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1 Basic definitions

In this paper, we present a description of a collaboration with K. Guo, W. Lim, A. Savov
and E. Wilson. We make use of the Fourier transform f 7→ f̂ that, for f ∈ L1(Rn), is
defined as

f̂(ξ) =
∫

Rn

f(x) e−2πiξx dx.

As is well-known, this operator has a unique extension to L2(Rn) that is a unitary operator.
In the following, we refer to the domain of f̂ as the “frequency” domain and denote it by
R̂n. The elements ξ ∈ R̂n will be denoted by Greek letters and considered to be row

vectors ξ = (ξ1, . . . , ξn), while the points x ∈ Rn are column vectors, i.e., x =




x1

...
xn


. If

a =




α11 . . . a1n

...
. . .

...
an1 . . . ann


 is a real n × n matrix, then ξax is defined by the usual matrix

multiplication. The Fourier transform is a mapping from L2(Rn) to L2(R̂n), while the
inverse Fourier transform, that is defined (at least for a dense subset of L2(R̂n)) by

f̌(x) =
∫

R̂n

f(ξ) e2πiξx dξ,

is a mapping from L2(R̂n) to L2(Rn).
The Fourier transform interacts in particularly simple ways with three important op-

erators that are used for the formation of wavelets: the dilations, the translations and
the modulations. It will be convenient to define these operators separately when their
action is either on Rn or on R̂n.

Definition 1.1. On Rn we have:

(i) the dilation by a ∈ GLn(R) is the operator Da mapping the function f(x), x ∈ Rn,
into the function (Da f)(x) = |det a|−1/2 f(a−1x);

(ii) the translation by k ∈ Rn is the operator Tk defined by (Tkf)(x) = f(x− k);

(iii) the modulation by k ∈ R̂n is the operator Mk defined by (Mkf)(x) = e2πikx f(x).
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On R̂n we have:

(i’) For a ∈ GLn(R), the dilation D̂a is the operator mapping the function f(ξ), ξ ∈ R̂n,
into (D̂a f)(ξ) = | det a|−1/2 f(ξa−1);

(ii’) the translation by k ∈ R̂n is the operator T̂k defined by (T̂kf)(ξ) = f(ξ − k);

(iii’) the modulation by k ∈ Rnis the operator M̂k defined by (M̂kf)(ξ) = e2πiξk f(ξ).

The reader can easily verify that (Da f)∧(ξ) = (D̂a−1 f̂)(ξ), (Mk f)∧(ξ) = (T̂k f̂)(ξ),
and (Tk f)∧(ξ) = (M̂−k f̂)(ξ).

The “original” wavelets were defined to be functions ψ ∈ L2(R) such that the set
{ψj,k = Dj

2 Tk ψ : j, k ∈ Z} is an orthonormal basis for L2(R) [6]. The existence of
such ψ, led to the study of general affine systems associated with a countable collection
C ⊂ GLn(R). These are systems of functions of the form

AC(Ψ) = {Dc Tk Ψ : k ∈ Zn, c ∈ C}, (1.1)

where Ψ = (ψ1, . . . , ψL) ⊂ L2(Rn). The object of this study is to establish the existence
and to construct sets Ψ such that AC(Ψ) is an orthonormal basis or, more generally, a
Parseval frame for L2(Rn). Recall that AC(Ψ) is a Parseval frame if

‖f‖2 =
∑

c∈C

∑

k∈Zn

L∑

`=1

|〈f, Dc Tk ψ`〉|2

for all f ∈ L2(Rn), or, equivalently,

f =
∑

c∈C

∑

k∈Zn

L∑

`=1

〈f, Dc Tk ψ`〉Dc Tk ψ`,

for all f ∈ L2(Rn), with convergence in L2(Rn).
In this work, we shall focus on a particular class of affine systems which we call affine

systems with composite dilations. These are affine systems for which C = AB =
{ab : a ∈ A, b ∈ B}, where A ⊂ GLn(R) consists of elements having some “expanding
properties”, while B ⊂ GLn(R) consists of elements having determinant of absolute value
one. In order to gain some understanding and familiarity with such systems, let us look at
an example.

2 Example

Let A = {ai : i ∈ Z}, B = {bj : j ∈ Z}, where a =
(

2 0
0 ε

)
, ε 6= 0, and b =

(
1 1
0 1

)
. We

shall construct an affine system

AAB(Ψ) = {ψ`
i,j,k = Di

a Dj
b Tk ψ` : i, j ∈ Z, k ∈ Z2, ` = 1, 2, 3}, (2.2)

that is an orthonormal basis for L2(R2). It will be convenient to work in the frequency
domain R̂2. Let S0 = {ξ = (ξ1, ξ2) ∈ R̂2 : 1 ≤ ξ1 < 1}. This is the vertical strip of width 2
bounded by the lines ±1. Then Si = S0 ai, i ∈ Z, is the vertical strip {ξ = (ξ1, ξ2) ∈ R̂2 :
−2i ≤ ξ1 < 2i}. Clearly, we have that
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(i) Si ⊂ Si+1,

(ii)
⋃

i∈Z Si = R̂2,

(iii)
⋂

i∈Z Si = {ξ = (ξ1, ξ2) ∈ R̂2 : ξ1 = 0}.
For S ⊂ R̂2, we use the notation L2(S) = {f ∈ L2(R2) : supp f̂ ⊂ S}. ¿From the
observations that we made about the sets Si, it follows that

(i) L2(Si) ⊂ L2(Si+1),

(ii)
⋃

i∈Z L2(Si) = L2(R̂2),

(iii)
⋂

i∈Z L2(Si) = {0}.
Next let R0 = S1\S0, and Ri = R0 ai, i ∈ Z. Then we can write L2(R̂2) as the orthogonal
direct sum L2(R̂2) =

⊕
i∈Z L2(Ri).

We shall construct an orthonormal basis for L2(R0) of the form {D̂j
b M̂k ψ̂` : j ∈ Z, k ∈

Z2, ` = 1, 2, 3}, for an appropriate choice of functions ψ̂1, ψ̂2, ψ̂3 ∈ L2(R0). Once this
is done, our mission is easily accomplished. Indeed, since the operators D̂i

a, i ∈ Z, are
unitary, it follows that

{D̂i
a D̂j

b M̂k ψ̂` : i, j ∈ Z, k ∈ Z2, ` = 1, 2, 3}, (2.3)

is an orthonormal basis for L2(R̂2). The desired orthonormal basis for L2(R2) is then,
simply, the inverse Fourier transform of the collection (2.3), which has the form (2.2).

Thus, we begin with the construction of the subsystem {D̂j
b M̂k ψ̂` : j ∈ Z, k ∈ Z2, ` =

1, 2, 3}. It will be helpful to look at Figure 1. Consider the three sets I` = I+
` ∪ I−` ,

` = 1, 2, 3, contained in R0, where: I+
1 is the rectangle with vertices (1, 0), (1, 1/2), (2, 0),

(2, 1/2); I+
2 is the rectangle with vertices (1, 1/2), (1, 1), (2, 1/2), (2, 1); I+

3 is the triangle
with vertices (1, 1), (2, 1), (2, 2); and I−` = −I+

` , ` = 1, 2, 3. Each set I`, ` = 1, 2, 3, is
fundamental; that is, the collection {e2πiξkχI`

: k ∈ Z2} is an orthonormal basis for
L2(I`). The sets I` bj , for j ∈ Z, form a disjoint covering of R0 (they intersect, at most, at
the boundaries). Furthermore, each of these sets is also fundamental, since, for any j ∈ Z,
bj maps Z2 into itself, and the collection {e2πiξbjk : k ∈ Z2} is equal to the collection
{e2πiξk : k ∈ Z2}. Figure 1 illustrates how this covering takes place. The same figure
also describes the action of the matrix a on the sets I`, ` = 1, 2, 3. Thus, the collection
{I` bj ai : i, j ∈ Z, ` = 1, 2, 3} covers R̂2, up to sets of measure zero. If we let ψ` be defined
by ψ̂` = χI`

, ` = 1, 2, 3, we see that the system (2.2) is an orthonormal basis for L2(R2).
Before we introduce other examples of wavelets with composite dilations, we refer the

reader to the papers [3, 4, 5]. In these papers, we go more deeply into this subject and
discuss some more technical matters. On the other hand, in this presentation we will
concentrate on results that do not require much knowledge of the theory of wavelets. The
construction we have just described, for example, requires only an elementary knowledge of
the Fourier transform. Nevertheless, some of the important features of the affine systems
with composite dilations are exhibited by the system (2.2). In particular, we observe
that the elements of the dilation set A are matrices expanding or contracting only in
one direction, while the elements of B act by volume–preserving maps in a “transverse”
direction. It follows that the wavelet functions that we obtain have exactly those geometric
properties (e.g., directionality, elongated shapes, scales, oscillations) recently advocated
by many authors for multidimensional signal and image processing applications (cf., for
example, [2, 1]).
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Figure 1: Example of orthonormal AB wavelet.
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Figure 2: The set S0.

3 Other examples

In higher dimensions there are natural extensions of the systems we have constructed in
the previous section. Observe that the matrix b we introduced before formula (2.2) satisfies
(b − I2)2 = 0, where I2 is the 2 × 2 identity matrix. We say that a matrix b ∈ Rn×n is a
shear matrix if

(b− In)2 = 0.

In [5], we study these matrices in detail and, together with appropriate “expanding” col-
lections of matrices A, we obtain a large class of orthonormal bases, and, more generally,
Parseval frames for L2(Rn) that have the form (2.2).

Let us now consider a different type of affine systems with composite dilations for which
the set of dilations B is a finite group. Again we construct such system in dimension 2. Let
B be the 8-element group consisting of the isometries of the square [−1, 1]2. Namely, B =

{±b0,±b1,±b2,±b3, } where b0 =
(

1 0
0 1

)
, b1 =

(
0 1
1 0

)
, b2 =

(
0 1
−1 0

)
, b3 =

(−1 0
0 1

)
.

Let U be the parallelogram with vertices (0, 0), (1, 0), (2, 1) and (1, 1) and

S0 =
⋃

b∈B

U b.

This region in shown Figure 2. It is easy to verify that S0 is B–invariant.

Now let a =
(

1 1
−1 1

)
be the quincunx matrix and Si = S0 ai, i ∈ Z. Observe that

a is expanding, and S0 ⊆ S0 a = S1. Let R be the parallelogram with vertices (1, 0), (2, 0),
(3, 1), (2, 1). Then the region S1 \ S0 is the disjoint union

⋃
b∈B R b (see Figure 3). Also

observe that R is a fundamental domain. It then follows, by the same reasoning we gave
in Section 2, that the set

{Di
a Db Tk ψ : i ∈ Z, b ∈ B, k ∈ Z2}, (3.4)

where ψ̂ = χR, is an orthonormal basis for L2(R2).
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Figure 3: The regions S0 and S1 = S0 a, where a is the quincunx matrix.

One difference between the system from Section 2 and this system is that the first is
generated by three functions ψ1, ψ2, ψ3, while the second is generated by a single function.

On the other hand, if we use the dyadic matrix a =
(

2 0
0 2

)
rather than the quincunx

matrix, we obtain an affine system with composite dilations that is an orthonormal basis
for L2(R2) and is generated by three functions. This is easily understood if we examine
Figure 4. Also in this case, a is expanding and S1 = S0a ⊃ S0. Let R1, R2, R3 be the
parallelograms illustrated in Figure 4 (for example, R1 is the parallelogram with vertices
(1, 0), (2, 0), (3, 1), (2, 1)). A direct computation shows that the region S1\S0 is the disjoint
union

⋃
b∈B R b, where R = R1

⋃
R2

⋃
R3. Observe that each of the regions R1, R2, R3

is a fundamental domain. Again, we can apply the reasoning we used in the other two
constructions to show that the system

{Di
a Db Tk ψ` : i ∈ Z, b ∈ B, k ∈ Z2, ` = 1, . . . , 3}, (3.5)

where ψ̂` = χR`
, ` = 1, 2, 3, is an orthonormal basis for L2(R2).

It is natural to investigate further the question of how many generators ψ1, ψ2, . . . , ψL

are needed in order to obtain such orthonormal bases. The following simply proved result
provides a powerful tool to answer this question.

Theorem 3.1. Let H be a separable Hilbert space, G be a countable set and, for each
u ∈ G, let Tu : H → H be unitary. Moreover, assume that for each Tu there exists a
unique u∗ ∈ G such that Tu∗ = T ∗u (= the adjoint of Tu). Suppose that Φ = {φ1, φ2, . . . }
and Ψ = {ψ1, ψ2, . . . } are two subsets of H such that {Tu φk : u ∈ G, φk ∈ Φ} and
{Tu ψi : u ∈ G, ψ ∈ Ψ} are orthonormal bases for H. Then card Φ = card Ψ.
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Figure 4: The regions S0 and S1 = S0 a, where a = 2 I2.

Proof. Let N = card Φ and M = card Ψ (M and N can be either positive integers or
∞). Then, using the fact that Tu∗ = T ∗u and to any u ∈ G we associate a unique u∗ ∈ G,
we have that

N =
N∑

k=1

‖φk‖2 =
N∑

k=1

∑

u∈G

M∑

i=1

|〈φk, Tu ψi〉|2

=
M∑

i=1

∑

u∈G

N∑

k=1

|〈Tu∗ φk, ψi〉|2

=
M∑

i=1

∑

u∈G

N∑

k=1

|〈Tu φk, ψi〉|2

=
M∑

i=1

‖ψi‖2 = M. ¤

An important special case of this theorem occurs when G is a countable group and
the mapping u 7→ πu is a unitary representation of G acting on H. In the examples of
composite dilations wavelets we have presented, G = {(b, k) : b ∈ B, k ∈ Z2} is, indeed,
a countable group, where the group operation is (b, k) · (c,m) = (bc,m + c−1k), and the
mapping (b, k) 7→ π(b,k) = Db Tk is a unitary representation of G acting on H = L2(R2).

Let us see what Theorem 3.1 tells us about the number of generators L that we used
in each of the affine systems of composite dilations (2.2), (3.4) and (3.5) (in which cases,
we had L = 3, L = 1 and L = 3, respectively). In all of these cases the spaces Vi = L2(Si),
where Si = S0 ai, i ∈ Z, are closed subspaces of L2(R2) having the following properties:
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(i) Vi ⊂ Vi+1, i ∈ Z;

(ii) f ∈ Vi if and only if f(a·) ∈ Vi+i;

(iii)
⋃

Vi = L2(Rn);

(iv)
⋂

Vi = {0}.
These are four of the basic properties of what is known as a multiresolution analysis
(MRA) in L2(Rn). There is a fifth important property that asserts that there exists a
function φ ∈ V0, called a scaling function, such that {Tk φ : k ∈ Zn} is an orthonormal
basis for V0. These properties give rise to a very elegant method for constructing an affine
system {D2iI Tk ψ : i ∈ Z, k ∈ Zn} that is an orthonormal basis for L2(Rn). The crucial
step of the MRA method is to examine the subspace W0 ⊂ V1 that is the orthogonal
complement of V0 (that is, V1 = W0

⊕
V0), and then construct functions ψ1, . . . , ψ` ∈ W0,

called wavelets, such that {Tk ψ` : k ∈ Zn, ` = 1, . . . , L} is an orthonormal basis for W0.
Since L2(Rn) is the orthogonal direct sum

⊕
i∈ZWi, where Wi = Di

2I W0 (this follows from
the properties of the MRA), it follows that {Di

2I Tk ψ` : i ∈ Z, k ∈ Zn, ` = 1, . . . , L} is an
orthonormal basis for L2(Rn).

In the three examples we have developed, we have proceeded in a very similar way to the
MRA method. Given V0 = L2(S0) and V1 = L2(S0 a), the orthogonal complement of V0 in
V1 is the space W0 = L2(S1 \S0). Then we constructed an orthonormal basis for L2(W0) of
the form {Db Tk ψ` : b ∈ B, k ∈ Z2, ` = 1, . . . , L} (observe that, unlike the “classical” MRA
method, we need both the integer translations and the dilations by b ∈ B to obtain this
basis). Recall that in the example from Section 2, we used ψ̂` = χI`

, ` = 1, 2, 3; in the other
two examples in Section 3, we used ψ̂ = χR (L = 1), and ψ̂` = χR`

, ` = 1, 2, 3, respectively.
Since {(b, k) : b ∈ B, k ∈ Z2} is a countable group, and π(b,k) = Db Tk is unitary, an
application of Theorem 3.1 tells us that L = 3, L = 1, and L = 3, respectively, are always
the number of generators for each affine system {Db Tk ψ` : b ∈ B, k ∈ Z2, ` = 1, . . . , L}
that forms an orthonormal basis for L2(W0). Observe that, in general, the functions ψ̂`

need not be characteristic functions of subsets of R̂2.
These observations extend a well-known fact about dyadic affine MRA wavelet systems

on L2(Rn): they are generated by 2n − 1 functions. More generally, for wavelet systems
involving dilations that are integer powers of an expanding matrix a ∈ GLn(Z), the number
of generators is L = | det a| − 1 (notice that 2n is the determinant of the matrix 2In). All
this is discussed in greater detail in [5].

4 More constructions

Many more constructions of affine systems with composite dilations can be found in [3, 4,
5, 8]. For example, in [3, 5] there are examples of singly generated wavelets with composite
dilations: these are non–MRA constructions. In [5] there are extensions of the shear
matrices B used in the construction of Section 2 to higher dimensions, while in [8] is
considered the case of finite groups B in higher dimensions. In [5] it is shown how the
“traditional” MRA constructions, involving low–pass and high–pass filters, can be adapted
to the setting of composite wavelets. In the same paper, there are examples of well–localized
wavelets with composite dilations, that is, systems that have fast decay both in Rn and
in R̂n. It is clear that the Fourier transform of the generators of these systems are not
characteristic functions.

8



Beside the groups B we have considered in this paper, there are many other classes of
matrices B that provide geometric properties different from the ones we have described.
For example, the integral Heisenberg group

B =

{
b(i,j,k) =




1 i k
0 1 j
0 0 1


 : i, j, k ∈ Z

}

provides interesting classes of wavelets with composite dilations. A simple example of yet

another class of sets B is provided by the powers of a matrix of the form
(

µ 0
0 µ−1

)
, µ 6= 0.

These extend to higher dimensions and are discussed in [5], where they are referred to as
hyperbolic matrices. Also, let us mention that we need not restrict ourselves to orthonormal
wavelets. Several Parseval frame wavelets can be constructed by the methods that we have
described.

Finally, one can consider a continuous version of the composite wavelets, that is, systems
of the form

{ψabt = DAa DBb
Tt ψ : t ∈ R2, a, b ∈ R},

where the matrices Aa, Bb depend continuously on a, b ∈ R. For example, one can choose

A =




a 0

0
√

a


 , B =




1 b

0 1


 .

Systems of this form are examined in [7].
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