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Abstract

One of the most striking features of the Continuous Shearlet Transform is its ability
to precisely characterize the set of singularities of multivariable functions through its
decay at fine scales. In dimension n = 2, it was previously shown that the continuous
shearlet transform provides a precise geometrical characterization for the boundary
curves of very general planar regions, and this property sets the groundwork for
several successful image processing applications. The generalization of this result to
dimension n = 3 is highly nontrivial, and so far it was known only for the special case
of 3D bounded regions where the boundary set is a smooth 2-dimensional manifold
with everywhere positive Gaussian curvature. In this paper, we extend this result
to the general case of 3D bounded regions with piecewise-smooth boundaries, and
show that also in this general situation the continuous shearlet transform precisely
characterizes the geometry of the boundary set.
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1 Introduction

The shearlet transform has emerged in recent years as one of the most success-
ful extensions of the traditional wavelet transform. Indeed, while the continu-
ous wavelet transform is able to identify the locations of singularities of func-
tions and distributions through its asymptotic behavior at fine scales [15,18],
it lacks the ability to capture additional information about the geometry of
the singularity set. This is a major disadvantage in dealing with multidimen-
sional data, which are frequently dominated by distributed singularities such
as edges or surface boundaries. One manifestation of this fact is that wavelets
are far from optimal with respect to their ability to approximate piecewise
smooth multivariable functions [1,7,9].

The reason for the limitation of the traditional wavelet framework lies in
its intrinsic isotropic nature. By contrast, the shearlet approach is designed
to capture singularities defined along curves, surfaces and other anisotropic
features with very high efficiency. This is achieved by mapping a function or
distribution f into the elements

87{¢f(a, S, t) = <f7 wa5t>>

where the analyzing functions 1,4 (called shearlets) are well-localized wave-
forms obtained through the action of anisotropic dilations, shearing transfor-
mations and translations, parametrized by a > 0, s € R and t € R?, respec-
tively, on a generator function ¢. This approach allows one to decompose f
not only in terms of locations and scales, like the traditional wavelet approach,
but also according to their directional information and taking advantage of
the anisotropic features of f.?2

It follows that the shearlet transform has a unique ability to capture the
geometry of the set of singularities of functions and distributions, as was fully
established in dimension n = 2. Specifically, let B = xg, where S C R?, and its
boundary 0S5 is a piecewise smooth curve. It was shown in [8] (extending and
refining previous results in [11,16]) that both the location and the orientation
of the boundary curve 9S can be precisely identified from the asymptotic decay
of SHyB(a, s, p) at fine scales (as a — 0). In fact the following estimates hold:

o If p ¢ 0S, then |SHyB(a, s, p)| decays rapidly, as a — 0, for each s € R. By

2 Notice that the continuous curvelet transform [2] also employs analyzing ele-
ments defined at various locations, scales and orientations, and it shares some of
the properties of the continuous shearlet transform. However, the shearlet transform
has the distinctive feature of being derived from the theory of affine systems, and
this provides several advantages in terms of discretization and extensions to higher
dimensions [3,4,9,13].



rapid decay, we mean that, given any N € N, there is a Cy > 0 such that
|SH 4 B(a, s,p)| < Ca”, as a — 0.

o If p € 0S and 0S is smooth near p, then |SH,B(a, s,p)| decays rapidly, as
a — 0, for each s € R unless s = s is the normal orientation to S at p. In
this last case, |SHyB(a, so,p)| ~ ai, as a — 0.

e If p is a corner point of S and s = sy, s = s; are the normal orientations
to 0S at p, then |SH,B(a, so,p)|, |SHyB(a, s1,p)| ~ at, as a — 0. For all
other orientations, the asymptotic decay of |SH,B(a, s, p)| is faster (even if
not necessarily “rapid”).

These results provide the theoretical justification and the groundwork for
very competitive numerical algorithms for edge analysis and detection, such
as those presented in [19,22], and this further demonstrates the benefits of
the shearlet multiscale directional framework with respect to the traditional
wavelet approach. Also recall that the localization properties of the continuous
shearlet transform are related to the sparsity properties of the corresponding
discrete shearlet transform [7,12,17].

The mathematical framework of the 2-dimensional shearlet transform extends
naturally to higher dimensions. In fact, the shearlet transform is closely related
to the square integrable representations of the shearlet group, and this group
has several n-variate generalizations, as shown in [3,10]. The 3-dimensional
case, in particular, is of great interest in applications such as medical and seis-
mic imaging, where important phenomena are usually associated with surfaces
of discontinuities.

As observed in [10], while it is straightforward to define a 3-dimensional shear-
let transform SH,, many of the arguments introduced in the 2-dimensional
setting for the analysis of curve singularities do not carry over to the 3D
setting. This is due to the additional geometric complexity of dealing with
singularity sets defined on surfaces rather than curves. Hence, to deal with
the 3D problem, several new ideas were introduced by the authors in [10].
Using these estimates we were able to show that, similar to the 2-dimensional
case, if B = y¢, where C' C R3 is a convex region with positive Gaussian cur-
vature, then the 3-dimensional continuous shearlet transform of B has rapid
asymptotic decay at fine scales for all locations, except for the boundary sur-
face OC when the orientation variable corresponds to the normal direction to
the surface. However, the positive Gaussian curvature assumption required by
the argument used in [10] is too restrictive to model the types of surfaces of
discontinuities usually found in applications. Thus, the goal of this paper is
to extend the 3D result to a much more general and realistic setting. This
requires a new approach. In particular, a major new technical tool developed
in this paper is based on a method to approximate any regular surface using
a quadratic surface (see Lemma 4.5). This approach allows us to translate the
complicated geometric properties of the surface (e.g., the curvature) into the



“algebraic” properties of the coefficients of the quadratic form. The new char-
acterization result presented in this paper includes the one in [10] as a special
case (elliptic quadratic form) as well as many new important cases which fall
into the setting of general piecewise smooth surfaces.

As in the 2D case, the theoretical estimates derived in this work have a direct
impact in the development of numerical algorithms for the analysis of bound-
aries of 3D objects, as shown by the preliminary numerical results presented
in [20].

The paper is organized as follows. The definition of the shearlet transform,
including the special properties which are needed for the applications discussed
in the paper, is given in Section 2. The main theorem is presented in Section 3.
The proof of the main theorems the other results which are needed for its proof
are given in Section 4.

2 The shearlet transform

We recall the definition of the continuous shearlet transform, which was orig-
inally introduced in [16] (see also related results in [3,5]) and extended to the
3D setting in [10]. Consider the subspace of L*(R?) given by L*(C})Y = {f €
L2(R3) : supp f C Cy}, where C) is the truncated pyramidal region in the
frequency plane given by:

Cr={(&1,6,&) €R? 16| > 2, |E[ < land || <1}

The following proposition, which is a simple generalization of a result from [16],
provides sufficient conditions on the function ¢ for obtaining a reproducing
system of continuous shearlets on L?(C})".

Proposition 2.1 Consider the shearlet group AV = {(M,s,4,,p) : 0 < a <
a —al/?s; —all/? 32>

0 al/? 0

1 3 3 3 3 2 _
40 2 S S1 S 277 9 S S2 S 5729 € R }; U)h@’l"@ Ma5132 - <
0 0 al/?

For & = (&1,&,8&3) € R3, £ #0, let v be defined by
YD) = d (61,6, &) = (&) Ya(E) da(8),

where:

(i) ¥ € L*(R) satisfies the (generalized) Calderon condition

/OOO|@/A)1(CL§)|QCZZ =1 forae £€R, (1)

and suppih, C [—2, —31U 3,2,
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(ii) a2 = 1 and suppiby C [—¥2, ¥2].

= | det My, |20 M, (x—p)). Then, for all f € L*(Cy)Y,

3 3 1
3 (2 (1 da
/]Rd / / / <f7 wc(é)lsgp> 1/’51?132;;( ) 4 d81 ds? dpv

with convergence in the L? sense.

Let

a3152p< )

If the assumptions of Proposition 2.1 are satisfied, we say that the functions

gy — {77[}(1) c0<a<

asiszp -

N\OJ

<51 <

N\QO
l\J\O-’J

T <s <5 pERY (2

are continuous shearlets for L*(C})Y and that the corresponding mapping
LQ(Cl)V = f = 87‘[(1)f((l, 51, 82ap) = <f’ @Z)((zls)lst>

is the continuous shearlet transform on L*(C})Y with respect to AV, The index
(1) used above in the notation of the shearlet system (and of the corresponding
shearlet transform) indicates that the system (2) has frequency support in the
truncated pyramidal region C7; similar shearlet systems which are defined in
the two other complementary truncated pyramidal regions of R3 be defined
below.

Since, in the frequency domain, a shearlet element wa3152p € UM has the form:

O (6,6,8) = ai(agy) &2(072(&*2 —51)) @2(52(;3 — 59)) € TP,

it follows that the functions ¢ have supports in the sets:

as1s2p
L 1
{(&1,6,8) &1 e [-2, -5 U5 2, |§—f — 5| < %az, |% — 89| < ¥ Y243},

That is, the frequency support of each function is a pair of hyper-trapezoids,
symmetric with respect to the origin, with orientation determined by the
shearing variables s1, s5. The support regions become increasingly more elon-
gated as a — 0. Examples of these support regions are illustrated in Figure 1.

There is a variety of examples of functions ¢, and v, satisfying the assump-
tions of Proposition 2.1. In particular, one can find a number of such ex-
amples with the additional property that zﬁl, "@2 € C§° [6,16]. For the applica-
tions which are discussed in this paper, some additional properties are needed.
Namely, in the following we will assume that

€ O, suppihy C [—2,—1] UL, 2], 0dd, nonnegative in [1, 2]

and it satisfies (1); (3)



Fig. 1. Support of the shearlet 1&515)132,37 in the frequency domain, for a = 1/4,
s1 = s2 = 0 (blue region) and for a = 1/16, s; = 0.7, s5 = 0.5 (magenta region).

= C§°, supp Uy C [—%, ?], even, nononegative, decreasing
in [0, %2) and [[4s]] = 1. @)

According to Proposition 2.1, the shearlet system W) given by (2), is a
reproducing system for only a proper subspace of L?(R3). To extend this
construction and the corresponding continuous shearlet transform to deal with
the whole space L?(R?), one can introduce similar systems defined on the
complementary truncated pyramidal regions. Namely, let

OO = {(€1,60,6) € RS : 6] > 2,8 < 1,|€[ < 1)

and
C® = {(&,6,&) € R : |&] > 2,12 < 1,18] < 1},
and, for ¢ = 2,3, define the sets

. ) 1 3 3 3
A(l) :{(Ma81827p)(2) : O S a S 17 _5 S S1 S 57 _5 S 59 S 77p S R2}7
where
a’? 0 0 all? 0 0
M2, =|=a"2s a —a?sy |, MY, = 0 a2 0
0 0 a2 —a'?s; —a'? sy a
Next, let R ) ) ) X
¢(2) (5) = ¢(2)(51, 62,53) = %(52) ¢2(%) ¢2(%),
1&(3) (5) = 1&(2)(51,52,53) = 1&1(53) @22(%) 1&2(%)7



where 1@1, 1ﬁ2 satisfy the same assumptions as in Proposition 2.1, and denote

wC(LSlSQp - |d‘et a8182‘_§¢ l)( aslsg) 1(ZE - p))’ fOI' Z = 27 3

Hence, an argument similar to Proposition 2.1 shows that, for ¢ = 2,3, the
functions

w\w

<51 <

N

7_%§31§%7PER2}

_ 1
{wasﬂgp S S 49

are continuous shearlets for L?(C")V. Accordingly, for i = 2,3, the map-
pings f — SHJf(a, s1,52,p) = (f, ¥ ,,,) are the continuous shearlet trans-
forms on L?(C™)Y with respect to A®. Finally, by introducing an appropriate
smooth, bandlimited window function W, the functions with frequency sup-
port on the set [—2,2]* can be expanded as

£= [ W W, dp,

where W,(z) = W(z — p). As a result, any function f € L?(R?) can be rep-
resented with respect to the full system of shearlets consisting of the systems
UL, U together with the coarse-scale isotropic functions W,. The shear-
let representation we have just described generalizes a similar representation
originally introduced in [16] for dimension n = 2.

Notice that, for the purposes of this paper, it is only the behavior of the
fine-scale shearlets that matters. Indeed, the continuous shearlet transforms
SHEZ), i =1,2,3, will be applied at fine scales (¢ — 0) to resolve and precisely
describe the boundaries of certain solid regions. Since the behavior of these
transforms is essentially the same on each cone domain C'®| in the following
sections, without of loss of generality, we will only consider the continuous
shearlet transform S}'-lfp1 ). For simplicity of notation, we will drop the upper-
script (1) in the following,.

3 Main Results

As described above, the continuous shearlet transform has the ability to char-
acterize very precisely the set of singularities of multivariable functions and
distributions through its asymptotic decay properties as a — 0. The situation
in dimension n = 2 was completely solved in [11,8]. In higher dimensions, only
the special case of boundary regions with nonvanishing Gaussian curvature
was known so far [10]. In this paper, we are able to deal with the situation
of general boundaries of 3D solid region, thanks to a new argument that also
simplifies many of the results previously known.



Consider the functions B = xq, where Q is a subset of R?® whose boundary
0f) is a 2-dimensional manifold. We say that 0€) is piecewise smooth if:

(i) 09 is a C* manifold except possibly for finite many separating C? curves
on 0f);

(ii) at each point on a separating curve, ) has exactly two outer normal
vectors which are not on the same line.

Let the outer normal vector of 92 be 77, = =£(cos b sin ¢y, sin Oy sin ¢y, cos ¢p)
for some 6y € [0,27], ¢o € [0,7]. We say that s = (s1, s2) corresponds to the
normal direction 7, if s; = a~3 tan Oy, So = a~3 cot ¢ sec by.

The following theorem shows that for a bounded region in R?* whose boundary
is a piecewise smooth 2-dimensional manifold, the continuous shearlet trans-
form of B, denoted by SHB(a, s1, s2, p), has rapid asymptotic decay as a — 0
for all locations p € R?, except when p is on the boundary of  and the orien-
tation variables si, s9 correspond to normal direction of the boundary surface
at p, or when p is on a separating curve and the shearing variables sq, so
correspond to normal directions of the boundary surface at p (see Figure 2).

Fig. 2. The continuous shearlet transform of a bounded region 2 with piecewise
smooth boundary has rapid decay everywhere, except when the location variable p
is on the surface and the shearing variables correspond to the normal orientation,
in which case it decays like O(a), as a — 0.

Theorem 3.1 Let 2 be a bounded region in R® and denote its boundary by
Q). Assume that OS2 is a piecewise smooth 2-dimensional manifold. Lety;, j =
1,2,---,m be the separating curves of 02. Then we have

(i) If p ¢ O then

lim o~ SHyB(a,s1,s2,p) =0, for all N > 0.

a—0t

(i) If p € OQ\UJL, v; and (s1, s2) does not correspond to the normal direction



of OS) at p, then

li%lJr a N SH,B(a, s1,52,p) =0, forall N > 0.

a—

(i) If p € O\ UjL,7; and (s1,s2) corresponds to the normal direction of
o atp orp € UL, and (s1,82) corresponds to one of the two normal
directions of O at p, then

lim a ' SHyB(a, s1, 89, p) # 0.
a—07t
(w) If p € vj and (s1, s2) does not correspond to the normal directions of 09

at p, then 3
|8}L[1/’B(a’ S1, 527p)| < Ca2.

The proof of Theorem 3.1 is given in the next section.

Before presenting the proof, we mention that the result presented above is
expected to extended to higher dimensions using a similar argument, at least
in the situation of smooth boundaries. Similar to the result valid in dimen-
sions n = 2 and n = 3, the continuous shearlet transform will exhibit rapid
asymptotic decay for all locations and orientations, except when the location
parameter is at the boundary and the shearing parameters correspond to the

normal orientation, in which case the decay will be of the order of a"t.

4 Proof of The Theorems
The proof requires some construction.
4.1 Useful lemmata and constructions

Our first observation is that, by using the divergence theorem, one can make
explicit the dependence of the shearlet transform of a compactly supported
function f and the boundaries of the support of f. Notice that this property
was also employed in [8] and follows a classical method from [14].

Let Q@ C R3 be a solid region whose boundary surface S = 9Q is a 2-
dimensional manifold. Let B = xqo. By the divergence theorem, the Fourier
transform of B can be expressed as

. 1

/56_27%:”5 -7i(x) do (), ()



where 7 is the outer normal vector to S at x (see [14]). By representing £ € R3
using spherical coordinates as £ = p©, where p € RT and © = 0(0,¢) =
(singcosf,sinpsinf, cos ¢) with 0 < 6 < 27 and 0 < ¢ < 7, expression (5)
can be written as

B(p.0.6)=—5— [ e 00926(0,0)-ii(x) do(a) (©)

 2mip

The second observation is that the shearlet transform is a local transform, in
the sense that the shearlet transform of a function f decays rapidly (as a — 0)
away from the locations where f is discontinuous.

Let p € R3. For € > 0, let B.(p) be the ball with radius € and center p and
let P.(p) = SN B(p). Using this notation, we break up the integral (6) into a
component close to p and another component away from p as

B(p,0,¢) = Ti(p, 0, ¢) + To(p, 6, 0),

where
1 —2m3, X =
Tilp.6,0)= 5o [ O 6(6,9) - i(r) dox)
1 .
T ’Q’ — / —2mp®(9,¢)~ac@ 07 = d
(0 0) =5 [ e (6,6) - ii(x) do(z)

It follows that

SHTZ)B(aa 817827p> - <B7¢as132p> - -[l(au 817827p> + -[2<a7 51, 82,]7),

where

27 pm OO E
L@ sisep)= [ [0 [7T(0.0.0) Guuseap(p.8.0) p*sin o dpdodt (7
2 pm OO _—
[2(a7 317327p):/0 /O /0 TQ(paea qb) ,lvbaslszp(pveaas) p2 Sln¢dpd¢d0
The following lemma from [10] shows that the asymptotic decay of the shearlet

transform SH,B(a, s1,S2,p), as a — 0, is only determined by the values of
the boundary surface S which are close to the location variable p.

Lemma 4.1 [10] For any positive integer N, there is a constant Cy > 0 such
that
|]2((I, S1, 52ap)| < CN an

10



asymptotically as a — 0, uniformly for all sy, s, € =32, 3].

Since the proof of this lemma will be used below, we repeat the following
argument from [10].

By direct computation, we have that:

—2mi I5(a, s1, $2,p)

o b0 ) G, 6.0) psin ddpdadd do(a)

:a/S\Pe(p /27r/ / ¢1(apSin¢cose) wg(a_a(tang_sl))
ta(a2 (cot psect — 5,)) TP OCN D O i) p sin g dp de d do(x)

1 2 .
== [ T[T dilpsing cos0) da(a (tan6 — s1))

a JS\P.(p)Jo Jo Jo

(a2 (cot psech — s5)) ™5 O =2 O . () p sin ¢ dp dep d6 do ().

-

Notice that, by assumption, there exists an € > 0 such that ||p — z|| > ¢

for all z € S\ P.(p). Let s; = tanfy with |0)] < T and sy = cot ¢gsec ty

with [¢9 — 5| < §. By the support condition of 1/;2, it follows that, for a near
0, 6 is away from 5 or 37“ and ¢ is away from 0 or w. Let J be the set of
these 6 and ¢. It is easy to see that {O(¢, 0), Ox(¢,0), Oy(¢,0)} form a basis
for R? for (¢,0) € J. It follows that there is a constant C, > 0 such that
0(6,0) - (p— 2)| +[06(6,0) - (b — 2)] + Ou(,6) - (0 — )| = C, where C is

independent of (¢, #) € J, and x € S\ P.(p).

Define
h={6.0): _inf 10(6,0) (p— )] = L}
B={0.0): _int 10,(6.0) (- 0)] = L},
B={6.0): _inf 100(6.0)- (0 — )| 2 2.

We can express integral I5 as a sum of three integrals corresponding to Ji, Ja,
and J3 respectively. On J;, we integrate by parts with respect to the variable
p; on Jo we integrate by parts with respect to the variable ¢, and on J3 we
integrate by parts with respect to the variable 6. Doing this repeatedly, it
yields that, for any positive integer n, |I;| < C, a?. This finishes the proof.
(I

The following lemma is a special case of Proposition 5 at page 342 in [21].

11



Lemma 4.2 Suppose 1) is smooth and is supported in the unit ball; also let ¢
be a real-valued function so that, for some k > 1 we have |¢*)| > 1 throughout
the support of 1. Then

‘/Oo e@y(2) da| < Cy AT

—00

For the proof of Theorem 3.1, we also need the following Lemmata. The first
one is a generalization of Lemma 4.4 in [8]; the second one is contained in the
proof of Lemma 4.4 in [§]

Lemma 4.3 For «a € [0,27),y > 0, let

NV .
h(ca,y) :/ Vo (7 cos a) o (7 sin ) sin(myr?)r dr,
0
where 1y satisfies the assumptions given by (4). Then h(a,y) > 0.

Lemma 4.4 Let 1), € L*(R) be chosen so that it satisfies the assumptions
giwen by (4). Then, for each p > 0,

/11 &g(u) sin(ﬂpuz) du > 0 and /11 wAQ(u) COS(’/Tp’LL2) du > 0.

The final observation which will be needed is that, in order to estimate the
asymptotic decay of the shearlet transform of B = yq as a — 0, it is possible
to locally approximate the smooth surface S = 92 using a quadratic surface.
This observation will play a crucial role in the the proof of Theorem 3.1.

Near the point p € R3 let S = (G(u),u), where v € U C R? and G(u)
is a smooth function on U. There exists uy € U such that p = (G(uyg), uo).
Without loss of generality, we may assume that p = (0,0, 0) so that uo = (0, 0)
and G(0,0) = 0. Hence we define the quadratic approximation of S near
p=1(0,0,0) by

So = (Go(u),u),

where G is the second order approximation of G at (0, 0), given by by Go(u) =
Gy (0,0)u1 4 Gy (0, 0)ug + 5[G 2 (0, 0)uf + 2G 0, (0, 0)urug + G iz (0, 0)us]. We
define the function By = xq,, where 0€) is obtained by replacing S = 0f2 in
B = x5 with the surface Sy near the point p = (0,0,0). We can now state the
following result.

3

5, we have

Lemma 4.5 For any s = (s1,$2) € Ry with |s;] < %, 59| <

lim a™' |SHyB(a, s,0)) — SHyBo(a, s,0)| = 0.

a—0t

12



Proof. Without loss of generality, we may assume s = (0,0). Let v be chosen
such that % <y < % and assume that a is sufficiently small, so that a” < e.

A direct calculation shows that

|SH,B(a.0,0) — SH, Bola.0,0) < [ [taon(@)] [xa(e) = xoy (o) da
=Ti(a) + Tz(a),

where, for © = (21, 2, x3), we have:

1 1
Tia)=a' [ (o™ a1, 0”4z, 0" a5)] Ixal@) — X (0 do,
D(a7,(0,0,0))
1 1
Tya)=a' [ o™ 210”422, 0 a5)] [xa (@) — Xe (2]
De(a7,(0,0,0))

Observe that:

Ti(@)<Ca™ [ xa(@) = xau ()] da.
D(a7,(0,0,0))

To estimate the above quantity, it is enough to compute the volume between

the regions €2 and €. Since Gy is the Taylor polynomial of G of degree 2, we

have

Ti(a) < Ca! /

lz|<aY

lz|*de <Ca™? / ridr < Ca™

r<a”
Since v > £, the above estimate shows that T (a) = o(a).

The assumptions on ¢ imply that, for each N > 0, there is a constant Cy > 0
such that [ (z)] < Oy (14 |z|*)™. Thus, for a < 1, we can estimate Ty(a) as:

Ty(a)<Ca™! / W(a‘lxl,a_%xg,a_%xg)]dx
D¢(a7,(0,0,0))

<Cyat /

D<(a7,(0,0,0))

SCNCL_l /

D¢(a7,(0,0,0))

-N
— N-1 2 2 2
=Cya /Dc(av,(o,o,o)) (931 + x5+ 933) dz

[e.e]
:C’NaN’l/ 2N dr

a”

(1 + (a7 'm)? + (0 2m0)% + (a_§x3)2)_N dx

(@222 + (@322 + (0 Hap)?) " da

1_ _
:CNU,2N(2 v) a2'y 1.

13



Since v < 3 and N can be chosen arbitrarily large, it follows that Th(a) = o(a).
(]

4.2 Proof of Theorem 3.1

The proof of statement (i) of the theorem follows directly from Lemma 4.1.
The proof of statement (iii), which is the “hardest” part of the proof, is based
on a completely new argument and will be presented first. Next, we shall
present the proofs of statements (ii) and (iv), which are much simpler.

Proof of (iii). This is the situation where either p € 00\ UL, v; and the
shearing variables (s, s2) correspond to the normal orientation or p is on
a separating curve and the shearing variables (si,s3) correspond to one of
the two normal orientations. We discuss separately the situations where (I)
p € 002\ UL, v; and where (IT) p € ~; for some j. We will only examine
the behavior of I;(a, s, p) for |s1],|se] < 1 (in which case we use the shearlet
transform on the truncated pyramidal region C'")). The other cases can be
handled in a very similar way.

(iii) — Situation (I): Let p € 92\ UjL; ;.

By Lemma 4.1 and Lemma 4.5, in order to prove statement (iii) it is sufficient
to show that
hm+ a_l Il(a'7 S1, 827p) 7é 07

a—0
where the integral I; is taken on Sy rather than S.

For simplicity, let p = (0,0,0), 6y = 0,¢9 = 7, so that s; = s, = 0. The
general situation can be reduced to this special case, as shown in Remark 4.1
at the end of this section. Also, let S, G(u), So, Go(u) be given as in Lemma 4.5,
with S = (G(u),u) and p = (G(0),0). Using polar coordinates, the integral
I,(a,0,0,0), taken on Sy, can be written as

I,(a,0,0,0)
1 /02vr/07r/0°°1ﬁ1(p sin ¢ cos 9)7/;2(0,_%(1:811 9))@/;2(a_%(cotgbsec 0))

2mia

X / 627ri§H9’¢(U) 6(97 ¢) : (_L VGO(U)> dupsmqf)dp dgb dg. (8)
U

where

Hypg(u) = =0(0,¢) - (Go(u), u) (9)
Let F(¢,0,u) = (Fi(¢,0,u), F5(¢,0,u)), where

Fl (¢a 0, u) = (H9,¢)u1 = —@(0, Qb) : (GOul (u)7 17 0)
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F2(¢7 ‘97 u) = (H9,d>)u2 = _@(‘97 (b) ’ (GOUZ (u)7 0, 1)

Since 7i(p) = (1,0,0) and ©(fy, ¢o) = £7i(p), it follows that ¢y = 7 and 6y = 0

or m. We will only consider the case 6y = 0 since the argument for the case
0y = m is similar. In this situation, we have

GOul (Uo) = G0u1 (0, 0) = 0, G0u2 (UO) = Gu2 (O, O) =0
so that

Go(u) = = (G2(0,0) 3 +2G1u,,(0,0) uyuz + G 3(0,0) u3)

DN | —

Without loss of generality (if necessary, by changing the (u;, us) coordinates),
we may assume that Gy,.,(0,0) = 0. As a consequence, we have that

1
Go(u) = §(Gu%(0, 0)uf + G3(0,0)u3).
For brevity, in the following we will use the notation:
A= Gu%(O, 0), B= Gu%((), 0). (10)

Hence we have:

Fi(¢,0,u)=—-06(0,0) (Aui,1,0) = — cosfsin ¢ Auy — sinfsin ¢

Fy(¢,0,u)=—0(6,¢) - (Bug,0,1) = — cosfsin ¢ Bus — cos ¢.
IfA#0,letu gy = % = — = tan @ so that Fy(¢, 6, u1¢,4) = 0. Similarly,
if B #0, let uggy = —% sec B cot ¢ so that Fy(¢,0,u294) = 0. We have now
four cases to discuss, corresponding on A # 0,B # 0 or A = B = 0 or
A=0,B#0or A#0,B =0. Notice that the last two cases are equivalent.

e Case 1: A # 0,B # 0. In this case, the phase term Hy 4(u), given by (9),
can be expressed as

1 sin? @ sin? ¢
H =——cosfsingp A(u; — o

9,6(U1, Uz) o COSTSIL ¢ Alur —ure9)” + 2A cos 0 sin ¢
) cos? ¢

1
— Zcosfsin ¢ Blu, — 2BcosOsined
5 cosOsin ¢ Bug — uz0,)” + 2B cos 0 sin ¢

Since p = (0,0,0) is an interior point in Sy, from the proof of Lemma 4.1 it
follows that we may choose the domain U of G as U = {(uq,uz) : oy < wuy <
B, ag < ug < Po} with ag, ag < 0, 1, Sz > 0. Hence, the integral over U
from (8) becomes:

15



/ e?ma o0 9 (0, ¢) - (—1, VGo(u)) du
U

p (sin Gsm [ cos” ¢
Za(Acos(ﬂsm(j)“'_BcosHsmqi>)

=€
/ / 6771'1'5 cos 0sin pA(u1—uq 9,4)2 efm'g cos fsin ¢ B(uz—u2,9,¢)>
a1 Jao

st1n¢+As1n051n¢ uy + B cos ¢ ug) dug duy

><( co
Ko(0,0,a) + Ki1(0,¢) + K»(0, ¢, a), (11)
where

PP ( sin? 9 sin? o) cos? ) )
a\Acosfsing ' BcosOsin ¢

Ko(0,¢,a)=—cosfsinge™

pr . 9 B2 ., . 9
X/ e—ﬂ'zgcos@smq&A(ul—uLg@) dul/ 6—7'('7,5COSQSIH¢B(U2—U2’97¢) dUQ
0¢2

aq
sin?  sin? d>+ cos? o) )

. . p
K1(97¢’a):A81n981n¢67ﬂ’ (Aco>951n¢ B cos0sin ¢

B1 B2 ., . 2
X/ 677” £ cos §sin pA(u1—u1,0,) uldul/ e g cos @ sin pB(uz—u2,9,4) dUQ
aq a2

Ky(60, 6,a) = it (RE  rr)
2 7¢’a)_Bcos¢e cos 0 sin ¢ cos 6 sin ¢
B1
(&

B2

_ il i _ 2 _

X/ miL cos 0sin pA(u1—uy 9,4) du1/ : mi2 cos O sin pB(uz—uz,0,4) UgdUQ
(o5} a2

In the expression (8) for I, the domain of integration with respect to 6 can
be broken up into the intervals [—%, 2] and [%, 27]. For the interval [, 37”] we

apply the change of variable 8/ = 06—, so that §' € [—g, Zland sinf = —sin @',
cos = — cos @'. Using this observation and expression (11), it follows that

I(a,0,0,0) = I¢(a,0,0,0) + I11(a,0,0,0) + I12(a,0,0,0),

where, for j =0,1,2,

11(a,0,0,0)
2ma/ // W1 (psin ¢ cos B)gha(a2 (tan 8) )i (a2 (cot ¢ sec 6))
K;(0,,a) psingdpde di +
2ma/ / / tn(psin g cos 0)ihy(a 2 (tan 6))yia(a™> (cot ¢ sec b))
X K0 + 7, ¢, a)psin pdpdpdf.

For § € (—Z, g) ¢ € (0,7), let t; = a2 tanf and t, = a~2 cot psech, so

2
9 2, at?+1
that cos® 6 = t2+1’ sin” ¢ = T EwTLE and J(0,¢) = 7@00530 7 Under this

change of Varlables we have

16



271 Ilo(a, O, O, 0)

1 1

00 ~ ~ ~ pdtl dtQ dp

— —_—s t ty) Ko(ty,t

/0 /_1/_11/)1 (\/at%+at%+1> valtavelts) Kol b2,0) (at? + aty +1)3/2
pdtl dtg dp

oo r1 1 . N N _
S — t to) Ko(ty,t
+/0 /_1/_1% (w/at%-‘rat%-‘rl) Ya(t1)¥a(t2) Ko(ts, b2, ) (at? + at3 + 1)3/2

where, (with an abuse of notation, we let Ky(t1,t2,a) denote the function
Ky(0, ¢,a) after the change of variables),

mi——L (1424 1,42y . uy |t

A'1TB"2 m—_pr M1 ty2

e /at2 +at2+1 pr —m /—at2+at2+1A(ﬁ+A)

Ko(tl,tg,a):— — e 1772 dU1
Va2 +at3+1 a1

. u to\2
o —mi—— e =B(Z+F)
X / e at1+at2+1 du2

a2

Notice that, due to the change of variable, Ko(f+, ¢, a) has become —Ko(ty,t2,a),
where K denoted the complex conjugate of K.

Taking the limit for a — 0, we have

lim 1Ko(tl,ztz,a) — _min(Fti+51) /OoefmpAww%qul /C’Oeﬂm'pB(uﬁ%’)Z’du2
a—0 @ oo oo
- —C, emiP(at 5
where o0 o 0o o
C, :/ e~ mipAuL dul/ e~ P8 du,.
Recalling the Fresnel integrals
oo o0 2
/ cos(mz?) dr = / sin(r2?) do = \g_,
it follows that ,
—1
Cr="—"= (12)

oVAB
Notice that C, is a real or imaginary quantity, depending on the signs of A
and B. Similarly, we have

1_ _ )
iiE}Y(l) gKg(tl, tQ, CL) = Cp€_ml)(%t§+%t§).
Due to the presence of the linear term u; and us in the integrals of K; and
K, respectively, a similar calculation to the one above shows that K7(6, ¢, a),
Ki(0+m7,¢,a), Ko(0,0,a) Ko(0+ 7, p,a) are all O(a%). That is, as a — 0, all
those terms are dominated by the term K, and, thus,

omi i
lim 2" 1, (,0,0,0) = lim ——I,0(a, 0,0, 0).
a—0 @

a—0 @
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It follows that

. 2m

cltll}(l] 711 (CL, 07 07 0)

0 R 1 1 N 1 . ~
= / Cpr1(p) / e x ey (ty) dty / "By (t5) dty pdp

0 -1 -1

0o _ . 1 . ~ 1 . ~
[T Cde) [ TR () dty [ e B (1) dt pdp

o) N 1 1,9 A 1 1.9 o~
=2R {/ Cp wl(p)/ €7ﬂlpzt1w2(t1> dtl/ €7T”pft2w2(t2) dtg pdp}, (13)
0 -1 -1

where C,, is given by (12). The value of the above limit depends on the various
combinations of signs of A and B, which determines whether C), is real or
imaginary. Hence we have the following two possible subcases.

Subcase 1.1: A >0,B >0 or A < 0,B < 0. In this case, C, = —~— is an

imaginary number. It follows from (13) that

o
lim “™ 1,(a, 0,0, 0)

a—0 @
2 ~ . L L
= —— %{—Z / wl(p>/ eiTFZpZtl’lbg(tl) dtl/ 677"p§t21/}2<t2) dto dp}
|AB| 0 -1 -1
9 o . Lol a1y .
29?{—/ ¢1(p)/ / ie”TPARTER) oy (1) ha(ta)dty dt2dﬂ}
|AB| 0 —1J-1

—9 0o . 2 V2 1., 1., N
= —— sin —sin” o+ —sm” o)r
] /0 wl(p)/o /0 (w(A 5 ) )
X1y (cos aur) by (sin ovr) rdr de dp.
Using Lemma 4.3, with y = p(% sin® a4 % sin? a), and the assumptions on g@l,

it follows that the last expression is a strictly negative quantity if A > 0, B > 0
and a strictly positive quantity if A < 0, B < 0.

Subcase 1.2: A > 0,B <0or A<0,B > 0. In this case, C, = \/’lz—m is a
p

real number. It follows that

. 2m
ig% 7[1(61,0,0,0)
—2 oo A ! —mipte2 7 ! —mipLe2
= %{/ %(P)/ e P 1¢2(t1)dt1/ e "B 2y (1) dtzd/)}
|AB| 0 -1
—2
|AB]|

SN 1 N 1 ~
7o) ([ costmp ) dater) s [ contmpptd) bt deat

18



— /_11 sin(wpilt%) Uo(ty) dity /_11 sin(wp;tg) U (ta) dt2> dp.

The expression in parenthesis in the last equation is strictly positive by Lemma 4.4
(notice in particular that exactly one of A and B is positive, the other is neg-
ative). Hence, using the properties of 1&1 it follows that the last expression is
strictly negative.

e Case 2: A =0,B = 0. Since Go(u) = 0, the phase term Hy 4(u), given by
(9), vanishes. Hence, and choosing again the domain U of G as U = {(uy, us) :
a; <up < B, as < ug < Po} with ag, an < 0, By, By > 0, as in Case 1, the
integral over U from (8) becomes:

[ e e ©(6,6) - (—1, VGo(u)du
U
Br B e
_ COSQSiH(b ! / 2 e*?ﬂzs(slnGSIH¢U1+COS¢U2) dus du;.
as
It follows that
2mia I1(a,0,0,0)
oo 2T pm oL ~ ~
:/ / Y1 (psin ¢ cos b)) @Z)g(a_%(tanﬁ))zﬁg(a_%(cotqbsecé))
0
% (/ / —2mi 2 (sin 0 sin ¢ u1 +cos ¢ uz) dUQ du1> pCOSQ sin2 ¢d¢d0 dp

2w pmwo. . ) . )

/ (/ / 1 (psin @ cos @) e(a™2(tand)) e(a™2(cot psech))
S s peosOsin® 6 dé df dp) dus duy
)

/al/az<// /1/11 psin ¢ cos 0) iy (a” 2(tan9) (a_%(cotgbsece))
X

e 2miG (sinOsin guicos gus) pcosBsin® ¢ dodf dp) duy du,

ﬁl 2 [ oy T . N L )
* / </ /2 / 1(psin g cos ) (a2 (tan 6)) ¢2(CL_% (cot psecd))
arJaz \JO J—-2J0
% ef2m'§(sin0sin¢u1fcos¢u2)p cos 6 sin* ¢ do db dp) dus du.

Notice that, in the last step, we have split the integral over [0, 27] with respect

to 6 into two integrals over [—Z,Z] and [5,2F]. For the second integral, we
m™ T

have applied the change of variable ¢ = 6 — m, so that 6’ € [~7,7] and
sinf = —sin®, cosf = —cos @', and used the fact that v is even and wAl is

odd.

From the last expression, using the change of variables t; = a~% tand and
1
ta = a2 cot psech, as in Case 1, and taking the limit as a — 0, we have:
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lim zamzl(a, 0,0,0)
:/O:O/o;/oo; W (P)/ll/ll%(tl)%(b) e~ miptiu g=2mipt2ua gt ity d p duy dus
+ /_O;/_O:O/OO; th (P)/_ll/_lf/;2(t1)152(t2) e 2miptiu o2mivt2u2 4 dtodp duy dug
[ [ o) valom) ws(pua) pdp dua du
[ o) baloun) =) p dp s du

2000 [

This quantity is positive, due to the assumptions on &1. Notice that, in the
last step, we have used the property that 15 is even.

e Case 3: A =0, B # 0 (the case A # 0, B = 0 is similar and is omitted).
Without loss of generality, we may assume that B > 0. In this case, choosing
again the domain U of Gy as U = {(u1,us) : a1 < up < f1, ag < ug < fa}
with aq, as < 0, 1, B2 > 0, as in Case 1, the integral over U from (8) becomes:

~/U 6—27Fi§H9,¢(u) @(07 (,25) ’ (_17 VGO(U))du = K0<07 ¢7 CL) + Kl ((97 ¢7 CL),
where

2
K, i ¢
0(97 @, CL) = —cosf sin ¢ emZ Beosdsmd

B1 B2 o ) 9 oo o
X/ / G_WZEB cos 0sin p(uz—usz,9,4) 6_27”5 sin 0'sin ¢ uy dUQ du1
a1 Jag

; cos2<b
Kl(e, 0, a) =B cos¢ €™ B costsing

51/626—7ri53 cos0sin ¢ (uz—usg,9,4)2 e—27ri§ sin 0 sin ¢ uy

gy

X U9 dUQ dul.

a2

Hence, after splitting the integral with respect to # in (8) into two integrals
T T T 3r

over [—7, 7] and [7, <], and applying the change of variable 6’ = 6 — 7, as it

was done in Case 1 and case 2, we can write
[1(@, O, O, 0) = [10(61,, 0, O, O) + 111<CL, 0, O, 0),

where, for j = 0,1,

2mia Ilj (CL, O, 0, 0)
—_ /_zﬁ/ow/ooo Uy (psin ¢ cos 0) wAg(a_% (tan0)) qﬁQ(a—%(COt dsec)) x
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x K;(0,¢,a) psingdpdpdd

—i—/_i/oﬂ/ooo zﬁl(psjngbcosg) @§2(a_%(tan9))qﬁQ(a_%(COtgbsng))
x K;(0 + 7, ¢,a) p singdp de df.

As in Case 1, we apply the change of variables t; = a~2tanf and to =
1
a2 cot ¢ sech so that

27i I1p(a,0,0,0)
pdtl dtQ dp
*/ / / ( aftta t2+1) Valta)alta) Kolin, ) (at? + at3 + 1)3/2
pdty dts dp

+ /_1/_1% </7> Valt)alte) Kol b2, 0) oy i

where (again, with abuse of notation, Ky(t1, t2, a) denotes the function Ky(6, ¢, a)
after the change of variables)

2
1

.3
TP —F———
_ /1+at2+at2
KO (th to, (I) =1 e Fatytaty
v/ ati+at3+1
Vaty )2 uy

B1 rB2 —mpBT(%—FT —QﬂZpT\r
% / / e ati+aty+1 e \/ atitats+1 dUQ dU1

apJasg

As in Case 1, the term K is dominated by Ky, as a — 0, so that

2 271
hm ﬂll(a 0,0,0) = hm —]10(a 0,0,0).

Thus

271

hm —Il(a 0,0,0)

= 1)5(0) /0 hi(p) </O:O e~ B /11 By (1) dtQ) dp

1a(0) [ o) ([ ey [ R ) dty) dp

R o o I
:21/’2(0)/0 ¢1(P>%{/_ e~ TP /_1 emet2¢2(t2)dt2}dp

:\/577/;2(0) /°° @51(0)
VB b p

1 1. -
+ /_1 sm(ﬂthg)wg(tQ)dtg) dp.

(f 11 cos(ﬁp;tg) Po(ta)

The last quantity is strictly positive by Lemma 4.4 and the properties of
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1. This completes the proof of (iii) in Situation (I). Let us now consider
Situation (II).

(ili) - Situation (II): Let p € v, for some j.

Without loss of generality, we may assume that there is only one separating
curve 7. Also in this case, as above, it is sufficient to show that

lim o' I (a, s, s2,p) # 0,

a—0t

where the integral I; is given by (8). We still adopt the same notation intro-
duced above with Sy = (Gy(u),u), where u € U.

If p = (0,0,0) is on the curve =, then locally we may choose the domain
Uof Gypas U = {(ug,uz) : oy < wuy < fr,9(uy) < ug < g(uy) + Po} with
a; < 0, B1,Bs > 0, where g is a C? smooth function (this follows from the
assumption that the separating curve v is C® smooth) and ¢(0) = 0. Notice
that {(G(u1,g(u1)), a1 < uy < 1} C . We can write g(u1) = ¢'(0)u; +
O(u?). As described in the following, the proof is a simple modification of the
argument for the smooth boundaries (Situation (I)).

Also in this case, we need to consider 3 cases, depending on the signs of A
and B in (10). In the following, for brevity, we only describe below how the
argument above need to be modified for each one of these cases.

For Case 1 (A, B # 0), as in Situation (I), we have that the I; integral, as
a — 0, is dominated by the term involving K. For this term, we have that

1
lim —KO(Q b, a)

tay _ tyye [O° " t2y2
o 67rzp( —|— )/ mipA( u1+ ) / 7rzpB(U2+ B) du2du1
g

+2 2

. oo .
_ ewzp(%—i-%)/ e—mpAul / e—wzpBugdUQdul
—o0 91 (0)(u1—F)+7

L2
t2 2 roo 0 0
.t 65 . 5 . 5 . 9
= emp(AJrBy e mipAu / Loe m”B“QduQ—l-/ e~ ™PBYS duyy | duy.
—00 g1 (0)(u1—=4)+ 0

2
]
Let o
Vi(ti,ts) = / e mipAuE / . e~™PBYE Quy du,y.
g1 ( ul—* )+E

It can be verified that, for each (1, t2), the improper integral V' is convergent.
Notice that V(—t;, —t3) = —V (1, 1t2), that is, V' is an odd function of (¢, t5).
Since 152 is even, it follows that this term will give no contribution in the
integral I;. Thus, using the same argument as in Situation I (Case 1), we have
that
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. 2m
(11% 7[1 (CL, 07 07 0)

= ([T h(n)C, [ R dy(nr) diy [ e T0HE (1) dtadp)
) 1 v, 2(l1 1 2(12 2 )

1

where C), is given by (12). Notice that this expression is the same as (13), and
it is strictly negative, as proven above.

For Case 2 (A = B = 0), the same argument as in Situation I (Case 2) gives
that

271

lim —174(a,0,0,0) = 2/ / / U1 (p) e pus) e (pur ) p dp dusy dus.
a—0 @ —o0 Jgj(0)ur JO

Notice that the function W (u,) = e 10 o (puz)dus is an odd function (recall

that 15 is even since 1y is even). It follows that the integral

0 rg1(0)us
/_ /0 Vo (puz)he(pus) dug duy = 0,

for any p > 0. This implies that

. 2m
(1111}(1) 711 (CL, 07 07 0)

=2 /0:0 /9;)0)1” /0°° 1(p) Yol pu) ¥alpur) p dp duz duy
=2 /—oo/(] /0 wAl(p) Vo (pus) a(pur) p dp dug dus

:/_O:O /O°° /OOO ‘51[5”) o (12) o (2) dp dus duy

1/;1 (p)
P

dp > 0.

= (a(0)? [

For Case 3 (A = 0,B > 0), again adapting the argument from Situation (I),
we have:

. 2m
il_I;f(l) 7[1 (a/, 0, O, O)

1 1 poo . R A . - |
:/ / / P1(p) Ya(ta) Pa(ta) / / , e_mpBuszQ e~ 2miptiu gy,
S —00J gy (0)ur+3

X ei’%pt%p dp dty dty

1 1 [C N N N o] 0 . .
+ / / / 7?1 (p) wz (tl) wz (tg) </ / ) empBug du2 627rzpt1u1 du1>
—-1/-1J0 —coJ gl (0)ur+3

X e_méptgp dpdty dty =
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o0

e~ impBu3 dusy (pul)dule”%ptgpdpdtg

_/ / br(p)Un( t2/ .
1 (Quit+F

J
+/ / Ur(p) e tz/ // P duyiy (puy ) dure ™55 pdpdts.
oo Jgi

(0)u1+2

Notice that

00 0 .
V<t27 /0) = / / : €7MPBU§ d'LLQ 1/12<pul) du1
—oco Jgi (0)ur+3
is an odd function of ¢, (this is shown by setting (u1, us) = —(u}, u)) and using

the fact that 1)y is even). Hence, this gives no contribution to the integral above
and we can replace the integral f;o(o)m_ ©, with [5°. It follows that
1 B

2mi
lim —[1(61 0,0,0)

a—0 @

- /_1/0 Dilp)ida(ts) (/_OO/O e~ B duy s (pus) du1> 5P p dp dt
1 0o . R 0o oo o
+/_1/0 Vile)a(tz) (/—oo/o PP duy 1y (pun) dul) e "B p dp dt.

Thus, using the same argument as in Situation (I) (Case 3), we conclude that

271

hm —Il(a 0,0,0)

_2(0) = di(p)
V2B Jo  \/p

1 1 .
+ [ sin(mp ) bt dt2> dp > 0.

(/_11 COS(Wp;tg) Uy (ts) dis

This completes the proof of (iii).

Proof of (iv). In this case, the unit vector ©(fy, ¢g) associated with the shear-
ing variables (s, sy) does not correspond to the normal orientations of €2 at

p.

Again, without loss of generality, we may assume p = (0,0,0), 6y =0, ¢ = 7
which yields s; = so = 0. In this case, we can express the domain U of G as
U =UUU, with Uy = {(u1,u2),a < uy < B,9(u1) < us < g(up) + €} and
Uy = {(u,u),a0 < uy < B,g9(uy) —e < up < g(up)}, where a < 0, 5 > 0.
Correspondingly, we write the boundary region near p as S = S; Sy with
S1 = A{(Gi(u),u) : uwe U} and Sy = {(Ga(u),u) : u € Us}. For j = 1,2,
let 7i;(p) be the outer normal vector of S; at p. Also we write Iy as I1; U L2,
where I;; corresponds to S;, for j = 1,2.
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We will only examine the term I;; since the argument for the term I5 is
similar.

Since 7,(p) # £(1,0,0), it follows that VG1((0,0)) # (0,0). Without loss

of generality, we may assume that G1,,(0,0) # 0. Since (¢,0) — (¢o,00) =
(1,0,0) as a — 0, we can choose € sufficiently small so that ©(¢, 0)-(G1.,(u),0,1) #
0 for all ¢, @ and all u € U.

Using polar coordinates, we can express I11(a,0,0,0) as

I11(a,0,0,0)
2 pm oo ~ 1 ~ 1
_ / // P1(psin ¢ cos 0)hy(a™2 (tan ))e(a™ 2 (cot psech))
2mia Jo Jo Jo
X / e~ 2riE0@0(C1(W) Q (4 9) - (—1, VG (u))du psin ¢ dp dep db.
U1

Using the definition of U;, we have that

/ e~ 2rif060)-(G1(ww) 9 (¢ 0) . (=1, VG (u))du
Uy

_ —a //B/Q(ul)-i-E 0 (6—27”5@(@9) (1 u)u)) (qﬁ, ) ( 1 VGl(U))
27ip Ja Jotuy)  Ous (¢, 0) - (Gruy(u),0,1)

dU,Q dU1

Integrating by parts twice for the inner integral and neglecting the endpoint
terms evaluated at uy = g(uy) + € (by Lemma 4.1) we have the estimate

_/g(u1)+e i(6_2”i§®(¢76)'(01(“)’“)) @(¢7 ) ( 1 VGl(U))
g(u1) Ouy @(¢> ) (G1U2( ),0,1)
)
1

—27ri§@(¢,0)~(G1(u17g(u1)),u1,g(u1))@(¢76) (=1, VGi(u1, g(ur))) + O(a).

=€

Introducing the notation

O(¢,0) - (=1, VG (u1, g(u1)))
@(¢7 ‘9) ' (Gluz(ubg(ul))?O’ 1)

H(gbveaul) = @(¢a 9) ) (Gl(ulag(ul))’uhg(ul))v

F(¢7 97 ul) =

and sphlllng the integral in 8 over [—*2, *2] and [*2, *32 ], we can write:
11 ) YUy Yy ( )2 111 )y YUy Yy ( )2 112 ) Uy Yy )

where (using again that Yy is odd and ¥ is even)
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11(@,0,0,0) = [ [* [ i(psin g cos0) vs(a~? tand)
- 8 .,
% (a3 cot psecf) / 2 HGO (0, uy) duy sin ¢ dp de d6
I115(a,0,0,0) / / / ¢1 p81nqb(:036)¢2(a 2tan0)

R B
xiba(a=} cot dsec 9)/ e 2MEH@GO+TUND (b 0 4 1 uy) duy sin ¢ dp d dF.
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It is sufficient to examine the term I111(a, 0, 0, 0), since the behavior of I115(a, 0,0, 0)
is similar.

Notice that g(0) = 0, G1(0,¢(0)) = 0 and hence H(¢,6,0) = 0 for all a, p, ¢,
and 0. Let ®(uy) = Gy(u1,g(uy)). If we assume ®’(0) # 0, then we have
8u1( (¢0,00,0)) # 0 and hence we may assume that a%l(H(gb,@,ul) # 0 for
all ¢, 0 and u;. Since uy = 0 is an interior point of the interval («, ), the same
argument used in the proof of (ii) in Theorem 3.1 yields that I111(a, 0,0, 0) has
rapid decay as a — 0. It remains to consider the two cases ®’'(0) = 0, ®”(0) #
0 and ¢'(0) =0, ¢”(0) = 0.

e Case 1: '(0) =0, ®"(0) # 0.

In this case, we have that -2, 2H (¢o, 6o, 0) # 0 and hence we may assume that

H(p,0,u1) # 0 for all ¢,(9 and u;. Choose n(u;) € C§°(a, ) such that
n(uy) = 1 for uy near 0 and let

[(¢,0,u1) = T1(¢,0,u1) + Ta(0,0,u1),

where I'1(¢,0,u1) = (¢, 0,u1)(1 — n(uy)) and Ty(¢, 0,ur) = T'(o, 0, ur)n(uy).
For j = 1,2, let 1111, be defined by replacing I' in /11; by I';. For 111, one can
follow the proof of Lemma 4.1 to show that I111; has rapid decay as a — 0.
For I 112, one can apply Lemma 4.2 for the integral on u;, and t; = a2 tanf
and ty = a~ 3 cot ¢ sec B for the integral on ¢ and 6 to show that I1115 = O(a%)
as a — 0.

e Case 2: '(0) =0, ¢"(0) = 0.

In this case, we have that ®(u;) = O(u?) as u; — 0. Write g(u;) = ¢'(0)u; +
O(u?). Again, letting ¢, = a~2 tan @, t, = a~2 cot ¢sec and v = a 2wy, one
can verify that

ilj}(l)aH(Q@ u) = p(tiv +t2g'(0) v).

It follows that

(ll%a_%]1112(a7070a0) (271' 2Gu2 0 O / / / ¢1 tl ¢2(t2)
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x [ et g O gy ity dt dp

1

SRR TSN /0 S () /_ o:o Ua(pv)a(pg'(0)v) dv dp.

Combining Case 1 and Case 2, it follows that

[N

[111(&,0,0,0) = O(CL )

As mentioned above, the behavior of I113(a,0,0,0) is similar, so that we have
that

I11(a,0,0,0) = O(a?)

This completes the proof of (iv).

Proof of (ii). This is the situation where p € 9Q\ U7, 7;, and the unit vector
O(6o, ¢o) associated with the shearing variables (s1, s3) does not correspond
to the normal orientation, that is O(6y, ¢o) # £7i(p)

As in the proof of (iii), Situation (I), it is sufﬁcient to examine the integral
Iy, given by (7), with p = (0,0,0),6p = 0, ¢ = Z, which yields s; = s = 0. In
particular, using polar coordinates, we can express the integral I;(a,0,0,0) as
I1(a,0,0,0)
2T pmo oo L ~ ~
, / / / 11 (psin ¢ cos 0)¢2(a_%(tan9))¢2(a_%(cotgbsec 6))
2mia Jo Jo Jo
x / =250 (G G 0) . (—1, VG (u))du psin ¢ dp de db.
U

As in the proof of (iii), we can express U as U = {(uj,uz) : o < up <
b1, ag < ug < P} with ag,as < 0, B, 82 > 0. Also, as in the proof of (iv),
we may assume that ©(¢,0) - (Gru,(u),0,1) # 0 for all ¢,0 and all uw € U. It
follows that

/ e~ 215000 (G 9 (4. 0) - (-1, VG (u))du
U

_ a /51 B2 i(e—%rig@(qb,@)(G(U),U)) @(¢ (9) ( 1 VG(U))
27Tlp a1 Jag aU/Q @(¢7 ) ( ( )7071>

Integrating by parts the inner integral, this can be written as:

dusdu, .

:z aé’uz (em2mize@ G g((z: )) (( 1(V)Gé7ﬁ)) dus = Jy(w) — Jo(ur),

27



where

( —2mp9 (6,0)-(G(u1,u2),u1,u2) (¢7 ) ( 1 VG(uhu?) >u2/32
60.0) - (Coylur, ). 0.1)),
//826_27”p@(¢9 G(u1,u2),u1. ug) 9 ( @ 73) ( 1 VG(ul7u2>)

(¢
az 6( ; ) ( u2<u17u2> 071)
),

Since [y # 0, ag # 0, it follows that (G(uy, 52),u1, B2) # (0,0,0) and that
(G(uy, ), ur, ) # (0,0,0) for all uy € [y, B:1]. Using the argument of
Lemma 4.1, for u; fixed, it follows that the J; term yields the desired decay
a” . Integrating by parts the integral .J;, an argument by induction shows that
also the Jy term gives the desired decay a'¥. This is completes the proof of (ii).

) dUQ

Remark 4.1 In the proof of Theorem 3.1, we made the assumption that
s = (s1,82) = (0,0). Let us examine how to modify the argument for the case
(iii) - Situation (I) when s = (s1, s2) # (0,0). For other cases, the modification
is either trivial or straight forward.

Since s = (s1,82) # (0,0), we have s; = tanfy, sy = cotfycotpg with
(0o, ®0) # (0, %) (or (m,%)). In this case, letting S, G(u), Sp, Go(u) be given as
in Lemma 4.5, with S = (G(u),u) and p = (G(0),0) with G(0) = 0, and using
spherical coordinates, the integral I1(a, s1, s2,0), taken on Sy, can be written
as

21T pw OO L N 1
Li(a,s1,892,0)=— /0 /o/o P1(psin ¢ cos @)hy(a™2 (tanf — tan b))

X wAg(a_% (cot @ sec ) — sec Oy cot ¢y)) / e~2m58(9:0)-(Golu)w)
U
x O(,0) - (—1,VGy(u)) dupsinpdpdep db.

2mia

We assume Gy,4,(0,0) = 0 so that
Go(u) = Gu1 (0 O)Ul + GW (0 O)UQ + = (Aul + BUQ)

where A, B are given by (10). Since ©(6y, ¢9) = £7i(p), we have that

Fi(¢o,00,0) =—0(00, ¢0) - (Gu,(0,0),1,0) = 0,
F2(¢07 007 0) = _®<90a ¢0) : (Gu2<0? 0)7 07 1) = 0.

It follows that G,,(0,0) = —tanfy and G,,(0,0) = — cot Oy cot . Also we
have that

Fi(9,0,u)=-0(0,0¢) - (G4, (0,0) + Auy,1,0) =
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= —cosfsin ¢ (G, (0,0) + Auy) — sin fsin ¢;
F2(¢a 0, u) = _@(97 ¢) ’ (Guz (Oa O) + Busy, 0, 1)
=—cosfsing (Gy,(0,0) + Buy) — cos ¢.

Solving uy ¢4 from Fi(¢,0,u) = 0 and ugg, from Fy(¢,0,u) = 0, we obtain
that, if A #£ 0,

1 1
U109 = —Z(taHH + G, (0,0)) = —Z(tan 6 — tan 6y),

and, if B # 0,

1 1
U gp = —E(secﬁcot ¢+ Gy,(0,0) = —E(secé’cot ¢ — sec By cot ¢y).

Now if we let #; = a~2(tan6 — tanfy), ty = a2 (secf cot ¢ — sec by cot ¢y),
then the rest of the argument is the same as for the case s = (0, 0).
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