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ABSTRACT

It is now widely acknowledged that wavelets are not very ef-
fective in representing images containing distributed discon-
tinuities such as edges. This paper deals with a new multi-
scale directional representation called the shearlet transform
that has been shown to represent specific classes of images
with edges optimally. Techniques based on this transform for
edge detection and analysis are presented. Unlike previously
developed directional filter based techniques for edge detec-
tion, shearlets provide a theoretical basis for characterizing
how edges will behave in such representations. Experiments
demonstrate that this novel approach is very competitive for
the purpose of edge detection and analysis.

Index Terms— Multidimensional digital filters, Image
edge analysis, Wavelet transforms

1. INTRODUCTION

Edges are prominent features in images and their detection
and analysis is a primary task in a variety of image process-
ing applications. Edges are recognized as those points of an
image u where the gradient is noticeably large and can be
identified as

Γu(p) = {x ∈ Ω ⊂ R2 : |∇u(x)| ≥ p},

where p is some suitable threshold.
The main difficulty in using such a naive characterization

of edges directly to design an effective edge detection scheme
is its high sensitivity to noise. As a consequence, in the most
successful edge detector schemes, to watch out for the inter-
ference of noise, the image is first mollified. For example,
the classic Canny edge detection algorithm [1] consists of the
following steps. First, the image is smoothed by convolving
with a scalable Gaussian filter:

ua = u ∗Ga, (1)

where Ga(x) = a−1 G(a−1x), for a > 0, and G(x) =
C e−

x2
2 , x ∈ R2 is the 2-dimensional Gaussian function. This
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step is followed by computing the gradient of ua, and then
finding the its local maxima. Notice that as the scaling param-
eter a decreases, the detection of the edge location becomes
more accurate. However, as a decreases, also the detector’s
sensitivity to noise increases. As a result, the performance of
the algorithm depends heavily on the scaling factor a.

It was observed in [2, 3] that identifying the edges of an
image u using Canny’s algorithm is equivalent to detecting
the local maxima of the wavelet transform of u, for some par-
ticular choices of the analyzing wavelet. In fact, let

ψ = ∇G.

It turns out that, up to an appropriate normalization, the func-
tion ψ is a wavelet and, thus, for each image u ∈ L2(R2), we
have the reproducing formula

u(x) =
∫

Wψu(a, y)ψa(x− y) dy,

where ψa(y) = a−1 ψ(a−1x), and Wψu(a, y) is the wavelet
transform of u, defined by

Wψu(a, y) =
∫

u(y)ψa(x− y) dy = u ∗ ψa(x). (2)

The significance of this representation is that the wavelet
transform provides a space-scale decomposition of the im-
age u, where each u ∈ L2(R2) is mapped into the elements
Wψu(a, y) which depend on the location y ∈ R2 and the
scaling factor a > 0.

The following simple observation shows that the wavelet
transform Wψu(a, x) is indeed proportional to the gradient of
the image u smoothed at the scale a:

∇ua(x) = u ∗ ∇Ga(x) = u ∗ ψa(x) = Wu(a, x).

Thus, finding the maxima of the gradient of the smoothed
image ua is equivalent to finding the maxima of the wavelet
transform Wu(a, x). The advantages of the wavelet point of
view is that it allows one to take advantage of several com-
putationally efficient algorithms available for the implemen-
tation of the wavelet transform. Furthermore, it provides a
proper mathematical framework for the multiscale analysis of
edges [2, 3].



The difficulty of edge detection is emphasized when sev-
eral edges are close together or cross each other as, for exam-
ple, in the case of 2-dimensional projections of 3-dimensional
objects. In these conditions, various limitations of the Canny
algorithm or the equivalent wavelet approach become evi-
dent. For example, the isotropic Gaussian filtering causes
edges running close together to be blurred into a single curve
and so it becomes difficult to separate close edges. Another
major problem is that the isotropic Gaussian filtering is not
very accurate in detecting edge orientations. To address
these difficulties one needs to better take advantage of the
anisotropic nature of the edge lines and curves. In several
studies, this task is attempted by replacing the scalable col-
lection of isotropic Gaussian filters Ga(x1, x2), a > 0 in (1)
with a family of steerable and scalable anisotropic Gaussian
filters

Ga1,a2,θ(x1, x2) = a
−1/2
1 a

−1/2
2 Rθ G(a−1

1 x1, a
−1
2 x2),

where a1, a2 > 0 and Rθ is the rotation matrix by θ [4, 5, 6].
Unfortunately, it is not obvious how to design such systems
in a computationally efficient way.

The approach described in this paper is based on a new
multiscale transform called the shearlet trasform, which takes
advantage of some recent developments in the theory multi-
dimensional wavelets. Indeed, it widely acknowledged that
traditional wavelets are not very effective in dealing with dis-
tributed discontinuities such as edges. This is due to the fact
that traditional multidimensional wavelets are obtained as
tensor products of one-dimensional ones and, as a result, they
have limited directional sensitivity. While these limitations
have been known for a while, only recently a proper mathe-
matical framework has been introduced for constructing truly
multidimensional multiscale systems having the ability to
deal with multidimensional signal efficiently. The curvelets
for example, introduced by Donoho and Candès [7], form a
collection of analyzing waveforms defined not only as various
scales and locations, like wavelets, but also at various orienta-
tions with highly anisotropic shapes and are provably optimal
in approximating images with smooth edges. The shearlets,
introduced more recently by the authors and their collabo-
rators [8, 9], share the same optimality properties and enjoy
similar geometrical properties. In addition, shearlets provide
a simplified mathematical structure and an added flexibility
which is particularly useful in the applications described in
this paper.

In this paper, we will use the shearlet transform to provide
an accurate and computationally efficient tool for the analy-
sis and detection of edges. This approach can be viewed as
an extension and refinement of the wavelet-based approach in
[2, 3], where the isotropic wavelet transform Wu(a, x) is re-
placed by a truly multidimensional multiscale and directional
transform. As we will show, the shearlet approach exhibits
a number of most useful features, including the ability to ex-
actly identify the location and orientation of edges. In addi-

tion, the transform is based on a rigorous mathematical frame-
work, and has efficient numerical implementations [10].

2. SHEARLET TRANSFORM

Let G be a subgroup of the group of 2 × 2 invertible matri-
ces. The affine systems generated by ψ ∈ L2(R2) are the
collections of functions of the form
{
ψM,t(x) = |det M |− 1

2 ψ(M−1(x− t)) : t ∈ R2,M ∈ G
}
.

If, for all f ∈ L2(Rn), we have the reproducing formula:

f =
∫

Rn

∫

G

〈f, ψM,t〉ψM,t dλ(M) dt,

where λ is a measure on G, then ψ is a continuous wavelet,
and the continuous wavelet transform is the mapping

f →Wψf(M, t) = 〈f, ψM,t〉, (M, t) ∈ G× R2.

There are a variety of examples of wavelet transforms. The
simplest case is when the matrices M are isotropic, that is,
they have the form a I , where a > 0. In this situation, the
continuous wavelet transform of f is simply

Wψf(a, t) = a−1

∫

R
f(x) a−1ψ(a−1(x− t)) dx.

Notice that the expression (2) is of this form.
The isotropic wavelet transform has the ability to iden-

tify the singularities of a signal. In fact, suppose that f is
smooth apart from a discontinuity at a point x0. Then, pro-
vided ψ is a “nice” continuous wavelet, the wavelet transform
Wψf(a, t) decays rapidly as a → 0, unless t is near x0 [11].
Thus, Wψf(a, t) is able to resolve the singular support of a
distribution f , that, to identify the set of points where f is not
regular. This fact provides the theoretical justification for the
ability of the wavelet transform to detect edges, as described
in Section 1.

However, the isotropic wavelet transform is unable to pro-
vide additional information about the geometry of the set of
singularities of f . In many situations, it is useful to not only
identify the location of singularities, but also its geometrical
properties, such as, for example, the orientation of a disconti-
nuity curve. To do that, one needs to consider wavelet trans-
forms associated to more general groups G. In particular, we
will employ the continuous shearlet transform, defined as the
mapping

SHψf(a, s, t) = 〈f, ψast〉, a > 0, s ∈ R, t ∈ R2,

where ψast(x) = | detMas|− 1
2 ψ(M−1

as (x − t), and Mas =( a s

0
√

a

)
. Observe each matrix Mas can be factorized as

Bs Aa, where Bs =
(

1 −s

0 1

)
is a shear matrix and Aa =

( a 0

0
√

a

)
is an anisotropic dilation matrix. The analyzing
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Fig. 1. Frequency support of the shearlets for different values
of a and s.

function ψ has to be chosen appropriately. For ξ = (ξ1, ξ2) ∈
R2, ξ2 6= 0, let ψ be given by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2
ξ1

),

where ψ1 ∈ L2(R) satisfies the Calderòn condition
∫ ∞

0

|ψ̂(aξ)|2 da

a
= 1 for a.e. ξ ∈ R,

and ‖ψ2‖L2 = 1. Then, for each f ∈ L2(R2), we have [12]:

f =
∫

R2

∫ ∞

−∞

∫ ∞

0

〈f, ψast〉ψast
da

a3
ds dt.

Notice that there are a many possible functions ψ generat-
ing such systems. In the following, we will assume that ψ
is a well localized function. In particular, we assume ψ̂1 ∈
C∞0 (R) with suppψ̂1 ⊂ [−2,− 1

2 ] ∪ [ 12 , 2] and ψ̂2 ∈ C∞0 (R)
with suppψ̂2 ⊂ [−1, 1] and ψ̂2 > 0 on (−1, 1). Unlike the
isotropic wavelet transform Wψf(a, t) which depends only
on scale and translation, the shearlet transform is a function of
three variables: the scale a, the shear s and the translation t.
Hence, the shearlets ψast form a collection of well-localized
waveforms at various scales, orientations and locations. The
frequency support of the shearlets is illustrated in Figure 1.

It turns out that the Continuous Shearlet Transform can
be used to very precisely describe the geometry of the sin-
gularities of a 2-dimensional function f . In fact, the decay
rate of SHψf(a, s, t) describes not only the location, but also
the orientation of the singularities of f . Consider, for exam-
ple, B(x1, x2) = χD(x1, x2), where D = {(x1, x2) ∈ R2 :
x2

1 + x2
2 ≤ 1}. We have the following:

Theorem. If t21 + t22 = 1 and s = t2
t1

, t1 6= 0, then

SHψB(a, s, t) ∼ a
3
4 as a → 0.

In all other cases, SHψB(a, s, t) decays rapidly as a → 0.

Similar results hold for more general domains D. These re-
sults sets the foundation for the application of the shearlet
transform to the analysis of edges.

3. DETECTION OF EDGE ORIENTATION

Let u be an image containing an edge. As mentioned in Sec-
tion 1, the information about the edge points of u can be an-
alyzed from the properties of the corresponding wavelet tran-
form Wψu(a, t). In particular, for a given scale a, the edge
orientation can be estimated by

∠(u ∗ ∇Ga(τ)) = atan
(

u ∗ ψy
a(τ)

u ∗ ψx
a(τ)

)
(3)

where τ is an edge point, ψx
a = ∂Ga

∂x ,ψy
a = ∂Ga

∂y and Ga is a
dilated Gaussian function.

In the practical numerical computations, the operator ∂
∂x

is approximated by a finite difference. This is a significant
source of inaccuracies in the estimate of the edge orientation,
especially at fine scales (a small). Other methods estimate
the edge orientation from the estimated edge points, after the
edge points have been fitted to a curve. The main problem
here is that, since the orientation detection is based on the
edge points, the error in segmentation will seriously affect the
orientation estimation.

The advantage of the shearlet transform is that, by decom-
posing an image as function of scale, location and orientation,
it allows one to extract directly the information about the ori-
entation of the edges. In the following ,we will run several
numerical tests to demonstrate the superior performance of
the shearlet transform in detecting edge orientations.

As a first experiment, we will measure the directional sen-
sitivity of the shearlet transform applied to a collection of test
images uθ, representing half-planes at various orientations:

uθ(x, y) = χD(x, y), D = {(x, y) : y
x ≤ tan(θ)}.

Let E be the set of the edge points of uθ and |E| be the num-
ber of elements in the set E. Then we define the directional
response of shearlet transform at the edge points as:

DR(θ, s, a) =
1
|E| ·

∑

t∈E

|SHψuθ(a, s, t)|. (4)

Thanks to its directional sensitivity, for each fixed scale a, the
shearlet transform will have a significant magnitude only for
orientations s in a very small interval. This is illustrated in
Figure 2, for two different values of the scale a.

As a second test we will to compare the accuracy in
detecting the orientation of edges using the shearlet trans-
form versus the wavelet method. As mentioned above, in
the wavelet approach, the edge orientation is estimated us-
ing (3). Recall that this is equivalent to the estimation ob-
tained from Canny’s algorithm. Using the shearlet transform
SHψu(a, s, t), we will estimate the edge orientations by
identifying the values of the orientation parameter s which
maximize the magnitude of the transform. Results are il-
lustrated in Figure 3 using as test image the characteristic
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Fig. 2. Directional response of the shearlet transform
DR(θ, s, a) at scales a = 1 and a = 16. The orientations
of the half-planes range over θ = i

100π, i = 1, . . . , 100.

function of a disc, with and without noise. The figure shows,
as a function of the scale, the average angle error defined as

1
|E| ·

∑

t∈E

|θ̂(t)− θ(t)|

where E is the set of edge points, θ is the exact angle and
θ̂ the estimated angle. As the figure shows, the shearlet ap-
proach significantly outperforms the wavelet method, and is
extremely robust to noise.

(a)

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5

scale

er
ro

r

with out noise

shearlet
wavelet

(b)

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5

scale

er
ro

r

SNR=16.9428dB

(c)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

scale

er
ro

r

SNR=4.907dB

shearlet
wavelet

(d)

Fig. 3. (a) Test image. (b-d) Comparison of the average er-
ror in angle estimation using the wavelet method versus the
shearlet method, as a function of the scale, for various SNR.

4. CONCLUSION

This study shows that the shearlet transform provides a mul-
tiscale directional framework which is very competitive for
the purpose of edge detection and analysis. This approach is
based on a simple and rigorous mathematical theory which
provides a theoretical basis for characterizing the geometri-
cal properties of edges. In particular, it provides an accurate

method for extracting the information about edge orientation,
even in presence of noise. This opens the door to a number
of further applications in image analysis. For example, the
angle function along the contour of an image is widely used
as a representation of shapes. Early tests (not shown here for
brevity) show the potential of the shearlet approach for this
investigation.
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