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ABSTRACT. After highlighting some of the current trends in neuroscience imaging, this
work studies the approximation errors due to varying directional aliasing, arising when 2D
or 3D-images are subjected to the action of orthogonal transformations. Such errors are
common in 3D-images of neurons acquired by confocal microscopes. We also present an al-
gorithm for the construction of synthetic data (computational phantoms) for the validation of
algorithms for the morphological reconstruction of neurons. Our approach delivers synthetic
data that have a very high degree of fidelity with respect to their ground-truth specifications.

1. OVERTURE

What is the substance of knowledge and memory? These fundamental questions have
been at the center of philosophical debate for over three millenia, but only during the last
fifty years our understanding of these essential human cognitive functions is finally becom-
ing concrete. The quest for answers takes us back to the philosopher Plato (424/423 BC
–348/347 BC) who, in the dialogue “Theaetetus”, written circa 360 B.C. when Athens’
glory was in decline amidst the Peloponnesian war, attempts to define knowledge from a
philosophical viewpoint. In the dialogue, Euclid (not the famous geometer from Alexan-
dria) recounts a discussion between Socrates and Theaetetus aiming to discover the nature of
knowledge. Around the middle of their conversation Socrates refers to knowledge as being
a series of ‘engrams’, impressions on the ‘wax of the soul’:

SOCRATES: And the origin of truth and error is as follows: When the wax in the soul
of any one is deep and abundant, and smooth and perfectly tempered, then the impressions
which pass through the senses and sink into the heart of the soul, as Homer says in a para-
ble, meaning to indicate the likeness of the soul to wax (κηρóς); these, I say, being pure and
clear, and having a sufficient depth of wax, are also lasting, and minds, such as these, easily
learn and easily retain, and are not liable to confusion, but have true thoughts, for they have
plenty of room, and having clear impressions of things, as we term them, quickly distribute
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them into their proper places on the block. And such men are called wise. Do you agree?

THEAETETUS : Entirely.

SOCRATES: But when the heart of any one is shaggy a quality which the all-wise poet
commends, or muddy and of impure wax, or very soft, or very hard, then there is a corre-
sponding defect in the mind the soft are good at learning, but apt to forget; and the hard are
the reverse; the shaggy and rugged and gritty, or those who have an admixture of earth or
dung in their composition, have the impressions indistinct, as also the hard, for there is no
depth in them; and the soft too are indistinct, for their impressions are easily confused and
effaced. Yet greater is the indistinctness when they are all jostled together in a little soul,
which has no room. These are the natures which have false opinion; for when they see or
hear or think of anything, they are slow in assigning the right objects to the right impressions
in their stupidity they confuse them, and are apt to see and hear and think amiss and such
men are said to be deceived in their knowledge of objects, and ignorant.

THEAETETUS: No man, Socrates, can say anything truer than that1.

With the ‘wax of the soul’ theory, Greek philosophers anticipated the impressively modern
concept of the human brain and its plastic neuronal network connections as the site of mem-
ory engrams formation and knowledge retention [24, 23]. Despite the impressive advances
of modern science, however, our journey towards the comprehension of the physical nature
of the ‘wax of the soul’ and of the memory engrams is still at the ‘end of the beginning’. We
are optimistic that through interdisciplinary, collective scientific efforts this mystery will be
finally unlocked.

1.1. Outline. This article is organized as follows. In Section 2, we provide a brief histor-
ical overview of neuroscience and describe the challenges and opportunities opened up by
the recent advances in microscopy. In particular, we discuss the significance of developing
computational tools for the morphological reconstruction of neurons. Next, in Section 3, we
give an overview of the algorithms currently available for the segmentation and morpholog-
ical reconstruction of neurons, including a brief account of ORION, a suite of algorithms
and software developed by some of the authors of this paper which provides semi–automatic
segmentation and morphological reconstruction of dendritic arbors in neurons. In Section 4
we examine the aliasing errors arising when images are subjected to the action of orthogonal
transformations. Such errors are common in 3D-images of neurons acquired by confocal mi-
croscopes. The action of those orthogonal transformations modifies the frequency content of
images during the conversion of an image from analog to digital as the high-frequency con-
tent may be enhanced or attenuated solely due to the action of an orthogonal transformation.
We also provide error estimates and sufficient conditions for the sampling kernels guaran-
teeing that these reconstruction error estimates are not affected by the action of a group of
orthogonal transformations. Finally, in Section 5, we use the results of Section 4 to develop
an algorithm for the construction of highly accurate phantoms of tubular 3D-structures which

1Translated by Benjamin Jowett [29]
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are useful to model realistic phantoms of dendritic arbors of arbitrary topological complexity
and can be used for the benchmarking of segmentation and tracing algorithms.

2. THE SAGA

2.1. Historical background. The concept of the neuron as the primary structural unit of the
central nervous system was introduced as early as the 19th century by the ground–breaking
studies of Camillo Golgi (1843–1926) and Ramón y Cajal (1852–1934). Utilizing an in-
genious tissue staining technique developed by Golgi, Ramón y Cajal provided the earliest
evidence of the neuron as the primary discrete unit of the central nervous system, and defined
its micro–anatomy using light microscopy. By examining the structure of thousands of neu-
rons in every region of the brain, Ramón y Cajal discovered the universal structure of neurons
consisting of a cell body (also called the soma), dendrites, and an axon. With impressive ac-
curacy, he also postulated that dendrites, which are multiple branching structures that arise
from the cell body, and the axon, a single elongated cellular protrusion stemming from the
cell body, retain different functions and mediate specialized connections between neurons.
In following studies in 1933, Ramón y Cajal conjectured that neuronal spines, which are the
protuberances appearing along the dendrites (similar to rose thorns hence called espinas),
are the points where these specialized connections through which the axon of one neuron
contacts a neighboring neuron are established. Remarkably, he postulated that spines are
a manifestation of the economy of nature: they increase the surface of a dendrite enabling
stronger connections between neural cells via the dendrite–axon route [77, pages 3,101].
These connections are now referred to as synapses 2 and constitute the fundamental struc-
tures that permit a neuron to transmit electrochemical signals to another neighboring cell
(usually to another neuron). With these fundamental studies, Ramón y Cajal laid the founda-
tions of modern neuroscience. While neuroanatomy studies were flourishing, in the 1930’s,
Curtis, Cole, Hodgkin and Huxley, four neurophysiologists, were investigating the electri-
cal properties of the axon of the Atlantic giant squid, a large and easily accessible tissue
preparation, and provided the first recordings of the action potential, a form of regenerative
electrical waveform that propagates down the axon [15, 27]. With the use of the voltage
clamp technique, Hodgkin and Huxley discovered that the action potential arises from se-
quential changes in the cell membrane permeability to Na+ and K+ ions, and developed the
first mathematical model of the action potential propagation using non–linear differential
equations. For the first time in history, these experiments revealed the basis of electric func-
tion in neurons. Later studies in the 1950’s by Fatt, Katz and del Castillo [33] established
that, by propagating down the axon, the action potential mediates synaptic transmission.
Once it reaches the presynaptic bouton (the large ending of the axon), the action potential
is decoded into a chemical signal through the release of discrete quanta of neurotransmit-
ter molecules which eventually reach the postsynaptic side of the synapse (spine) and bind
to specific membrane ion channels, called receptors. Upon binding to the neurotransmitter,
receptors change conformation allowing specific ions to permeate into the postsynaptic cell
and generate an electric charge called the excitatory postsynaptic potential (EPSP). If this

2from the Greek prefix ‘συν-’ and the root of the verb ‘άπτoµαι’, to touch; by adding the prexif the verb
συνάπτω means to clasp together but in ancient and in modern Greek it means ‘to form an accord or to
establish a formal relationship’
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electric charge exceeds a certain threshold, the EPSP elicits an action potential in the postsy-
naptic cell (the receiving cell). It is through this sequence of electrochemical chain-reactions
that the information is transmitted and stored in the brain through a connectome of neuronal
networks. Although these basic concepts of neurophysiology are very well–established, the
explosive development of ultra–sophisticated, unprecedented resolution imaging technolo-
gies in modern times have revealed new fascinating aspects of synaptic transmission and
specifically have highlighted the critical role of synaptic spines as the main integrators of
neuronal information.

2.2. Modern neuroscience. The emergence of fluorescence-based technologies and the de-
velopment of sophisticated fluorescence microscopes, such as confocal and multi-photon,
facilitate the acquisition of high-resolution fluorescent images of dendrites and spines both
in vitro and in vivo and allows the monitoring of their dynamic structural changes in real-
time. It is now well documented that spines can grow or disappear in response to rapid and
local changes in synaptic transmission (spine plasticity) or to more global and prolonged
effects induced by network activity (neuronal homeostasis). These dynamic morphologi-
cal changes of spines, associated with plasticity and homeostasis, are considered to be the
structure–function link in the heart of learning and memory formation and are associated
with different behavioral states or chronic neuropathologies [64, 63, 24, 79, 23, 78, 77]. It
is through structure-function changes of synaptic spines throughout neuron networks that
we retain what we have learned, we respond to external stimuli, and eventually we adapt
to the surrounding environment. With no doubts, the ability to accurately capture the mor-
phological information of dendrites and spines and track their dynamic changes will rapidly
translate into a better understanding of brain function. Towards futuristic applications this
improved knowledge of cellular and sub-cellular neuronal morphologies could be included
in electrophysiological computer simulations, so that quantitative and qualitative effects of
dendritic and spine structure under stimulation can be extensively characterized. With the
current computational capabilities, these models can be implemented into supercomputers
to allow the generation of virtual neurons which retain all anatomical and functional char-
acteristics of their real counterparts. When modeled neurons are organized into complex
structures under appropriate rules governing their anatomical and functional connectivity, in
principle, entire portions of the nervous system would be simulated into realistic neural net-
works, leading to what G. Ascoli phrased as: ‘A detailed computer model of a virtual brain
that was truly equivalent to the biological structure’ and ‘could in principle allow scientists
to carry out experiments that could not be performed on real nervous systems because of
physical constraints’ [2].

While the technological advances in fluorescence-based microscopy have opened up ex-
citing avenues of investigation in neuroscience and have set high-standard goals to modern
neurophysiology, this area of research has also raised a number of computational, algorithmic
and mathematical challenges involving the acquisition and modeling of high resolution data
acquired through confocal microscopy, the preprocessing of the data (which are typically
affected by blurring and Poisson noise), and the morphological reconstruction of dendritic
structures and spines. Capturing and accurately modeling the morphological transitions of
spines and dendrites in response to various functional states of a neuron will bring us a
step closer to identify the physical nature of the ‘wax of the soul’ anticipated by Plato and
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to unravel how memory traces or engrams are formed, retained are translated into human
cognitive functions [24, 23].

3. IMAGING NEURONS

3.1. The state of the art. As indicated by the observations in the section above, the ability
to produce accurate morphological reconstruction of dendritic arbors and spines in neurons
is of fundamental importance to the goal of generating a virtual neuron. During the last
ten years, a flurry of activity was aimed at the development of automatic or semi-automatic
computational tools for delivering morphological reconstructions of neurons and there are
currently several academic and a few commercial and freeware imaging suites available. All
of these algorithms depict branching and terminal points, diameters of dendritic branches and
the soma and output the results in 3D-visualizations. Their performance varies and depends
on the level of training per data set, the noise that affects the data and on the level of manual
intervention required. These reconstructions rely on a tracing of the dendritic arbor which
has been a hot research topic, the least, in the last ten years e.g. [31, 40, 42, 62, 26, 43,
46, 47, 37, 58, 73, 51, 21, 48, 61, 44, 53, 74, 1, 76, 41, 52, 22]. More recently, significant
work on the tracing and morphological reconstruction of dendritic arbors emerged as a result
of the DIADEM competition [8, 44]. Although, all of them are designed to capture the
3D-structure of the dendritic arbor with sufficient accuracy, they usually miss the spatially
localized detail of the surface of the dendritic branches and in particular they ignore spines
[61] as the common goal of all of the dendrite–tracing methods is to detect the centerline
of dendritic branches. This naturally and reasonably becomes a new system of coordinates
for navigating the dendrite. Although several of the dendrite tracing algorithms estimate
the dendritic diameter locally, their estimations cannot capture the localized details of the
dendritic surface with the exception of [59, 38, 39, 32, 57, 58, 31, 60] which generates a
probabilistic segmentation of the volume of the dendritic arbor; thus the likelihood of the
association of a voxel to the dendritic surface is obtained.

The existing spine detection capabilities of current 3D algorithms build upon the type
of centerline tracing we previously described. Using the detected centerline for navigation
within the dendrite they typically apply the Rayburst detection algorithm [75, 54, 66]. Sev-
eral other methods rely on detecting spines on 2D-maximum intensity projections but those
methods frequently miss significant spines and the many of the weaker ones as they are
obscured by the projection of the higher intensity parts of the dendritic volume onto them
[4, 14]. In particular, Fan et. al use maximum intensity projections for in-vivo spine de-
tection and analysis [20]. There is very limited work on in-vivo spine detection primarily
because of the necessity to use tracking algorithms when 2D-image analysis methods are
employed. There are also pseudo-3D approaches in the sense that spines are detected on
each scanning plane and then the results of the detection are fused to create a 3D-image
stack [19, 80, 13, 12, 3, 81, 50]. Classification of spines according to their types, esti-
mation of volume and of head diameter is mainly being done with the Rayburst algorithm
[18]–often applied in 2D-only [36, 56]– which counts voxels whose intensity exceeds an
operator–chosen threshold on certain directions. However, two are the main problems in all
of these approaches:
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a. The use of intensity thresholds applied on the original image in order to detect the
surface of spines. Since Poisson noise corrupts images, intensity thresholds are increasingly
unreliable as the concentration of the fluorophores decreases. This is often the case in un-
developed or thin spines but more importantly it affects spine necks resulting into detached
spines which are harder to distinguish from leaking fluorophores or plain noise spikes.

b. Constraints of technical nature as well as the need to decrease image acquisition dura-
tion lead to the use of anisotropic voxels, typically of aspect ratio 1:1:3 to 1:1:4. Although
images are corrected to account for blurring introduced by the microscope, dendritic vol-
umes are reconstructed with voxels of these aspect ratios. This implies that objects such as
spines which are oriented in an arbitrary way in 3D and have a diameter of 10-13 voxels with
their neck being less than 2-3 voxels thick at the highest resolution will not be properly clas-
sified according to their shape as their shape is distorted by this anisotropic sampling grid. A
partial heuristic remedy utilizing the Rayburst algorithm is proposed in [18] to mitigate this
problem but it can only have limited success since the data are severely undersampled at off
the xy-plane orientations.

3.2. Online Reconstruction and functional Imaging of Neurons (ORION). ORION [72,
59, 38, 39, 32, 57, 58, 31, 60] is a suite of algorithms and integrated software that can
be used for the morphological reconstruction of dendritic arbors from 3D-images obtained
by multiphoton or confocal microscopes. ORION can identify dendritic centerlines, their
branching and terminal points and estimates the diameter of branches at every centerline
point; however, it does not identify or classify spines and 3D-visualizations of the morpho-
logical reconstructions of dendritic arbors do not include spines [11]. ORION segmentation
of the dendritic arbor is based on extracting the eigenvalues of the Hessian of an ensemble
of low-pass Gaussian filtered outputs of the original 3D-volume and by learning how these
eigenvalues depend on a tubular model estimated from the data. The segmented volume re-
sults from a probability 3D-map conditioned on the learned model. Dendritic centerlines and
branching points representing the unique solution of a certain optimization problem. ORION
has been successfully tested on synthetic data, on real data where the system outperformed
experts and on several DIADEM competition image sets. Notice however that, since ORION
is designed to work primarily on dendritic arbors that are acyclic connected graphs, it cannot
be applied to some of the DIADEM data sets. Figure 1 illustrates an application of ORION.

4. APPROXIMATIONS UNDER THE ACTION OF A GROUP OF ORTHOGONAL
TRANSFORMATIONS

Since all images have compact support in the space domain Rd (d = 2 or d = 3), their
conversion from analogue to digital form occurring during acquisition requires truncating the
image in the frequency domain. Typically, this process is modeled by convolving the given
image, say f ∈ L2(Rd), with a kernel function φa, referred to as the analysis kernel. Hence,
if 0 < ε < 1 is a preselected constant representing the level of the desired relative error,
there is a compact subset of the frequency domain, say Ω, such that

∫
Ωc
|f̂(ξ)|2dξ < ε‖f̂‖2

2.
The set Ω is called the essential bandwidth of f . With no loss of generality we assume
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(a) (b)

FIGURE 1. Left: MIP of the logarithm of a raw image of CA1 hyppocampal
pyramidal neuron labelled with DiI fluorescent dye demonstrating the nature
of the noise in voxels next to the dendritic branches. Right: Morphological
reconstruction of a pyramidal neuron with ORION. The segmented dendrite’s
voxels are color-coded red. Note the absence of spines

Ω ⊆ Td = [−1/2, 1/2]d. In particular, we define

(1) BεΩ :=

{
f ∈ L2(Rd) : f̂ ∈ W 1,2(Rd) and

∫
Ωc
|f̂(ξ)|dξ < ε‖f̂‖1

}
,

where W 1,2(Rd) is the Sobolev space containing all functions h whose distributional partial
derivatives up to second–order are contained in L1(Rd). We can view BεΩ as a family of
functions that are almost bandlimited, as for a function bandlimited in Ω one would have∫

Ωc
|f̂(ξ)|dξ = 0. This observation motivates us to generalize classical sampling theory ap-

proaches in the spirit of [5]. Specifically, we adopt an oversampling approach implementing
the digitization of the input image and its reconstruction from its samples. To this end we use
two kernels, the analysis kernel φa and the synthesis kernel φs. Two compact sets are asso-
ciated with this pair of kernels, Ba and Bs. We assume Ω ⊂ B◦a, Ba ⊂ B◦s , and Bs ⊂ (Td)◦,
where the superscript ◦ indicates the interior of a set, and

(1) φ̂a, φ̂s ⊂ C∞(Rd) ∩ L1(Rd),
(2) All partials derivatives of φ̂a and φ̂s up to second order are bounded,
(3) |φ̂a(ξ)| ≤ 1 + ε, |φ̂s(ξ)| ≤ 1 + ε for all ξ ∈ Rd,
(4) |φ̂a(ξ)− 1| ≤ ε if ξ ∈ Ba, |φ̂a(ξ)| ≤ ε if ξ /∈ Bs,
(5) |φ̂s(ξ)− 1| ≤ ε if ξ ∈ Bs, |φ̂s(ξ)| ≤ ε if ξ /∈ Td,
(6)
∫
Bca
|φ̂a(ξ)|dξ < ε and

∫
(Td)c
|φ̂s(ξ)|dξ < ε

(7) there exists C > 0 such that
∑

k∈Zd |φ̂a(ξ + k)|2 ≤ C and
∑

k∈Zd |φ̂s(ξ + k)|2 ≤ C
for a.e. ξ ∈ Rd.
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With these conditions in mind we define

(2) f̃ :=
∑
n∈Zd
〈f, Tnφa〉Tnφs,

where the right-hand side of (2) converges with respect to the L2-norm due to Property (7)
above. Notice that Property (1) above guarantees that both kernels have good spatial lo-
calization. Properties (3) and (4) indicate that Ba and Bs are the pass–bands of φa and φs
respectively, while their stop–bands are both contained in Td. The digitization process gives
the sequence {〈f, Tnφa〉 : n ∈ Zd}, while the inversion of this process, the reconstruction
of original analog image from its samples 〈f, Tnφa〉 is referred to as the digital to analog
conversion. Typically, in imaging we only use the first part the analog to digital conversion,
while the reverse process has only theoretical value. In general, f 6= f̃ . It is one of our goals
to estimate ‖f − f̃‖, called the reconstruction error, with respect to different meaningful
norms. In the applications presented in this paper, the L∞-norm is the proper norm because
it guarantees the uniform fidelity of the reconstruction of f throughout the spatial domain. In
practice though, it is impossible to keep an infinite number of the samples {〈f, Tnφa〉}n∈Zd .
Therefore, it becomes necessary to make a choice of a finite set Λ ⊂ Zd such that the only
values kept belong to {〈f, Tnφa〉}Λ. Hence,

(3) fΛ =
∑
n∈Λ

〈f, Tnφa〉Tnφs

gives an approximation of the original input signal or image f . Specializing to images,
their finite extend and the limitations of the acquisition devices prescribe a certain size of
voxels/pixels. This mathematically amounts to prescribing a certain essential bandwidth
which has the form of a parallelepiped in Rd (d = 2, 3) and Λ =

∏d
s=1[−Ns, Ns], where

all Ns are integers. So it is important to study the overall approximation error ‖f − fΛ‖,
with respect to various norms. In this paper we are interested in the approximation error with
respect to the L∞-norm and in particular, we propose how to control this error when f varies,
due to the action of a group of orthogonal transformations defined on Rd. Specifically, given
a group G of orthogonal transformations acting on Rd, e.g. G = SO(d), we want to be able
to find suitable kernels φa and φs so that if for a choice of Λ ⊆ Zd ( e.g. Λ =

∏d
s=1[−Ns, Ns])

the error ‖f − fΛ‖∞ < ε, that is ‖f − fΛ‖∞ is small enough, then

supM∈G‖ρ(M)f − (ρ(M)f)Λ‖∞ ≤ ε ,

where ρ(M)f(x) = f(Mx), x ∈ Rd.
Since,

(4) ‖ρ(M)f − (ρ(M)f)Λ‖∞ ≤ ‖ρ(M)f − ρ̃(M)f‖∞ + ‖ρ̃(M)f − (ρ(M)f)Λ‖∞
for all M ∈ G and f ∈ L2(Rd) ∩ L∞(Rd), it becomes apparent that we need to control
the growth of each one of the terms in the right-hand side of the previous inequality as M
varies. The first of the two terms is known as reconstruction error while the other is called
truncation error. Throughout the rest of the section we assume f ∈ L2(Rd) and f̂ ∈ L1(Rd).

There is an abundance of work on the study of decay estimates of these two types of
errors e.g. [28, 45, 16, 6, 5, 65, 49, 30] and of the approximation error as well in one and
multi-dimensions both in the context of linear (when Λ =

∏d
s=1[−Ns, Ns]), non-linear and
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n-term approximation e.g. [35, 68, 67, 69, 71, 70]. An excellent tutorial on non–linear
approximations [17] provides several more references that we did not include in this paper.
The novel concept we introduce in this section is that the proper selection of approximants
should take into account the variations of an image due to the action of groups of orthogonal
transformations on it, e.g. rotations. This kind of variation affects the rate of convergence
of linear approximations as we demonstrate with an example at the end of the section. As
Table 4.2 indicates that non-linear and n-term approximations may be affected as well as
the high-pass content of the image increases due to its rotation and the non-isotropy of the
analysis kernel. In particular, if we keep Λ fixed, the error ‖ρ(M)f − (ρ(M)f)Λ‖ in any
relevant norm may vary with M . Nevertheless, the error estimate provided by Theorem 4.1
provides a search range for Λ that does not depend on the individual transformations M but
it rather depends on the group to which M belong to.

Before, continuing with the analysis of both errors we give an example demonstrating the
practical significance of this problem in images acquired by confocal microscopy, when φa
is anisotropic.

The most common practice among neuroscientists is to acquire their data by using an
anisotropic sampling grid of the form Z2 × (NZ), where N = 3, 4 [18], which amounts
to using anisotropic analysis and synthesis kernels. The use of this grid saves time and
overcomes limitations due to the quantum nature of light, but reduces the resolution to the
point that spine volumes cannot be accurately estimated [18]. Scanning time increases non-
linearly [18] as the resolution in the z-direction increases and at xy is kept high.

Heuristic methods, popular among neuroscientists have been proposed to resolve this issue
[18] but those methods ignore the real mathematical problem, the undersampling in the z-
direction. Fig. 2 shows exactly how the volumes of spines are consistently ignored in the
binary segmentation of a hippocampal CA1-neuron.

Let us now return to our analysis. Take 0 < ε < 1, Ω ⊆ Td and f ∈ BεΩ. We also
assume that φa and φs are analysis and synthesis kernels satisfying Properties (1) through
(7), Ω ⊂ B◦a, Ba ⊂ B◦s , and Bs ⊂ (Td)◦. By taking the Fourier transform on both sides of
Eq. (2) we obtain

(5) ̂̃f(ξ) =

(∑
n∈Zd
〈f, Tnφa〉e−2iπn·ξ

)
φ̂s(ξ) := A(ξ)φ̂s(ξ) ,

where A is a Zd-periodic function verifying

(6) A(ξ) =

(∑
n∈Zd
〈f, Tnφa〉e−2iπn·ξ

)
=
∑
`∈Zd

f̂(ξ + `)φ̂a(ξ + `).

The next observation is critical for estimating the error bounds.

4.1. Bounds for the Coefficients of A. Several of the estimates that will be given below
critically depend on the coefficients 〈f, Tnφa〉. By Parseval’s Theorem, we have

〈f, Tnφa〉 = 〈f̂ , e−2πin·(·)φ̂a〉 =

∫
Rd
f̂(ξ)φ̂a(ξ)e

2πin·ξdξ =
(
f̂ φ̂a

)∨
(n).
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FIGURE 2. Left: Part of the binary segmentation of the Hippocampus CA1-
neuron shown in Fig. 1. Notice the smoothness on the dendrite’s side while
its ‘other side’ is rougher. The smoothness on the smooth side is due to the
undersampling in the z-direction. This data set was sampled on the grid Z2×
(4Z). Right: MIP results of the tracing of an olphactory cell (OP2) from
the Diadem competition data sets. The centerline annotated by an expert is
marked with green. Centerline tracing results with ORION are marked with
red. The raw image is in the background. There are two cells in this image
stack although only a single cell should have been included in the image stack.
ORION traces both of them but by default it considers them as a single cell.

In general, for a function g such that ĝ ∈ C2m(Rd), where m = 1, 2, . . ., and all of its
derivatives are integrable we have

(∆mĝ)∨(x) = (2πi)2m
(
x2

1 + · · ·+ x2
d

)m
g(x) = (2πi)2m‖x‖2m

2 g(x).

Since, properties (1), (2) and the definition of BεΩ imply that the distributional Laplacian

∆
(
f̂ φ̂a

)
is integrable, we assert

|〈f, Tnφa〉| =
∣∣∣∣(f̂ φ̂a)∨ (n)

∣∣∣∣ ≤
∥∥∥∆
(
f̂ φ̂a

)∥∥∥
1

(2π)2‖n‖2
2

.

Therefore,
∑

n∈Zd |〈f, Tnφa〉| <∞ and A belongs to A(Td).
So, if in addition to the previous assumptions for f and for the analysis kernel φa, we

have f̂ ∈ W 1,2m and all partial derivatives of φa up to order 2m, where m = 1, 2, . . ., are
bounded, then

(2π)2m‖x‖2m
2

∣∣∣∣(f̂ φ̂a)∨ (x)

∣∣∣∣ ≤ ∥∥∥∥(∆m
(
f̂ φ̂a

))∨∥∥∥∥
∞
≤
∥∥∥∆m

(
f̂ φ̂a

)∥∥∥
1
,
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therefore, if x ∈ Rd

(7) |〈f, Txφa〉| =
∣∣∣∣(f̂ φ̂a)∨ (x)

∣∣∣∣ ≤ ‖∆m( f̂ φ̂a )‖1

(2π)2m‖x‖2m
2

4.2. Estimation of the Approximation Error ‖f − fΛ‖∞. First, we proceed with the esti-

mation of ‖f̂ − ̂̃f‖1. Note that

‖f̂ − ̂̃f‖1 =

∫
Rd
|f̂(ξ)− A(ξ)φ̂s(ξ)|dξ

=

∫
Td

|f̂(ξ)− A(ξ)φ̂s(ξ)|dξ +

∫
(Td)c

|f̂(ξ)− A(ξ)φ̂s(ξ)|dξ.

Using Property (6) and the fact f ∈ BεΩ the second term in the previous sum can be bounded
by: ∫

(Td)c
|f̂(ξ)− A(ξ)φ̂s(ξ)|dξ ≤

∫
(Td)c

|f̂(ξ)|dξ + sup
Rd
|A(ξ)|

∫
(Td)c

|φ̂s(ξ)|dξ

≤ ε‖f̂‖1 +

(∑
n∈Zd
|〈f, Tnφa〉|

)
ε.

Next we estimate the contribution of the term
∫
Td |f̂(ξ) − ̂̃f(ξ)|dξ to the reconstruction

error of f :∫
Td

|f̂(ξ)− A(ξ)φ̂s(ξ)|dξ =

∫
Td

∣∣∣∣∣f̂(ξ)−

(∑
`∈Zd

f̂(ξ + `)φ̂a(ξ + `)

)
φ̂s(ξ)

∣∣∣∣∣ dξ
≤
∫
Td

∣∣∣(1− φ̂a(ξ)φ̂s(ξ))f̂(ξ)
∣∣∣ dξ +

∫
Td

∣∣∣∣∣∣
∑

`∈Zd\{0}

f̂(ξ + `)φ̂a(ξ + `)φ̂s(ξ)

∣∣∣∣∣∣ dξ.
Now, ∫

Td

∣∣∣∣∣∣
∑

`∈Zd\{0}

f̂(ξ + `)φ̂a(ξ + `)φ̂s(ξ)

∣∣∣∣∣∣ dξ ≤ (1 + ε)ε
∑

`∈Zd\{0}

∫
Td

∣∣∣f̂(ξ + `)
∣∣∣ dξ

≤ (1 + ε)ε2‖f̂‖1 ≤ 2ε‖f̂‖1 .

Using Property (3) we infer |1 − φ̂a(ξ)φ̂s(ξ)| ≤ 1 + |φ̂a(ξ)φ̂s(ξ)| ≤ 1 + (1 + ε)2 ≤ 5. On

the other hand, if ξ ∈ Ω, Properties (4) and (5) imply |1 − φ̂a(ξ)φ̂s(ξ)| < 2ε + ε2 < 3ε.
Therefore∫
Td

∣∣∣(1− φ̂a(ξ)φ̂s(ξ))f̂(ξ)
∣∣∣ dξ =

∫
Ω

∣∣∣(1− φ̂a(ξ)φ̂s(ξ))f̂(ξ)
∣∣∣ dξ+ ∫

Td\Ω

∣∣∣(1− φ̂a(ξ)φ̂s(ξ))f̂(ξ)
∣∣∣ dξ
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≤ 3ε

∫
Ω

∣∣∣f̂(ξ)
∣∣∣ dξ + 5

∫
Td\Ω

∣∣∣f̂(ξ)
∣∣∣ dξ ≤ 8ε‖f̂‖1 .

Collecting terms we conlcude,

(8) ‖f − f̃‖∞ ≤

[(∑
n∈Zd
|〈f, Tnφa〉|

)
+ 11‖f̂‖1

]
ε

Now, let Λ be a finite subset of Zd. Then,

(9) ‖f̃ − fΛ‖∞ ≤

(∑
n/∈Λ

|〈f, Tnφa〉|

)
‖φ̂s‖1 .

Next, take G to be a group of orthogonal transformations acting on Rd and M ∈ G. If
ρ(M)f ∈ BεΩ then, Eqs. (4), (8) and (9) imply that for every Λ be a finite subset of Zd we
have

‖ρ(M)f − (ρ(M)f)Λ‖∞

≤

[(∑
n∈Zd
|〈ρ(M)f, Tnφa〉|

)
+ 11‖f̂‖1

]
ε+

(∑
n/∈Λ

|〈ρ(M)f, Tnφa〉|

)
‖φ̂s‖1

=

[(∑
n∈Zd
|〈f, TMnρ(MT )φa〉|

)
+ 11‖f̂‖1

]
ε+

(∑
n/∈Λ

∣∣〈f, TMnρ(MT )φa〉
∣∣) ‖φ̂s‖1.

Assuming f̂ ∈ W 1,2m and that φ̂a has bounded partial derivatives up to order 2mwithm ≥ 1
Eq. (7) gives

(10) |〈f, TMnρ(MT )φa〉| ≤

∥∥∥∆m
(
f̂ ρ(MT )φ̂a

)∥∥∥
1

(2π)m‖Mn‖m2
, n ∈ Zd.

Since, ‖Mn‖ = ‖n‖ for all grid points n, we conclude that the estimate of the error

‖ρ(M)f−(ρ(M)f)Λ‖∞ provided above depends on the norm
∥∥∥∆m

(
f̂ ρ(MT )φ̂a

)∥∥∥
1
, which

depends on M .
We can now summarize the previous discussion in the following theorem.

Theorem 4.1. Assume that G is a group of orthogonal transformations acting on Rd, Ω ⊆
(Td)◦, 0 < ε < 1. Suppose, M(Ω) ⊆ Ω for all M ∈ G. We also assume that φa and φs
are analysis and synthesis kernels satisfying Properties (1) through (7), Ω ⊂ B◦a, Ba ⊂ B◦s ,
and Bs ⊂ (Td)◦ and ρ(M)φa = φa for all M ∈ G. In addition, we assume that φ̂a has
bounded partial derivatives up to order 2m with m ∈ Z+. Then, for every f ∈ BεΩ such that
f̂ ∈ W 1,2m the following estimate holds:

‖ρ(M)f − (ρ(M)f)ΛN‖∞ ≤ C1ε+ C2

∑
‖n‖2≥N

‖n‖−2m
2 , M ∈ G,

where ΛN =
∏d

s=1[−Ns, Ns] with Ns = N for all s = 1, 2, . . . , d. The constants C1 and C2

depend only on f .
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Proof. First, observe that M(Ω) ⊆ Ω for all M ∈ G implies that, if f ∈ BεΩ then, ρ(M)f ∈
BεΩ. Since, ρ(M)φa = φa for all M ∈ G using (10) we conclude

|〈f, TMnρ(MT )φa〉| ≤

∥∥∥∆m
(
f̂ φ̂a

)∥∥∥
1

(2π)m‖n‖m2
, n ∈ Zd.

So, the factorsC1 :=
(∑

n∈Zd |〈f, TMnρ(MT )φa〉|
)
+11‖f̂‖1 andC2 := (2π)−m‖φ̂s‖1

∥∥∥∆m
(
f̂ φ̂a

)∥∥∥
1

depend only on f . The conclusion follows from (10) and

‖ρ(M)f − (ρ(M)f)Λ‖∞ ≤

[(∑
n∈Zd
|〈f, TMnρ(MT )φa〉|

)
+ 11‖f̂‖1

]
ε

+

∑
n/∈ΛN

∣∣〈f, TMnρ(MT )φa〉
∣∣ ‖φ̂s‖1. ≤ C1ε+ C2

∑
‖n‖2≥N

‖n‖−2m
2

since M preserves norms. �

Remark 4.2. 1) Theorem 4.1 requires analysis kernels to be invariant under the action of the
groups of orthogonal transformations that may affect an image of interest. A slight modifi-
cation of the statement of Theorem 4.1 can make it applicable to data representations defined
by families of analysis and synthesis kernels instead of a single pair of kernels. Popular ex-
amples of these families are shearlets [34, 25] and curvelets [9]. Condition ρ(M)φa = φa for
all M ∈ G is now replaced by the requirement that the family of analysis filters must remain
invariant under the action of G. In other words, if one φa works well for f then ρ(MT )φa
must be another analysis filter in the family of filters used by the data representation to allow
to maintain control over the size of Λ when approximating ρ(M)f by (ρ(M)f)Λ and thus
maintain the sparsity of the representation.

2) The hypothesis M(Ω) ⊆ Ω for all M ∈ G in the statement of the previous theorem is
not redundant. Indeed, assume that φa and φs satisfy all of the assumptions of the previous
theorem. In addition, we assume Bs = T2 and that φ̂a vanishes outside T2. Take 0 < d <√

3−2
√

2

2
√

2
and assume that Ba = [−1

2
+ d, 1

2
− d]2 and Ω = B◦a. Now pick f so that f̂ is

smooth and vanishes outside [
√

2
4
, 1

2
− d] × [

√
2

4
, 1

2
− d]. If M is the rotation by π/4 then,

(ρ(M)f̂)φ̂a = 0, therefore 〈ρ(M)f, Tnφa〉 = 0, for all n ∈ Z2. In this case ‖ρ(M)f −
(ρ(M)f)Λ‖∞ = ‖f‖∞ for every Λ ⊂ Z2.

We close this section with a simulation intending to demonstrate how rotations affect the
rate of decay of ‖ρ(M)f − (ρ(M)f)ΛN‖∞ as N →∞.

Let M be a rotation by π/4 in R2. Consider f such that f̂(ξ1, ξ2) = χI1(ξ1)χIy(ξ2), where
I1 = [−σ1,−σ2] ∪ [σ2, σ1] and I2 = [−σ3, σ3]. Let

φ̂a(ξ1, ξ2) = e
− ξ21

2σ24
− ξ22

2σ25 and φ̂s(ξ1, ξ2) = e
− (ξ21+ξ

2
2)

2σ26 , ,

where 0 ≤ σ2 ≤ σ1 ≤ σ4 ≤ σ6 ≤ 1 and 0 ≤ σ3 ≤ σ5 ≤ σ6. In this example we set
σ6 = 0.6, σ5 = 0.55, σ2 = 0.15, σ4 = 0.5, σ1 = 0.25, σ3 = 0.12. We compute the errors
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‖ρ(M)f − (ρ(M)f)ΛN‖∞ and ‖f − fΛN‖∞, as N grows, where ΛN = {(m,n) ∈ Z2 :
max(|m|, |n|) ≤ N}.

N
‖ρ(M)f − (ρ(M)f)ΛN‖∞

‖f − fΛN‖∞
‖f − fΛN‖∞ ‖ρ(M)f − (ρ(M)f)ΛN‖∞

35 1.3023 · 1015 6.3961 · 10−31 8.3299 · 10−16

45 2.0835 · 10163 3.8408 · 10−180 8.0026 · 10−17

50 2.6247 · 10267 1.2856 · 10−298 3.3746 · 10−31

55 ∞ 0 1.3558 · 10−108

60 ∞ 0 2.8357 · 10−228

65 undefined 0 0

In Table 4.2 we can observe the results of this experiment. Notice that (ρ(M)f)ΛN con-
verges to zero more slowly than fΛN .

5. CONSTRUCTION OF SYNTHETIC TUBULAR 3D-DATA SETS

As mentioned above, a fundamental step in the development of a computational platform
for neuronal reconstructions is the segmentation of the dendritic arbor and the extraction of
its centerline. Validating the accuracy of the performance of these two tasks heavily relies
on the manual segmentation of dendritic arbors which is time consuming, tedious and often
quite subjective. Therefore, the benchmarking of dendritic arbor segmentation and centerline
extraction algorithms often becomes controversial, as most of the times the ‘gold standard’
entirely relies on the experience of the user and cannot be verified against histology. Indeed,
it is very common in neuroscience imaging that segmentation results manually obtained by
experts working on the same data sets significantly differ, and automatic segmentation algo-
rithms may outperform experts. Hence, there is a real need for highly accurate computational
phantoms representing tubular structures in 3D that can be used to benchmark the baseline
performance of segmentation and morphological reconstruction algorithms. To this end, we
introduce a new method for the construction of highly accurate computational phantoms that
represent the geometry of realistic tubular 3D-structures. Our method yields very complex
3D-data sets emulating with high accuracy at the resolution level normally used in confo-
cal microscopy the prescribed morphological properties: centerline, branching points and
branch diameter. Thus such data sets enable the reliable validation of segmentation and cen-
terline extraction algorithms. It is clear that noisy data sets can easily be derived from our
algorithm using standard methods like those in [73].

One feature of our approach is the ability to simulate varying fluorescence intensity values
even within the same cross-section of the volume. The basic scenario for the spatial distri-
bution of the fluorescence intensity values assumes that at any cross–section the maximum
intensity occurs only at centerline voxel. The intensity values for each voxel in a cross-
section perpendicular to the centerline (transversal cross–section) decreases almost radially,
in the sense that voxels in the same transversal cross–section and equidistant from the center-
line voxel have the same intensity values. Moreover, for any two transversal cross–sections
whose centerline voxels have the same intensity values, the spatial distributions of the inten-
sity values in these cross–sections are identical. We refer to this model of spatial distribution
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of intensity values as the ideal tubular intensity distribution model. This radial symmetry
of the intensity function can only be implemented approximately in a digital phantom, since
voxels are not dimensionless in the 3D space. Moreover, the centerline must be smooth
everywhere except possibly at branching points.

5.1. Related Work. Only few methods to generate synthetic data for tubular objects can
be found in the literature. In particular, Canero et al. [10] proposed a method to generate
images of synthetic vessels. After generating a random centerline, the intensity for each
pixel in the vessel is modeled as a function of the distance from the pixel to the centerline
and the radius of the vessel. Vasilkoski et al. [73] proposed a method to generate a 3D image
stack of a neuron assuming that the infused fluorophore is distributed uniformly throughout
the neuron and that the background intensity is zero. Then, they convolve the volume with
a Gaussian point spread function to simulate the photon count µ(x, y, z) in the image stack.
The actual photon count n(x, y, z) for each voxel was generated randomly generated using
the Poisson distribution with mean equal to µ(x, y, z). Bouix et al. [7] created synthetic
tubular structures by using a predefined centerline. They slide a sphere centered on the
centerline starting at a seed point. Voxel intensities are all the same inside the tubular volume
while noise may be added at the final stage. Unfortunately, all these methods tend to suffer
from a significant degree of geometric artifacts.

5.2. Methods. The first step in our approach, to create synthetic data volumes such as den-
dritic arbor phantoms is to construct the prescribed volume at a very high spatial resolution
level, much higher than the resolution level used in confocal microscopy. Next, to reduce the
resolution of those volumes, we downsample the data by a factor of two per dimension. To
bring the data set to the desired resolution level we typically repeat the downsampling step
as needed (typically three or four times). The problem that often arises with this reduction
of resolution is aliasing causing image degradation with errors directionally varying in 3D.
This problem compromises the radial symmetry of the ideal tubular intensity distribution
model. To reduce the effect of such aliasing we first filter the input volume with a low-pass
antialiasing filter. One might naturally wonder what are the properties that the antialiasing
filters should have in order to minimize the adverse effects of this reduction of resolution on
the symmetry properties imposed by the ideal tubular intensity distribution model. Although
we do not directly address this question, we will provide below a family of antialiasing filters
and justify why they are suitable for this application by invoking Theorem 4.1. We are now
ready to proceed with the description of our approach.

Using the prescribed geometric properties (i.e., centerline points, branching and terminal
points and thickness) of the sought tubular structure (e.g., a dendrite) we first create a very
high resolution approximation of the desired volume in the physical domain. In the language
of multiscale analysis, this high resolution image provides an approximation of the physical
structure at a very high scale and, so, it may not be distinguished from the prototype structure
living in the physical ‘continuous’ domain R3. We denote this initial volume by I0. To
create the centerline of I0 we use cubic spline interpolation in 3D. Using this centerline and
the diameter information we create a ‘mask’ M0 which is an indicator function taking two
values only, 0 if a voxel does not belong to I0 and 1 otherwise. To createM0 we superimpose
spheres of radii matching the diameter of I0 at the location where the sphere is centered. The
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centers of these spheres belong to the centerline of I0. The centers of these spheres are
not uniformly distributed on the centerline of I0. Their distribution varies depending on the
spatial accuracy needed for M0 (Figure 3(a)). The use of spheres helps to successfully and
accurately create the curved parts of M0 with low computational cost. Each voxel in the
interior of each of one of these spheres is assigned the value 1 (Figure 3(b)). Thus, M0 is
defined to be characteristic function of the set of voxels whose value is at least equal to 1. To
algorithmically define the transversal cross-sections in I0, for each voxel v with mask value
M0(v) = 1 we assign a ‘tag’, c(v), where c(v) is the most proximal centerline voxel to v.
We thus partition I0 into cross-sections via the equivalence relation v1 ∼ v2 if and only if
c(v1) = c(v2). Figure 3(d) depicts how this equivalence relation defines cross-sections in
a digital high resolution volume I0. So far, the intensity values of I0 are identical with the
values of M0.

To complete the construction of I0 we assign the desired intensity values for each voxel
at which M0 is equal to 1. For all other voxels the intensity is set constant to a fixed ‘back-
ground’ value. For dendritic arbor phantoms the luminosity intensity on the centerline may
decay as the distance of a point in the dendrite from the soma increases in order to simulate
the decaying concentration of the infused fluorophore in distal branches from the point of in-
fusion. However, several other models may be chosen to simulate the fluorescence intensity
values induced by various fluorophore administration protocols.

In our approach, we assume that both rates of decay of the intensity values, radially, in
any transversal cross–section and along the centerline, are constant. However, the theoretical
model of the luminosity intensity at cross-sections assumes that this function is an isotropic
Gaussian. This assumption is standard across all proposed models for confocal microscopy
data. Implementing, though an isotropic Gaussian in small transversal cross–sections gives
results no different from those obeying the linear decay model both radially in transversal
cross–section and along the centerline. Fig. 3(e) depicts an example of the luminosity inten-
sity in a transversal cross section with radius R = 50 pixels, background intensity IBG = 10
and maximum intensity at the center of the cross-section Imax = 150.

Figs. 4 (f-i) depicts the intensity obtained for a synthetic tubular structure: shown are
images for the plane x− y at z = 160, 168, 176, 180. The maximum intensity is obtained at
z = 160 because the centerline is on this plane. The intensity value at a voxel is high if the
voxel is close to the skeleton and the intensity decays as we approach the boundary.

The original synthetic volume I0 created so far has 8 or even 16 times higher resolution
than that of a typical data set acquired using confocal microscopy. In order to generate
a 3D data volume useful for our purposes we need to drastically reduce the resolution by a
factor of 8 at least. Simple downsampling is the first obvious, yet bad choice. Downsampling
following the application of a special antialiasing filter is the right approach. In the following,
we argue about the properties of this filter that mitigate undesirable directional aliasing.

A plain cylinder in R3 can be modeled using the tensor product of two Gaussians,

fσ1,σ2(x, y, z) = e
− x2

2σ21 e
− y

2+z2

2σ22 x, y, z,∈ R.

The centerline of this cylinder is the x-axis. We take σ1, σ2 > 0. The first Gaussian factor
controls the length of the cylinder while the second controls the decay of the intensity values
of this structure. The cylinder can be oriented to any different centerline by applying a 3D
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(a) (b) (c)

(d) (e)

FIGURE 3. (a) Sideview of cross sections of spheres whose centers belong
to the centerline. (b) A snapshot of the resulting mask M0 from the same
observation point. The small marching step of centers of the spheres yields
a smooth digitized mask. (c) Binary mask with radius increasing along the
centerline. (d) Circular cross section for two points on the centerline. (e)
Graph of fluorescent intensity on a circular cross section.

rotationR on the argument of f and must be digitized in a way that, ideally, does not generate
artifacts due to its spatial orientation. The original tubular structure I can then be considered
as finite sum of the form

I =
n∑
i=1

K∑
k=1

J1∑
j1=1

J2∑
j2=1

TxiRkai,k,j1,j2fσj1 ,σj2 , Rk ∈ SO(3), ai,k,J1,j2 > 0.

It is this volume defined on R3 and from this volume we essentially create I0 by applying
Theorem 4.1. Since, the rotations Rk may be random we must assume that the set Ω the
theorem requires must be invariant under all 3D-rotations. Pick a desirable 0 < ε < 1.
Since,

f̂(ξ1, ξ2, ξ3) = (2π)
3
2σj1σ

2
j2
e−2π2σ2

j1
ξ21e−2π2σ2

j2
(ξ22+ξ23),

it is not hard to observe that Ω must contain all sets of the form [−aj1,j2
σj1

,
aj1,j2
σj1

]×[−aj1,j2
σj2

,
aj1,j2
σj2

]×
[−aj1,j2

σj2
,
aj1,j2
σj2

], where aj1,j2 > 0 depends on ε and all rotations of these parallilepipeds. This

implies that Ω must be a sphere centered at the origin whose radius is greater than all aj1,j2
σj1
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(a) (b)

(c) (d)

FIGURE 4. (a)–(d) Intensity values on the high resolution synthetic volume
at different x− y planes (z=160,168,176,180).

and all aj1,j2
σj2

. Then, according to Theorem 4.1 the analysis kernel we use (theoretically only)
to derive I0 from I must be radial. To this end we use a refinable function φa which defines
an Isotropic Multiresolution Analysis [55] which is an MRA with the additional property
that each resolution space Vj is invariant under rotations as well. The use of the MRA will
soon become clear. Take

φ̂a(ξ) :=


1, |ξ| < 1/4

1+cos(6π|ξ|− 3π
2 )

2
, 1/4 < |ξ| < 5/12

0, |ξ| > 5/12,

and consider φja := 23j/2φa(2
j·) as the analysis kernel of Theorem 4.1 where j is the ap-

propriate scale required by the theorem. Note that in this case Ω = Ba = B(0, 2j/4). This
condition determines the scale j. The synthesis kernel is of similar form, but we do not need
it here, because the volume I0 consists of the values {〈I, T2−jnφ

j
a〉 : n ∈ Z3}. Thus, we will

make no further reference to it. There is one added benefit which we obtain for free. Since
φja has compact support in the frequency domain, I0 is covariant to translations. Simply, one
does not need worry about the effect of translations in this digitization process.

The Isotropic Multiresolution Analysis allows to reduce the resolution as needed. This
is where we make use of the fact that this construct is an MRA. To do so, we use as the
antialiasing filter the mask Ha

0 of the refinable function φa. This is given, in the frequency
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domain, by

Ha
0 (ξ) =


1, |ξ| < 1/8

1+cos(12π|ξ|− 3π
2 )

2
, 1/8 < |ξ| < 5/24

0, |ξ| > 5/ < 24.

To summarize the previous discussion we list the steps of the proposed algorithm for
generating synthetic 3D-data sets of tubular structures.

Algorithm 1
Input: Manual reconstruction of a neuron.
Output: A computational phantom of a neuron.

Step 1: Create a high resolution volume
1.1 Refine manual reconstruction: compute for each branch new centerline points
using cubic interpolation.
1.2 Create neuron’s shape: center a sphere at each centerline and assign value
equal to 1 to each voxel inside the sphere.
1.3 Compute the intensity for each voxel: The intensity is a function of the distance
from each voxel to the centerline and radius of tubular structure and it satisfies the
ideal tubular intensity distribution model.

Step 2: Downsample volume
2.1 Decrease the resolution: Apply an isotropic low-pass filter, e.g. Ha

0 and down-
sample.

(a) (b)

FIGURE 5. Phantoms of olfactory dendrites (OP1 and OP2) generated from
information from the Diadem competition site.

5.3. Experiments. We performed two sets of experiments to illustrate our algorithm. For
the first set of experiments we construct simple volumes such as straight cylinder whose
centerline lies on a circle. For the second set of experiments, we constructed three syn-
thetic dendrite volumes using specifications from the DIADEM competition. The reader can



20 HERRERA ET AL

(a) (b)

(c) (d)

(e) (f) (g)

(h) (i) (j)

FIGURE 6. (a),(b) Depiction of a cross-section and isosurface of cylinder
using our method and symlets. (c),(d) Isosurface of the second volume for
first set of experiments using our method and symlets; slices at three angles
(30◦, 45◦, and 90◦) with respect to the arc of the circle depicting the center-
line. (e)–(g) Depiction of a cross section at the slices shown on (c) by our
method; (h)–(j) cross section at the slices shown on (d) by symlets.

observe how the radial symmetry of the cross-sectional intensity function is achieved regard-
less of the incidence angle of the cross-section, due to the use of isotropic filters with small
transition band, such as the proposed IMRA-filter Ha

0 .
On these sets we evaluated the capabilities of the proposed method. We focused on the

following three desirable properties. (i) The symmetry of the luminosity intensity function in
every cross-section: this function must satisfy I(n) = I(m) if ‖n− c‖ = ‖n−m‖, where c
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is the center of the cross-section. (ii) The smoothness of the centerline: in a realistic volume,
the centerline must be a polygonal line. (iii) The variation of the angle of the normal vector
at any point on the boundary isosurface and the centerline. Typically, this angle must be
equal to 90◦ except at bifurcation points. We used these criteria to qualitatively evaluate the
performance of the proposed method using both the isotropic low-pass-IMRA filters H and
filters obtained from a tensor-product of 1D-symlets. It can be observed from Figure 6 that
the isotropic filter performs better than the symlet filter counterpart.
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