ) = max

η′

∑
η∈Ss,j

|〈PMhj
ψη′ , ψη〉|.

It will be convenient to write Ss,j = Ss,j,1
⋃
Ss,j,2 ⊂M , where we set Ss,j,2 = ∅

and Ss,j,1 ⊂M (1)
j will be determined below. Since Ss,j,2 = ∅, we have

max
η′

∑
η∈Ss,j

|〈PMhj
ψη′ , ψη〉| ≤ max

η′

∑
η∈Ss,j,1

|〈PMhj
ψ

(1)
η′ , ψ

(1)
η 〉|

+ max
η′

∑
η∈Ss,j,1

|〈PMhj
ψ

(2)
η′ , ψ

(1)
η 〉|.

As for the wavelet case, from Lemma 1 in [19] we have
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Proposition 5.

‖R`j − Tj‖2 ≤
2δsj

1− 2µc(Ss,j , PMhj
Ψ; Ψ)

.

Let β
(ν)
j,`,k = 〈ψ̂(ν)

j,`,k, T̂j〉, ν = 1, 2. The proof of Theorem 3 follows from the
two propositions below where the set Ss,j,1 is also constructed. The proofs of
these propositions in presented in the next subsection.

Proposition 6. For any j ∈ Z,

δsj =
∑

(`,k)∈M(1)
j \Scs,j,1

|β(1)
j,`,k|+

∑
(`,k)∈M(2)

j

|β(2)
j,`,k| = o(2j) = o(‖Tj‖2). (21)

Proposition 7. Assume that hj = o(2−j). Then

max
η′

∑
η∈Ss,j,1

|〈PMhj
ψ

(1)
η′ , ψ

(1)
η 〉| → 0 as j →∞; (22)

max
η′

∑
η∈Ss,j,1

|〈PMhj
ψ

(2)
η′ , ψ

(1)
η 〉| → 0 as j →∞. (23)

5.1.1. Proof of Propositions 6 and 7.

Proof of Proposition 6.

Using Plancherel theorem and recalling that T̂ (ξ) =
∫ b
a
e−2πiξ·(f(u),u)g(u)du,

where [a, b] ⊂ [−1, 1] and |f(u)| ≤ 1, we have

β
(1)
j,`,k =

∫
R̂2

ψ̂
(1)
j,`,k(ξ) T̂j(ξ) dξ

= 2−
3
2 j

∫ b

a

∫
R̂2

|W (2−2jξ)|2V
(

2j
ξ2
ξ1
− `
)
e

2πiξ·(A−j
(1)
B−`

(1)
k+(f(u),u))

dξ g(u)du. (24)

Let η = ξA−j(1)B
−`
(1). Then,

ξ · (A−j(1)B
−`
(1)k + (f(u), u)) = η · (k +B`(1)A

j
(1)(f(u), u))

= η · (k1 + 22jf(u) + 2j`u, k2 + 2ju)

and, thus

β
(1)
j,`,k = 2

3
2 j

∫ b

a

∫
R̂2

|W (η1, 2
−j(`η1 + η2))|2 V

(
η2

η1

)
× e2πi(η1(k1+22jf(u)+2j`u)+η2(k2+2ju))dη g(u)du.

Applying Lemma 8, where L is the differential operator (9), we have that, for
any N ∈ N,

β
(1)
j,`,k = 2

3
2 j

∫ b

a

∫
R̂2

LN
(
|W (η1, 2

−j(`η1 + η2))|2V
(
η2

η1

))
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× L−N
(
e2πi(η1(k1+22jf(u)+2j`u)+η2(k2+2ju))

)
dη g(u)du.

Since W and V are smooth and compactly supported, for any N ∈ N, there is a

constant CN such that
∣∣∣LN (|W (η1, 2

−j(`η1 + η2))|2V (η2

η1
)
)∣∣∣ ≤ CN . Hence, by

(A.1) in Appendix,

|β(1)
j,`,k| ≤ CN 2

3
2 j

∫ b

a

(
1 + (k1 + 22jf(u) + 2j`u)2

)−N (
1 + (k2 + 2ju)2

)−N
du.

(25)

Similarly for β
(2)
j,`,k, for any N ∈ N, there is a constant CN such that

|β(2)
j,`,k| ≤ CN 2

3
2 j

∫ b

a

(1 + (k1 + 2ju)2)−N (1 + (k2 + 22jf(u) + 2j`u)2)−Ndu.

For each j ≥ 0 in Z, we define the set

K
(1)
j = {(j, `, k) ∈M (1)

j : |k1| ≤ 3 · 22j , |k2| ≤ 2 · 2j}.

We observe that, if |k2| ≥ 2 · 2j , then |k2 + 2ju| ≥ 2j for all u ∈ [a, b]. Also if
|k1| ≥ 3 · 22j , and remembering |`| ≤ 2j , then |k1 + 22jf(u) + 2j`u| ≥ 22j for all
u ∈ [a, b]. It then follows from inequality (25) that∑

(`,k)∈M(1)
j \K

(1)
j

|β(1)
j,`,k| ≤ CN 2

5
2 j 2−(N−1)2j = CN 2

9
2 j 2−2Nj . (26)

Similarly K
(2)
j = {(j, `, k) ∈M (2)

j : |k1| ≤ 2 · 2j , |k2| ≤ 3 · 22j} and, using a

very similar argument on β
(2)
j,`,k, we have that, for any N ∈ N, there is a constant

CN such that ∑
(`,k)∈M(2)

j \K
(2)
j

|β(2)
j,`,k| ≤ CN 2

7
2 j 2−2Nj . (27)

Since the set K
(2)
j contains O(24j) elements, using Lemma 1 we have that, for

any N ∈ N, there is a constant CN such that∑
(`,k)∈K(2)

j

|β(2)
j,`,k| ≤

∑
(`,k)∈K(2)

j

CN 2
5
2 j 2−2Nj

≤ CN 24j2
5
2 j2−2Nj

= CN 2
13
2 j2−2Nj . (28)

Thus, combining (27) and (28), we have that, for any N ∈ N, there is a constant
CN such that∑

(k,`)∈M(2)
j

|β(2)
j,`,k| =

( ∑
(`,k)∈K(2)

j

+
∑

(`,k)∈M(2)
j \K

(2)
j

)
|β(2)
j,`,k|
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≤ CN

(
2

7
2 j 2−2Nj + 2

13
2 j2−2Nj

)
≤ CN 2

13
2 j 2−2Nj . (29)

Choosing N large enough in (29), it follows that∑
(`,k)∈M(2)

j

|β(2)
j,`,k| = o(2j), as j →∞. (30)

To complete the estimate of δsj in (21), we need to define Ss,j,1 and show

that
∑

(`,k)∈Scs,j,1
|β(1)
j,`,k| = o(2j).

In the integral of β
(1)
j,`,k, given by (24), we first make the change of variables

η = 2−2jξ, next convert to polar coordinates with η = ρΘ(θ) = ρ(cos θ, sin θ),
hence obtaining

β
(1)
j,`,k = 2

5
2 j

∫ b

a

∫ ∞
0

∫ 3π
2

−π2
|W (ρΘ(θ))|2 V (2j tan θ − `)

× e
2πi22jρΘ(θ)·

(
A−j

(1)
B−`

(1)
k+(f(u),u)

)
ρ dρ dθg(u) du

= 2
5
2 j

∫ ∞
0

∫ 3π
2

−π2
|W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j

(1)
B−`

(1)
k

×

(∫ b

a

e2πi22jρΘ(θ)·(f(u),u)g(u) du

)
dθ ρ dρ.

As in the proof of Lemma 4, by a suitable translation and rotation of the
curve segment S, we can assume that f(0) = f ′(0) = 0. Also we may assume
that f ′′(x) > 0 so that f ′(x) is strictly increasing (the same argument for the
case of f ′(x) being strictly decreasing). We define

φ(u, θ) = 2πΘ(θ) · (f(u), u) = 2π(cos θf(u) + sin θu) = 2π cos θ(f(u) + tan θu).

And again, by a change of parameter, we may assume a = −ε and b = ε .
Since g ∈ C∞0 (−ε, ε), one can find 0 < ε0 < ε such that supp (g) ⊂ [−ε0, ε0].
Let δ0 = 1

2 (ε− ε0) and θ1 = tan−1(−f ′(−(ε0 + δ0))), θ0 = | tan−1(−f ′(ε0 + δ0))|
so that tan(θ1) = −f ′(−(ε0 + δ0)) and tan(−θ0) = −f ′(ε0 + δ0). Since tan θ
is increasing on [−π4 ,

π
4 ] with tan 0 = 0 and f ′(u) is increasing on [−ε, ε] with

f ′(0) = 0, we see that the interval [−θ0, θ1] matches the interval [−(ε0 +δ0), ε0 +
δ0]. The map from [−(ε0 + δ0), ε0 + δ0] onto [−θ0, θ1] is strictly decreasing. So,
for θ ∈ [−π4 ,

π
4 ] \ (−θ0, θ1) or θ − π ∈ [−π4 ,

π
4 ] \ (−θ0, θ1) and |u| ≤ ε0, we have

f ′(u) + tan θ 6= 0.
It follows that there exists a constant c > 0 such that |φ′u(u, θ)| ≥ c for all θ ∈

[−π4 ,
π
4 ] \ (−θ0, θ1) or θ− π ∈ [−π4 ,

π
4 ] \ (−θ0, θ1) and |u| ≤ ε0. Thus integration

by parts gives that for all θ ∈ [−π4 ,
π
4 ] \ (−θ0, θ1) or θ − π ∈ [−π4 ,

π
4 ] \ (−θ0, θ1),

we have ∣∣∣∣∫ ε

−ε
e2πi22jρΘ(θ)·(f(u),u)g(u) du

∣∣∣∣ ≤ CN2−2Nj .
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Also as in the proof of lemma 4, for π
4 ≤ |θ| ≤

π
2 or π

4 ≤ |θ − π| ≤
π
2 , we have∣∣∣∣∫ ε

−ε
e2πi22jρΘ(θ)·(f(u),u)g(u) du

∣∣∣∣ ≤ CN2−2Nj .

Thus from the selection of the set Ss,j,1 to be found later, we see that in

order to control |β(1)
j,`,k|, we may write β

(1)
j,`,k as

β
(1)
j,`,k = 2

5
2 j

∫ ε

−ε

∫ ∞
0

[

∫ θ1

−θ0
+

∫ π+θ1

π−θ0
] |W (ρΘ(θ))|2 V (2j tan θ − `)

× e
2πi22jρΘ(θ)·

(
A−j

(1)
B−`

(1)
k+(f(u),u)

)
ρ dρ dθg(u) du

= 2
5
2 j

∫ ∞
0

[

∫ θ1

−θ0
+

∫ π+θ1

π−θ0
] |W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j

(1)
B−`

(1)
k

×
(∫ ε

−ε
e2πi22jρΘ(θ)·(f(u),u)g(u) du

)
dθ ρ dρ.

Since the discussion for the case θ ∈ [π − θ0, π + θ1] is the identical for the

case θ ∈ [−θ0, θ1], we further write β
(1)
j,`,k as

β
(1)
j,`,k = 2

5
2 j

∫ ∞
0

∫ θ1

−θ0
|W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j

(1)
B−`

(1)
k

×
(∫ ε

−ε
e2πi22jρΘ(θ)·(f(u),u)g(u) du

)
dθ ρ dρ.

From the choice of θ0 and θ1, we see that for any θ ∈ [−θ0, θ1], there exists a
unique uθ ∈ [−(ε0 + δ0), ε0 + δ0] such that φ′u(uθ, θ) = 0. We remark that unlike
in the proof of Lemma 4, we will have g(uθ) = 0 if ε0 ≤ |uθ| ≤ ε0 + δ0. Now as
in the proof of Lemma 4, we apply Lemma 2 to get∫ ε

−ε
e2πi22jρΘ(θ)·(f(u),u)g(u) du = 2−jρ−

1
2

(
a(uθ) e

2πi22jρφ(uθ) +O(ρ−
1
2 )
)

where a(uθ) =
(

2πi
φ′′
u2 (uθ,θ)

) 1
2

g(uθ).

Thus, omitting the higher order decay terms in the above expression, we

may write β
(1)
j,`,k as

β
(1)
j,`,k = 2

3
2 j

∫ ∞
0

∫
|θ|≤θ0

|W (ρΘ(θ))|2 V (2j tan θ − `)e2πi22jρΘ(θ)·A−j
(1)
B−`

(1)
k

×
(
a(uθ) e

2πi22jρφ(uθ)
)
dθ ρ

1
2 dρ.

Recall supp (V ) ⊂ [−1, 1], which means that for a given ` and for θ ∈
[−θ0, θ1], we must have |2j tan θ−`| ≤ 1. This is possible only when tan θ ∼ 2−j`
which means that |2−j`| needs to be small since θ ∈ [−θ0, θ1]. Remember
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that |`| ≤ 2j , so in the integral of βj,`,k, we make the change of variables
t = 2j tan θ − `, with |t| ≤ 1, so that tan θ(t) = 2−j(t + `) = 2−j` + 2−jt. Ob-
serving that θ(t) = tan−1(2−j(t + `)) and uθ(t) = (f ′)−1(−2−j(t + `)). Notice
uθ(t) is well defined, since for large values of 2−j(t+ `) = tan θ, we have |θ| ≥ θ0

which corresponds to neglected part of β
(1)
j,`,k.

It follows that we can write β
(1)
j,`,k as

β
(1)
j,`,k = 2

3
2 j

∫ ∞
0

∫ 1

−1

|W (ρΘ(θ(t))|2 V (t) a(uθ(t))
e2πiρG(t) cos θ(t)

1 + 2−2j(t+ `)2
ρ

1
2 dt dρ, (31)

where G : [−1, 1] 7→ R is given by

G(t) = k1+tk2+22jf
(
(f ′)−1(−2−j(t+ `)

)
+2j(t+`) (f ′)−1(−2−j(t+`)). (32)

Note that G is continuous and compactly supported. Hence, for k = (k1, k2) ∈
Z2, ` ∈ Z with |`| ≤ 2j , we can pick tk,` ∈ [−1, 1] to be defined by the condition

|G(tk,`)| = inf
|t|≤1
|G(t)|. (33)

For j > 0 fixed, we define the set

Ss,j,1 = {(j, `, k) ∈M (1)
j : |k1| ≤ 3 · 22j , |k2| ≤ 2 · 2j , |G(tk,`)| ≤ 2∆0j}. (34)

Next, remember for j > 0 fixed, we have defined the sets K
(1)
j = {(j, `, k) ∈

M
(1)
j : |k1| ≤ 3 · 22j , |k2| ≤ 2 · 2j}. Similarly we define

Q
(1)
j = {(j, `, k) ∈M (1)

j : |G(tk,`)| ≤ 2∆0j}.

Since Ss,j,1 = K
(1)
j ∩Q

(1)
j , then

M
(1)
j \Ss,j,1 =(M

(1)
j \K

(1)
j )∪(M

(1)
j \Q

(1)
j )=(M

(1)
j \K

(1)
j )∪

(
(M

(1)
j \Q(1)

j ) ∩K(1)
j

)
.

Hence, we can write the first sum in (21) as∑
(`,k)∈M(1)

j \Ss,j,1

|β(1)
j,`,k| =

∑
(`,k)∈M(1)

j \K
(1)
j

|β(1)
j,`,k|+

∑
(`,k)∈(M

(1)
j \Q

(1)
j )∩Kj

|β(1)
j,`,k|. (35)

From equation (26) we have that, for every N ∈ N, there is a constant CN >

0 such that
∑

(`,k)∈(M
(1)
j \K

(1)
j )
|β(1)
j,`,k| ≤ CN 2

9
2 j 2−2Nj . Therefore, choosing N

large enough in the last expression, we have that∑
(`,k)∈(M

(1)
j \K

(1)
j )

|β(1)
j,`,k| = o(2j). (36)

To estimate the second sum in (35), we observe that, for (`, k) ∈ (M
(1)
j \

Q
(1)
j ) ∩K(1)

j , we have |G(t)| ≥ 2∆0j for all t ∈ [−1, 1]. By repeated integration
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by parts with respect to the variable ρ in the integral of β
(1)
j,`,k, given by (31),

we have that, for any N ∈ N, there is a constant CN such that

|β(1)
j,`,k| ≤ CN 2

3
2 j

∫ 1

−1

|V (t)| 1

|G(t) cos θ(t)|N
dt

1 + 2−2j(t+ `)2

Hence, for (`, k) ∈ (M
(1)
j \Q(1)

j ) ∩K(1)
j and any N ∈ N, there is a constant CN

such that
|β(1)
j,`,k| ≤ CN 2

3
2 j 2−N∆oj .

Therefore, observing that the cardinality of K
(1)
j is of order 24j , we have that∑

(`,k)∈(M
(1)
j \Qj)∩Kj

|β(1)
j,`,k| ≤ CN 24j 2

3
2 j 2−N∆oj .

If we choose N large enough, we have that N∆0 >
11
2 so that the sum in the

last expression is o(2j). Combining this estimate with (36) in (35), and then
using the estimate (30), we have that δsj = o(2j). 2

In order to prove Proposition 7, we need the following lemma.

Lemma 7. For j > 0 fixed and k ∈ Z2, ` ∈ Z, let tk,` be defined by equation
(33) in the proof of Proposition 6. Set

Gk,` =k1+tk,`k2+22jf [(f ′)−1(−2−j(tk,`+`)]+2j(tk,`+`) (f ′)−1(−2−j(tk,`+`))

and Qk = {|`| ≤ 2j : Gk,` ≤ 2∆0j}. Then for each fixed k, the cardinality of

the set Qk satisfies the inequality #(Qk) ≤ C 2
1
2 ∆0j , where the constant C is

independent of j, k.

Proof of Proposition 7. We start by proving the estimate (22), where the set
Ss,j,1 is given by (34).

Similar to the proof of Proposition 2, using Plancherel theorem and the
Fourier transform of 1Mhj

(see Lemma 9), we have

〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉

= 〈h∆0
j 1̂Mhj

∗ ψ̂(1)
j,`,k, ψ̂

(1)
j,`′,k′〉

= 2h1+∆0
j

∫
R̂2

∫
R̂

sinc(2πhjτ2) ψ̂
(1)
j,`,k ((ξ1, ξ2)− (0, τ2)) dτ2 ψ̂

(1)
j,`′,k′(ξ) dξ

= 2h1+∆0
j 2−3j

∫
R̂2

∫
R̂
W (2−2j(ξ1, ξ2 − τ2))V (2j

ξ2 − τ2
ξ1

− `) sinc(2πhjτ2)

× e
−2πi(0,τ2)·A−j

(1)
B−`

(1)
k
dτ2W (2−2jξ)V (2j

ξ2
ξ1
− `′) e2πiξA−j

(1)
B−`

(1)
(k−B`(1)B

−`′
(1)

k′)
dξ.
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Letting η = ξA−j(1)B
−`
(1) so that ξ = (ξ1, ξ2) = ηB`(1)A

j
(1) = (22jη1, 2

j(`η1 + η2)),

we have

〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉

= 2h1+∆0
j

∫
R̂2

∫
R̂
W (η1, 2

−j(`η1 + η2)− 2−2jτ2)V (
η2

η1
− 2−jτ2

η1
)e−2πi2−jτ2k2

× sinc(2πτ22−j) dτ2W (η1, 2
−j(`′η1 + η2))V (

η2

η1
) e

2πiη(k−B`(1)B
−`′
(1)

k′)
dη1dη2.

Letting γ = 2−jτ2 and then applying Lemma 8, where L is the differential
operator (9), we have that:

〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉

= 2h1+∆0
j 2j

∫
R̂2

∫
R̂
gj,`,`′(η, γ) e−2πiγk2sinc(2πγ) dγ e

2πiη(k−B`(1)B
−`′
(1)

k′)
dη

= 2h1+∆0
j 2j

∫
R̂2

L

(∫
R̂
gj,`,`′(η, γ)e−2πiγk2sinc(2πγ) dγ

)
L−1

(
e

2πiη(k−B`(1)B
−`′
(1)

k′)

)
dη, (37)

where

gj,`,`′(η, γ)=W (η1, 2
−j(`η1 + η2 − γ))V (

η2 − γ
η1

)W (η1, 2
−j(`′η1 + η2))V (

η2

η1
).

Since W,V are compactly supported and smooth, it follows that there is a
uniform constant C, independent of j, `, `′, such that |L (gj,`,`′(η, γ))| ≤ C.
Using this estimate and using (A.1) in Appendix with the observation that

(k−B`(1)B
−`′
(1) k

′) = (k1− k′1− (`− `′)k′2, k2− k′2), it follows from (37) that there

is a constant C, independent of j, k, k′, `, `′, such that

|〈PM2−j
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉| ≤ C h1+∆0

j 2j
(
1 + |(k1 − k′1 − (`− `′)k′2|2

)−1

×
(
1 + |k2 − k′2|2

)−1
. (38)

Recalling the definition of Ss,j,1, given by (34), and next applying Lemma 7, it
follows from (38) that∑

(k,`)∈Ss,j,1

|〈PM2−j
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉|

≤ C h1+∆0
j 2j

∑
|k1|≤322j

∑
|k2|≤22j

∑
`∈Qk

(
1 + |(k1 − k′1 − (`− `′)k′2|2

)−1

×
(
1 + |k2 − k′2|2

)−1

≤ C h1+∆0
j 2j 2

1
2 ∆0j

∑
k1∈Z

∑
k2∈Z

(
1 + |k1|2

)−1 (
1 + |k2|2

)−1
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≤ C h1+∆0
j 2j 2

1
2 ∆0j .

Hence, since hj = o(2−j), it follows that

max
`′,k′

∑
`,k∈Ss,j,1

|〈PMhj
ψ

(1)
j,`,k, ψ

(1)
j,`′,k′〉| → 0 as j →∞.

This proves (22).
To prove (23), similarly to the computation above, we apply Plancherel

theorem and the Fourier transform of 1Mhj
to write

〈PMhj
ψ

(2)
j,`,k, ψ

(1)
j,`′,k′〉

= 〈ψ(2)
j,`,k, PMhj

ψ
(1)
j,`′,k′〉

= 〈ψ̂(2)
j,`,k, h

∆0
j 1̂Mhj

∗ ψ̂(1)
j,`′,k′〉

= 2h1+∆0
j

∫
R̂2

∫
R̂

sinc(2πhjτ2) ψ̂
(1)
j,`′,k′ ((ξ1, ξ2)− (0, τ2)) dτ2 ψ̂

(2)
j,`,k(ξ) dξ

= 2h1+∆0
j 2−3j

∫
R̂2

∫
R̂
W (2−2j(ξ1, ξ2 − τ2))V (2j ξ2−τ2ξ1

− `) e2πi(0,τ2)A−j
(1)
B−`

(1)
k

× sinc(2πhjτ2)dτ2W (2−2jξ)V ( 2jξ1
ξ2
− `′)e−2πiξA−j

(1)
B−`

(1)
(k−B`(1)A

j
(1)
A−j

(2)
B−`

′
(2)

k′)
dξ.

We next apply the change of variables η = ξA−j(1)B
−`
(1) = (2−2jξ1,−`2−2jξ1 +

2−jξ2), so that ξ = ηB`(1)A
j
(1) = (22jη1, 2

j(`η1 + η2)), and let α = (α1, α2) =

B`(1)A
j
(1)A

−j
(2)B

−`′
(2) k

′. Hence we have

〈PMhj
ψ

(2)
j,`,k, ψ

(1)
j,`′,k′〉

= 2h1+∆0
j

∫
R̂2

∫
R̂
W (η1, 2

−j(`η1 + η2))− 2−2jτ2)V (
η2 − 2−jτ2

η1
) sinc(2πhjτ2)

× e2πi2−jτ2k2dτ2W (η1, 2
−j(`η1 + η2))V (

22jη1

`η1 + η2
− `′) e−2πiη(k−α) dη.

Similar to the calculation above, letting γ = 2−jτ2 and then applying Lemma 8,
where L is the differential operator (9), we have that

〈PMhj
ψ

(2)
j,`,k, ψ

(1)
j,`′,k′〉 = 2h1+∆0

j 2j
∫
R̂2

L

(∫
R̂
g̃j,`,`′(η, γ) sinc(2πhj2

−jγ)

× e2πiγk2dγ

)
L−1

(
e−2πiη(k−α)

)
dη, (39)

where

g̃j,`,`′(η, γ)=W (η1, 2
−j(`η1 +η2−γ))V (η2−γ

η1
)W (η1, 2

−j(`η1 +η2))V ( 22jη1

`η1+η2
−`′)

30



Using the fact that W,V are compactly supported and smooth, a direct com-
putation gives that there is a uniform constant C, independent of j, `, `′, such
that |L (g̃j,`,`′(η, γ))| ≤ C. Therefore, using this observation in (39), we conclude
that there is a constant C, independent of j, k, k′, `, `′, such that

|〈PMhj
ψ

(2)
j,`′,k′ , ψ

(1)
j,`,k〉| ≤ C h

1+∆o
j 2j (1 + (k1 − α1)2)−1(1 + (k2 − α2)2)−1,

where the indices α1, α2 depend on `. Using the definition of Ss,j,1, given by
(34), and next applying Lemma 7 to estimate the cardinality of Qk, we have∑

(k,`)∈Ss,j,1

|〈PMhj
ψ

(2)
j,`′,k′ , ψ

(1)
j,`,k〉|

≤ C h1+∆0
j 2j

∑
|k1|≤322j

∑
|k2|≤22j

∑
`∈Qk

(1 + (k1 − α1)2)−1(1 + (k2 − α2)2)−1

≤ C h1+∆0
j 2j 2

1
2 ∆0j

∑
k1∈Z

∑
k2∈Z

(
1 + |k1|2

)−1 (
1 + |k2|2

)−1

≤ C h1+∆0
j 2j 2

1
2 ∆0j .

Since hj = o(2−j), it follows that

max
`′,k′

∑
`,k∈Ss,j,1

|〈PMhj
ψ

(2)
j,`′,k′ , ψ

(1)
j,`,k〉| → 0 as j →∞. 2

We finally prove Lemma 7.
Proof of Lemma 7.
Letting y = (f ′)−1(−2j(tk,` + `)), we can write

G(tk,`) = (k1 + tk,`k2) + 22j
(
f(y)− f ′(y)y

)
.

Recalling that f(0) = f ′(0) = 0, we have that the second order Taylor

expansion of f about 0 on [−ε, ε] is f(y) = f ′′(c)y
2

2 where c ∈ (−ε, ε) and
f ′(y) = f ′′(c) y. Since f ′′(y) > k > 0 on [−ε, ε] , then

f(y)− f ′(y)y = −1

2
f ′′(c) y2 ≤ 0.

Neglecting the higher order terms, we have

|G(tk,`)|= |(k1+tk,`k2)+22j
(
f(y)−f ′(y)y

)
| ' |(k1+tk,`k2)−22j 1

2f
′′(c)y2|. (40)

We consider three cases below (recall that |G(tk,`)| ≤ 2∆oj by definition).
Case 1: k1 + tk,yk2 < 0. It follows that | − 22j 1

2f
′′(c)y2| ≤ 2∆oj . This

implies that

|tk,` + `| = 2j |f ′(y)| ' 2jf ′′(c)|y| ≤
√

2
√
f ′′(c) · 2∆0j/2

and
|`| .

√
2
√
f ′′(c) · 2 1

2 ∆0j + |tk,`| ≤
√

2
√
f ′′(c) · 2 1

2 ∆0j + 1.
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Hence there is a constant C independent of j, k1, k2 such that #(Qk) ≤ C 2
1
2 ∆0j .

Case 2: 0 ≤ k1 + tk,yk2 ≤ 2∆0j+1. The inequality (40) implies that

2∆oj & |(k1 + tk,`k2)− 22j 1

2
f ′′(c)y2| ≥ |22j 1

2
f ′′(c)y2| − |k1 + tk,`k2|.

Therefore, in this case, we have that

|22j 1

2
f ′′(c)y2| . |k1 + tk,`k2|+ 2∆oj ≤ 2∆oj+1 + 2∆oj = 3 · 2∆oj .

Similar to case 1, it follows that

|tk,` + `| = 2j |f ′(y)| ' 2jf ′′(c)|y| ≤
√

6
√
f ′′(c) · 2∆oj/2

and
|`| .

√
6
√
f ′′(c) · 2∆oj/2 + |tk,`| ≤

√
6
√
f ′′(c) · 2∆oj/2 + 1.

As in Case 1, it follows that there is a constant C independent of j, k1, k2 such
that #(Qk) ≤ C 2

1
2 ∆0j .

Case 3: k1 + tk,yk2 ≥ 2∆0j+1. The inequality (40) implies that

k1 + tk,`k2 − 2∆0j . 22j 1

2
f ′′(c) y2 . k1 + tk,`k2 + 2∆0j

and, thus,

2−j
√

2√
f ′′(c)

√
k1 + tk,`k2 − 2∆oj . |y| . 2−j

√
2√

f ′′(c)

√
k1 + tk,`k2 + 2∆oj .

This shows that |y| is contained in the interval

Iy =

[
2−j

√
2√

f ′′(c)

√
k1 + tk,`k2 − 2∆oj , 2−j

√
2√

f ′′(c)

√
k1 + tk,`k2 + 2∆oj

]
,

whose length satisfies the inequality

|Iy| =
√

2 2−j√
f ′′(c)

(√
k1 + tk,`k2 + 2∆oj−

√
k1 + tk,`k2 − 2∆oj

)
≤
√

2 2−j+1√
f ′′(c)

2
1
2 ∆o .

Let m = |` + tk,`| so that m = 2j |f ′(y)| ' 2jf ′′(c)|y|. Since the map
x 7→ f ′′(c)x is continuous, then the expression above maps the interval Iy to
some other interval Im. For any m1,m2 ∈ Im, we have that

|m2 −m1| ' 2jf ′′(c) ||y2| − |y1|| ≤ 2
√

2
√
f ′′(c) 2

1
2 ∆o ,

that is, the length of Im satisfies |Im| ≤ 2
√

2
√
f ′′(c) 2

1
2 ∆o . From |` + tk,`| =

m ∈ Im, we have |`| ∈ Im ± tk,`. Since |tk,`| ≤ 1, as in Cases 1 and 2, there is a

constant C independent of j, k1, k2 such that #(Qk) ≤ C 2
1
2 ∆0j . 2
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5.2. Proof of Theorem 4 (Thresholding)

For ν = 1, 2, let γ
(ν)
j,`,k = 〈ψ(ν)

j,`,k, PMhj
Tj〉 and β

(ν)
j,`,k = 〈ψ(ν)

j,`,k, Tj〉
Since Tj is related to a local vertical curve, as for the `1 minimization case,

we need only consider the case ν = 1. In the following, we simply denote γ
(1)
j,`,k

as γj,`,k, β
(1)
j,`,k as βj,`,k and set αj,`,k = βj,`,k − γj,`,k.

For any j ≥ 0 and any 0 ≤ σj ≤ 2−4j , we let Ij = {(`, k) : |αj,`,k| ≥ σj}
and δsj =

∑
k∈Icj
|βj,`,k|,.

We recall that Rτj = F [1IjF
∗Tj ] and observe that ‖1IjΨ∗PMhj

Tj‖1 =∑
(`,k)∈Ij |γj,k|. Lemma 5 then implies the following estimate.

Proposition 8. For any j ∈ Z, let Rτj , Ij and δsj be defined as above. Then
there is a constant C independent of j and T such that

‖Rτj − Tj‖2 ≤ C(δsj + ‖1IjF ∗PMhj
Tj‖1).

A simple observation shows that, for any j ∈ Z,

‖1IjF ∗PMhj
Tj‖1 ≤ ‖F ∗PMhj

Tj‖1 =
∑

(`,k)∈Mj

|γj,`,k|.

It then follows from Proposition 8 that Theorem 4 is true if the following propo-
sition holds.

Proposition 9. Let j ≥ 0. For any 0 ≤ σj ≤ 2−4j and hj = o(2−
3
4 j), we have∑

(`,k)∈Mj

|γj,`,k| = o(2j) = o(‖Tj‖2) (41)

∑
(`,k)∈Icj

|βj,`,k| = o(2j) = o(‖Tj‖2), as j →∞ (42)

Proof. A direct calculation with the change of variables η = ξA−j(1)B
−`
(1)

gives that

γj,`,k = 〈ψ̂(ν)
j,`,k,

̂PMhj
Tj〉

= 2−
3
2 j

∫
R̂2

W (2−2jξ)V (2j
ξ2
ξ1
− `) e2πiξA−j

(1)
B−`

(1)
k ̂PMhj

Tj(ξ) dξ

= 2
3
2 j

∫
R̂2

W (η1, 2
−j(`η1 + η2))V (

η2

η1
) e2πiηk ̂PMhj

Tj(η B`(1)A
j
(1)) dη.

Using the expression of ̂PMhj
Tj computed in Proposition 4, as in Proposition 4

we can then write γj,`,k = γ
(1)
j,`,k + γ

(2)
j,`,k where

γ
(1)
j,`,k = 2

11
2 j

∫
R̂2

W (η1, 2
−j(`η1 + η2))V (η2

η1
)

∫
B∆0

∫ b

a

e
2πiηB`(1)A

j
(1)

(x+(f(u),u))
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× 1hj (x+ (f(u), u)) g(u) du W̌ (22jx) dx e2πiηkdη (43)

γ
(2)
j,`,k = 2

11
2 j

∫
R̂2

W (η1, 2
−j(`η1 + η2))V (η2

η1
)

∫
Bc∆0

∫ b

a

e
2πiηB`(1)A

j
(1)

(x+(f(u),u))

× 1hj (x+ (f(u), u)) g(u) du W̌ (22jx) dx e2πiηkdη

and B∆0 = {x ∈ R2 : |x| ≤ 2−(2−∆0)j}, with any ∆0 > 0.
Using the same argument of Proposition 4 for the wavelet case, it follows

that
∑

(`,k)∈Mj
|γ(2)
j,`,k| = o(2j). Thus to prove (41) it remains to show that, for

hj = o(2−
3
4 j), we have

∑
(`,k)∈Mj

|γ(1)
j,`,k| = o(2j).

As in the proof of Lemma 4, we may assume that f(0) = f ′(0) = 0, and that
a = −ε, b = ε. So f(u) ' f ′′(c)u2/3, where c ∈ [−ε, ε]. Since |f ′′(u)| ≤ 1

2M for

some M > 0 for all u ∈ [−ε, ε] and |x| ≤ 2−(2−∆0)j , we have |f ′(u)| ≤ M hj =

o(2−
3
4 j) ≤ 1

3 2−
3
4 j for all large j and all u ∈ [−hj − x2, hj − x2] ⊂ [−ε, ε].

We consider first the case |`| ≤ 2j/4.
From (43), using Lemma 8, we have that

γ
(1)
j,`,k = 2

11
2 j

∫
B∆0

∫ b

a

∫
R̂2

L
(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)
)

× L−1
(
e2πiη(k+B`1A

j
1(x+(f(u),u)))

)
dη 1hj (x+ (f(u), u))g(u) du W̌ (22jx) dx.

Observing that there is a constant C independent of j and x such that∫ b

a

1hj (x+ (f(u), u)) |g(u)| du ≤ C hj ,

and that

k+B`1A
j
1(x+ (f(u), u)) =

(
k1 + 22j(x1 + f(u)) + 2j`(x2 + u), k2 + 2j(x2 + u)

)
,

an argument similar to Proposition 4 gives that∑
k∈Z2

|γ(1)
j,`,k|

≤ C 2
11
2 j

∫
R2

∫ b

a

∑
k∈Z2

(
1 + (k1 + 22j(x1 + f(u)) + 2j`(x2 + u))2

)−1

×
(
1 + (k2 + 2j(x2 + u))2

)−1
1hj (x+ (f(u), u)) du |W̌ (22jx)| dx

≤ C 2
11
2 jhj

∫
R2

|W̌ (22jx)| dx

≤ C 2
3
2 jhj .

Therefore, using the assumption that hj = o(2−
3
4 j), we conclude that∑

|`|≤2j/4

∑
k∈Z2

|γ(1)
j,`,k| ≤ C 2

1
4 j2

3
2 jhj = C 2

7
4 jhj = o(2j),
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We now consider the case 2j/4 < |`| ≤ 2j .
For fixed η and |x| ≤ 2−(2−∆0)j , let

φ(η, x, u) = η B`1A
j
1 (x+ (f(u), u)) =

= 22jη1(x1 + f(u)) + 2j`η1(x2 + u) + 2jη2(x2 + u).

Then φ′u(η, x, u) = η1(22jf ′(u) + 2j`) + 2jη2 = 2jη1

(
2jf ′(u) + `+ η2

η1

)
, where

φ′u = ∂
∂uφ. Note that, in the integral (43), 1

16 ≤ |η1| ≤ 1
2 and |η2

η1
| ≤ 1 ≤ 1

62j/4

(for j ≥ 11). Hence, for all 2
1
4 j ≤ |`| ≤ 2j and all u ∈ [−hj − x2, hj − x2], there

is uniform positive constant independent of j, ` such that

|φ′u(η, x, u)| ≥ |η1|2j
(
|`| − 2j |f ′(u)| − |η2

η1
|
)

≥ |η1|2j
(
|`| − 1

3
2j/4 − 1

6
2j/4

)
≥ C 2j |`|. (44)

To estimate γ
(1)
j,`,k, for fixed |x| ≤ 2−(2−∆0)j and η, we examine the integral

U(η, x) =

∫ ε

−ε
e2πiφ(η,x,u)

1hj (x+ (f(u), u)) g(u) du.

Since 1hj (x+(f(u), u)) = 1 if and only if |x2+u2| ≤ hj or−hj−x2 ≤ u ≤ hj−x2,

U(η, x) =

∫ hj−x2

−hj−x2

e2πiφ(η,x,u) g(u) du

=
1

2πi

∫ hj−x2

−hj−x2

(e2πiφ(η,x,u))′u
1

φ′u(η, x, u)
g(u) du

= U1(η, x) + U2(η, x) + U3(η, x),

where

U1(η, x) =
1

2πi
e2πiφ(η,x,hj−x2) 1

φ′u(η, x, hj − x2)
g(hj − x2)

U2(η, x) = − 1

2πi
e2πiφ(η,x,−hj−x2) 1

φ′u(η, x,−hj − x2)
g(−hj − x2)

U3(η, x) = − 1

2πi

∫ hj−x2

−hj−x2

e2πiφ(η,x,u)

(
1

φ′u(η, x, u)
g(u)

) ∣∣∣∣′
u

du.

Correspondingly, we have γ
(1)
j,`,k = γ

(1,1)
j,`,k + γ

(1,2)
j,`,k + γ

(1,3)
j,`,k , where, for m = 1, 2, 3,

γ
(1,m)
j,`,k = 2

11
2 j

∫
R̂2

W (η1, 2
−j(`η1 + η2))V (η2

η1
) e−2πiηk

∫
B∆0

Um(η, x) W̌ (22jx) dx dη.
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We first examine γ
(1,1)
j,`,k . Using Lemma 8, where L is given by (9), we have

that

γ
(1,1)
j,`,k =

2
11
2 j

2πi

∫
R̂2

W (η1, 2
−j(`η1 + η2))V (η2

η1
) e−2πiηk

×
∫
B∆0

e2πiφ(η,x,hj−x2) 1

φ′u(η, x, hj − x2)
g(hj − x2) W̌ (22j(x)) dx dη

=
2

11
2 j

2πi

∫
B∆0

∫
R̂2

L

(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)

1

φ′u(η, x, hj − x2)

)
×L−1

(
e−2πiη·(k−(22j(x1+f(hj−x2))+`2jhj ,2

jhj))
)
dη g(hj − x2) W̌ (22jx) dx.

Using inequality (44) and the fact that 2
1
4 j ≤ |`| ≤ 2j , 1

16 ≤ |η1| ≤ 1
2 , and

|f ′(hj − x2)| < 1
32−

3
4 j , a direct computation shows that there is a uniform

constant C, independent of j, `, such that∣∣∣∣∣
(

1

φ′u(η, x, hj − x2)

)′
η1

∣∣∣∣∣ ≤ C 2j |2jf ′(hj − x2) + `|
(|`η1|2j)2

≤ C 2−j |`|−1,

∣∣∣∣∣
(

1

φ′u(η, x, hj − x2)

)′
η2

∣∣∣∣∣ ≤ C 2j

(|`||η1|2j)2
≤ C 2−j |`|−2 ≤ C 2−j |`|−1.

The same estimates hold for mixed derivatives. Thus, using these estimates, we
obtain that∑

2
1
4
j≤|`|≤2j

∑
k∈Z2

|γ(1,1)
j,`,k |

≤ C 2
9
2 j

∫
B∆0

∑
2

1
4
j≤|`|≤2j

|`|−1
∑
k∈Z2

(
1 + (k1 + 22j(x1 + f(hj − x2)) + 2j`hj)

2
)−1

×
(
1 + (k2 + 2jhj)

2
)−1 |W̌ (22j(x))| dx

≤C 2
1
2 j

∑
2

1
4
j≤|`|≤2j

|`|−1

∫
|x|≤2∆0)j

|W̌ (x)| dx

≤C j 2
1
2 j = o(2j).

A very similar argument shows that
∑

2
1
4
j≤|`|≤2j

∑
k∈Z2 |γ(1,2)

j,`,k | = o(2j).

Finally, for the analysis of γ
(1,3)
j,`,k , applying again Lemma 8 as above, we have

that

γ
(1,3)
j,`,k =

2
11
2 j

2πi

∫
B∆0

∫ hj−x2

−hj−x2

∫
R̂2

L

(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)

(
g(u)

φ′u(η, x, u)

)′
u

)
×L−1

(
e−2πiη·(k−(22j(x1+f(u))+`2j(x2+u),2j(x2+u)))

)
dη du W̌ (22jx) dx. (45)
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We observe that[
g(u)

φ′u(η, x, u)

]′
u

= −
φ′′u2(η, x, u) g(u)

(φ′u(η, x, u))2
+

g′(u)

φ′u(η, x, u)
. (46)

As above, in the integral (45), we have that 1
16 ≤ |η1| ≤ 1

2 and |η2

η1
| ≤ 1 ≤ 1

62j/4.

Also, recall that 22j |f ′′(u)| ≤ M
2 22j for some constant M <. Hence, for all

2
1
4 j ≤ |`| ≤ 2j and all u ∈ [−hj −x2, hj −x2], there is uniform positive constant
C independent of j, ` such that∣∣∣∣φ′′u2(η, x, u) g(u)

(φ′u(η, x, u))2

∣∣∣∣ =
|η1|22j |f ′′(u)| |g(u)|(

η1 2j(2jf ′(u) + 2j + η2

η1
)
)2 ≤ C |`|

−2.

Also, from (44) we have that∣∣∣∣ g′(u)

φ′u(η, x, u)

∣∣∣∣ ≤ C 2−j |`|−1.

Thus, applying these observations in (46), we conclude that, for all 2
1
4 j ≤ |`| ≤

2j and all u ∈ [−hj − x2, hj − x2], there is a uniform positive constant C
independent of j, ` such that∣∣∣∣∣

[
g(u)

φ′u(η, x, u)

]′
u

∣∣∣∣∣ ≤ C (|`|−2 + 2−j |`|−1) ≤ C |`|−1

and, so, that∣∣∣∣∣L
(
W (η1, 2

−j(`η1 + η2))V (η2

η1
)

(
g(u)

φ′u(η, x, u)

)′
u

)∣∣∣∣∣ ≤ C |`|−1.

Using this estimate in (45), we have that∑
k∈Z2

|γ(1,3)
j,`,k | ≤ C |`|

−12
11
2 j

∫
|x|≤2−(2−∆0)j

|W̌ (22jx)| dx ≤ C |`|−1hj 2
3
2 j .

Thus, ∑
2

1
4
j≤|`|≤2j

∑
k∈Z2

|γ(1,3)
j,`,k | ≤ C 2

3
2 j hj

∑
2

1
4
j≤|`|≤2j

|`|−1 ≤ C j hj 2
3
2 j = o(2j).

To estimate the terms βj,`,k, we start from the inequality (25) derived above.
We remark that, in the integral of (25), we have |f(u)| ≤ 1 for all u ∈

[a, b] ⊂ [−ε, ε], with ε small. For each j, `, we set Kj,` = {k ∈ Z2 : |k1| ≤
22j+2, |k2| ≤ 2j+1} and Gj,` = {k ∈ Z2 : (`, k) ∈ Icj }. It follows from the

definition that, if k ∈ Kc
`,j , then either |k1| > 22j+2 or |k2| ≤ 2j+1. So we have

that either |k1 − 22jf(u) − `2j | ≥ 22j or |k2 − 2ju| ≥ 2j for all |`| ≤ 2j (with
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|f(u)| ≤ 1, |u| ≤ ε). Hence it follows from (25) that, for any N ∈ N, there is a
constant CN such that ∑

k∈Kc
j,`

|βj,`,k| ≤ CN 2
3
2 j 2−(2N−1)j .

Setting N = 2 in the last expression, we have that∑
k∈Kc

j,`

|βj,`,k| ≤ C 2
3
2 j 2−3j = C 2−

3
2 j . (47)

We can write∑
(`,k)∈Icj

|βj,`,k|

≤
∑

(`,k)∈Icj

|αj,`,k|+
∑

(`,k)∈Icj

|γj,`,k|

≤
∑
|`|≤2j

∑
k∈Gj,`

|αj,`,k|+
∑
|`|≤2j

∑
k∈Z2

|γj,`,k|

≤
∑
|`|≤2j

∑
k∈Gj,`

⋂
Kj,`

|αj,`,k|+
∑
|`|≤2j

∑
k∈Gj,`

⋂
Kc
j,`

|αj,`,k|+
∑
|`|≤2j

∑
k∈Z2

|γj,`,k|

≤
∑
|`|≤2j

∑
k∈Gj,`

⋂
Kj,`

|αj,`,k|+
∑
|`|≤2j

∑
k∈Gj,`

⋂
Kc
j,`

|βj,`,k|+ 2
∑
|`|≤2j

∑
k∈Z2

|γj,`,k|.

Since k ∈ Gj,` means (`, k) ∈ Icj and since #(Kj,`) = O(23j), it follows that∑
k∈Gj,`

⋂
Kj,`

|αj,`,k| ≤ C23j 2−4j

and, hence, ∑
|`|≤2j

∑
k∈Gj,`

⋂
Kj,`

|αj,`,k| ≤ C2j 23j 2−4j = C = o(2j). (48)

Since Gj,`
⋂
Kc
j,` ⊂ Kc

j,`, the estimate (47) gives that∑
|`|≤2j

∑
k∈Gj,`

⋂
Kc
j,`

|βj,`,k| ≤
∑
|`|≤2j

C 2−
3
2 j ≤ C2−

1
2 j = o(2j). (49)

Finally, since
∑

(`,k)∈Mj
|γj,`,k| = o(2j) by (41), combining this estimate with

(48) and (49), we have proved (42). 2

Appendix A. Additional proofs

Lemma 8. Let f ∈ C∞c (R2) and L be the differential operator L =
(
I −

1
(2π)2

∂2

∂z2
1

)(
I − 1

(2π)2
∂2

∂z2
2

)
. For any N ∈ N, we have that

L−N
(
e2πiz·x) = (1 + x2

1)−N (1 + x2
2)−N e2πiz·x. (A.1)
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and ∫
R2

f(z) e2πiz·xdz =

∫
R2

LN
(
f(z)

)
L−N

(
e2πiz·x) dz.

Proof. By direct computation, writing x = (x1, x2), we have

L
(
e2πiz·x) = (1 + x2

1)(1 + x2
2) e2πiz·x.

This implies L−1
(
e2πiz·x) = (1 + x2

1)−1(1 + x2
2)−1 e2πiz·x and, by induction, we

obtain (A.1). Using these observations, by direct computation we have∫
R2

L
(
f(z)

)
L−1

(
e2πiz·x) dz

= (1 + x2
1)−1(1 + x2

2)−1

∫
R2

L
(
f(z)

)
e2πiz·x dz

= (1 + x2
1)−1(1 + x2

2)−1

∫
R2

(
f(z)− 1

(2π)2

∂2

∂z2
1

f(z)− 1

(2π)2

∂2

∂z2
1

f(z)

+
1

(2π)4

∂2

∂z2
1

∂2

∂z2
2

f(z)

)
e2πiz·x dz

Integrating by parts and using the assumption that f is compactly supported,
from the last expression we get:∫

R2

L
(
f(z)

)
L−1

(
e2πiz·x) dz

= (1 + x2
1)−1(1 + x2

2)−1(1 + x2
1 + x2

2 + x2
1x

2
2)

∫
R2

f(z) e2πiz·x dz

=

∫
R2

f(z) e2πiz·x dz.

The general case N ∈ N follows by induction. 2

Lemma 9. LetMh = {(x1, x2) ∈ R2 : |x2| ≤ h}, where h > 0 and φ ∈ C∞c (R2).
Then(
1̂Mh

∗ φ̂
)
(ξ) =

(
1̂Mh

∗ φ̂
)
(ξ1, ξ2) = 2h

∫
R̂

sinc(2πhη2) φ̂ ((ξ1, ξ2)− (0, η2)) dη2.

Proof. Recall that the distributional Fourier transform of 1Mh
is given by

1̂Mh
(ξ1, ξ2) = 2h sinc(2πhξ2)δ1(ξ1, ξ2), where

∫ ∫
R̂2 δ1(x1, x2)φ(x1, x2)dx1dx2 =∫

R̂ φ(0, x2) dx2. Thus(
1̂Mh

∗ φ̂
)
(ξ) =

∫∫
R̂2

1̂Mh
(η) φ̂(ξ − η) dη

=

∫∫
R̂2

2h sinc(2πhη2) δ1(η1, η2) φ̂((ξ1, ξ2)− (η1, η2)) dη1 dη2

= 2h

∫
R̂

sinc(2πhη2) φ̂((ξ1, ξ2)− (0, η2)) dη2. 2

Acknowledgments. DL acknowledges support from NSF grants DMS
1720487 and 1720452.

39



References

[1] J.F. Cai, R. H. Cha, Z. Shen, Simultaneous cartoon and texture in-
painting, Inverse Probl. Imag., 4 (2010), pp. 379-395.

[2] J.F. Cai, B. Dong, S. Osher, Z. Shen, Image restoration: Total variation,
wavelet frames, and beyond, J. Amer. Math. Soc., 25 (2012), pp. 1033–
1089.

[3] T.F. Chan, J. Shen, Mathematical models for local nontexture inpaint-
ings, SIAM J. Appl. Math., 62(3) (2002), pp. 1019–1043.

[4] T. Chan, J. Shen, and H.-M. Zhou, Total variation wavelet inpainting,
J. Math. Imaging Vision, 25 (2006), pp. 107–125

[5] Y. Chen, H. Hu, An Improved Method for Semantic Image Inpaint-
ing with GANs: Progressive Inpainting, Neural Processing Letters 20
(2018).

[6] B. Dong, H. Ji, J. Li, Z. Shen, Y. Xu., Wavelet framework based blind
image inpainting, Appl. Comput. Harmon. Anal., 32 (2012), pp. 268-
279.

[7] D. L. Donoho, G. Kutyniok, Microlocal analysis of the geometric sepa-
ration problem, Comm. Pure Appl. Math., 66 (2013), pp. 1–47.

[8] M. Elad, J.L. Starck, P. Querre, D. L. Donoho, Simultaneous cartoon
and texture image inpainting using morphological component analysis
(MCA), Appl. Comput. Harmon. Anal., 19 (2005), pp. 340-358.

[9] S. Esedoglu and J. Shen, Digital image inpainting by the Mumford-
Shah-Euler image model, European J. Appl. Math., 13 (2002), pp. 353–
370.

[10] O. Guleryuz, Nonlinear approximation based image recovery using
adaptive sparse reconstructions and iterated denoising - Part i, The-
ory, IEEE Trans. Image Process., 15 (2006), pp. 539–554.

[11] M. Genzel and G. Kutyniok, Asymptotic Analysis of Inpainting via
Universal Shearlet Systems, SIAM J. Imaging Sciences, 7 (2014), pp.
2301–2339.

[12] K. Guo and D. Labate, Optimally sparse multidimensional representa-
tion using shearlets, SIAM J. Math. Anal., 39 (2007), pp. 298–318.

[13] K. Guo, and D. Labate, Characterizatin and analysis of edges using the
continuous shearlet transform, SIAM J. Imaging Sciences, 2 (2009), pp.
959–986.

40



[14] K. Guo, and D. Labate, Optimally sparse representations of 3D data
with C2 surface singularities using Parseval frames of shearlets, SIAM
J. Math. Anal., 44 (2012), pp. 851–886.

[15] K. Guo, and D. Labate, The construction of smooth Parseval frames of
shearlets, Math. Model. Nat. Phenom., 8(1) (2013), pp. 82–105.

[16] K. Guo, and D. Labate, Geometric Separation in R3, J. Fourier Anal.
Appl., 25(1) (2019), pp 108–130.

[17] K. Guo, and D. Labate, Characterization and analysis of edges in piece-
wise smooth functions, Appl. Comput. Harmon. Anal. 41(1) (2016), pp.
139–163.

[18] K. Guo, and D. Labate, Detection of singularities by discrete multiscale
transforms, J. Geom. Anal., 28(3) (2018), pp 2102–2128.

[19] E. J. King, G. Kutyniok, X. Zhuang, Analysis of Inpainting via Clus-
tered Sparsity and Microlocal Analysis, J. Math. Imag. Visi., 48 (2014),
pp. 205–234.

[20] G. Kutyniok and D. Labate, Shearlets: Multiscale analysis for multi-
variate data, Birkhäuser, 2012
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