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Abstract

One of the most striking features of the Continuous Shearlet Transform is its ability
to precisely characterize the set of singularities of multivariable functions through its
decay at fine scales. In dimension n = 2, it was previously shown that the continuous
shearlet transform provides a precise geometrical characterization for the boundary
curves of very general planar regions, and this property sets the groundwork for
several successful image processing applications. The generalization of this result to
dimension n = 3 is highly nontrivial, and so far it was known only for the special case
of 3D bounded regions where the boundary set is a smooth 2-dimensional manifold
with everywhere positive Gaussian curvature. In this paper, we extend this result
to the general case of 3D bounded regions with piecewise-smooth boundaries, and
show that also in this general situation the continuous shearlet transform precisely
characterizes the geometry of the boundary set.
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1 Introduction

The shearlet transform has emerged in recent years as one of the most success-
ful extensions of the traditional wavelet transform. Indeed, while the continu-
ous wavelet transform is able to identify the locations of singularities of func-
tions and distributions through its asymptotic behavior at fine scales [15,18],
it lacks the ability to capture additional information about the geometry of
the singularity set. This is a major disadvantage in dealing with multidimen-
sional data, which are frequently dominated by distributed singularities such
as edges or surface boundaries. One manifestation of this fact is that wavelets
are far from optimal with respect to their ability to approximate piecewise
smooth multivariable functions [1,7,9].

The reason for the limitation of the traditional wavelet framework lies in
its intrinsic isotropic nature. By contrast, the shearlet approach is designed
to capture singularities defined along curves, surfaces and other anisotropic
features with very high efficiency. This is achieved by mapping a function or
distribution f into the elements

SHψf(a, s, t) = ⟨f, ψast⟩,

where the analyzing functions ψast (called shearlets) are well-localized wave-
forms obtained through the action of anisotropic dilations, shearing transfor-
mations and translations, parametrized by a > 0, s ∈ R and t ∈ R2, respec-
tively, on a generator function ψ. This approach allows one to decompose f
not only in terms of locations and scales, like the traditional wavelet approach,
but also according to their directional information and taking advantage of
the anisotropic features of f . 2

It follows that the shearlet transform has a unique ability to capture the
geometry of the set of singularities of functions and distributions, as was fully
established in dimension n = 2. Specifically, let B = χS, where S ⊂ R2, and its
boundary ∂S is a piecewise smooth curve. It was shown in [8] (extending and
refining previous results in [11,16]) that both the location and the orientation
of the boundary curve ∂S can be precisely identified from the asymptotic decay
of SHψB(a, s, p) at fine scales (as a→ 0). In fact the following estimates hold:

• If p /∈ ∂S, then |SHψB(a, s, p)| decays rapidly, as a→ 0, for each s ∈ R. By

2 Notice that the continuous curvelet transform [2] also employs analyzing ele-
ments defined at various locations, scales and orientations, and it shares some of
the properties of the continuous shearlet transform. However, the shearlet transform
has the distinctive feature of being derived from the theory of affine systems, and
this provides several advantages in terms of discretization and extensions to higher
dimensions [3,4,9,13].
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rapid decay, we mean that, given any N ∈ N, there is a CN > 0 such that
|SHψB(a, s, p)| ≤ CaN , as a→ 0.

• If p ∈ ∂S and ∂S is smooth near p, then |SHψB(a, s, p)| decays rapidly, as
a→ 0, for each s ∈ R unless s = s0 is the normal orientation to ∂S at p. In
this last case, |SHψB(a, s0, p)| ∼ a

3
4 , as a→ 0.

• If p is a corner point of ∂S and s = s0, s = s1 are the normal orientations
to ∂S at p, then |SHψB(a, s0, p)|, |SHψB(a, s1, p)| ∼ a

3
4 , as a → 0. For all

other orientations, the asymptotic decay of |SHψB(a, s, p)| is faster (even if
not necessarily “rapid”).

These results provide the theoretical justification and the groundwork for
very competitive numerical algorithms for edge analysis and detection, such
as those presented in [19,22], and this further demonstrates the benefits of
the shearlet multiscale directional framework with respect to the traditional
wavelet approach. Also recall that the localization properties of the continuous
shearlet transform are related to the sparsity properties of the corresponding
discrete shearlet transform [7,12,17].

The mathematical framework of the 2-dimensional shearlet transform extends
naturally to higher dimensions. In fact, the shearlet transform is closely related
to the square integrable representations of the shearlet group, and this group
has several n-variate generalizations, as shown in [3,10]. The 3-dimensional
case, in particular, is of great interest in applications such as medical and seis-
mic imaging, where important phenomena are usually associated with surfaces
of discontinuities.

As observed in [10], while it is straightforward to define a 3-dimensional shear-
let transform SHψ, many of the arguments introduced in the 2-dimensional
setting for the analysis of curve singularities do not carry over to the 3D
setting. This is due to the additional geometric complexity of dealing with
singularity sets defined on surfaces rather than curves. Hence, to deal with
the 3D problem, several new ideas were introduced by the authors in [10].
Using these estimates we were able to show that, similar to the 2-dimensional
case, if B = χC , where C ⊂ R3 is a convex region with positive Gaussian cur-
vature, then the 3-dimensional continuous shearlet transform of B has rapid
asymptotic decay at fine scales for all locations, except for the boundary sur-
face ∂C when the orientation variable corresponds to the normal direction to
the surface. However, the positive Gaussian curvature assumption required by
the argument used in [10] is too restrictive to model the types of surfaces of
discontinuities usually found in applications. Thus, the goal of this paper is
to extend the 3D result to a much more general and realistic setting. This
requires a new approach. In particular, a major new technical tool developed
in this paper is based on a method to approximate any regular surface using
a quadratic surface (see Lemma 4.5). This approach allows us to translate the
complicated geometric properties of the surface (e.g., the curvature) into the
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“algebraic” properties of the coefficients of the quadratic form. The new char-
acterization result presented in this paper includes the one in [10] as a special
case (elliptic quadratic form) as well as many new important cases which fall
into the setting of general piecewise smooth surfaces.

As in the 2D case, the theoretical estimates derived in this work have a direct
impact in the development of numerical algorithms for the analysis of bound-
aries of 3D objects, as shown by the preliminary numerical results presented
in [20].

The paper is organized as follows. The definition of the shearlet transform,
including the special properties which are needed for the applications discussed
in the paper, is given in Section 2. The main theorem is presented in Section 3.
The proof of the main theorems the other results which are needed for its proof
are given in Section 4.

2 The shearlet transform

We recall the definition of the continuous shearlet transform, which was orig-
inally introduced in [16] (see also related results in [3,5]) and extended to the
3D setting in [10]. Consider the subspace of L2(R3) given by L2(C1)

∨ = {f ∈
L2(R3) : supp f̂ ⊂ C1}, where C1 is the truncated pyramidal region in the
frequency plane given by:

C1 = {(ξ1, ξ2, ξ3) ∈ R3 : |ξ1| ≥ 2, | ξ2
ξ1
| ≤ 1 and | ξ3

ξ1
| ≤ 1}.

The following proposition, which is a simple generalization of a result from [16],
provides sufficient conditions on the function ψ for obtaining a reproducing
system of continuous shearlets on L2(C1)

∨.

Proposition 2.1 Consider the shearlet group Λ(1) = {(Mas1s2 , p) : 0 ≤ a ≤
1
4
, −3

2
≤ s1 ≤ 3

2
,−3

2
≤ s2 ≤ 3

2
, p ∈ R2}, where Mas1s2 =

(
a −a1/2 s1 −a1/2 s2

0 a1/2 0
0 0 a1/2

)
.

For ξ = (ξ1, ξ2, ξ3) ∈ R3, ξ1 ̸= 0, let ψ(1) be defined by

ψ̂(1)(ξ) = ψ̂(1)(ξ1, ξ2, ξ3) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
) ψ̂2(

ξ3
ξ1
),

where:

(i) ψ1 ∈ L2(R) satisfies the (generalized) Calderòn condition∫ ∞

0
|ψ̂1(aξ)|2

da

a
= 1 for a.e. ξ ∈ R, (1)

and supp ψ̂1 ⊂ [−2,−1
2
] ∪ [1

2
, 2];
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(ii) ∥ψ2∥L2 = 1 and supp ψ̂2 ⊂ [−
√
2
4
,
√
2
4
].

Let ψ(1)
as1s2p

(x) = | detMas1s2 |−
1
2ψ(1)(M−1

as1s2
(x− p)). Then, for all f ∈ L2(C1)

∨,

f(x) =
∫
R3

∫ 3
2

− 3
2

∫ 3
2

− 3
2

∫ 1
4

0
⟨f, ψ(1)

as1s2p
⟩ψ(1)

as1s2p
(x)

da

a4
ds1 ds2 dp,

with convergence in the L2 sense.

If the assumptions of Proposition 2.1 are satisfied, we say that the functions

Ψ(1) = {ψ(1)
as1s2p

: 0 ≤ a ≤ 1
4
, −3

2
≤ s1 ≤ 3

2
,−3

2
≤ s2 ≤ 3

2
, p ∈ R2} (2)

are continuous shearlets for L2(C1)
∨ and that the corresponding mapping

L2(C1)
∨ ∋ f 7→ SH(1)f(a, s1, s2, p) = ⟨f, ψ(1)

as1s2p
⟩

is the continuous shearlet transform on L2(C1)
∨ with respect to Λ(1). The index

(1) used above in the notation of the shearlet system (and of the corresponding
shearlet transform) indicates that the system (2) has frequency support in the
truncated pyramidal region C1; similar shearlet systems which are defined in
the two other complementary truncated pyramidal regions of R3 be defined
below.

Since, in the frequency domain, a shearlet element ψ(1)
as1s2p

∈ Ψ(1) has the form:

ψ̂(1)
as1s2p

(ξ1, ξ2, ξ3) = a ψ̂1(a ξ1) ψ̂2(a
− 1

2 ( ξ2
ξ1
− s1)) ψ̂2(a

− 1
2 ( ξ3

ξ1
− s2)) e

−2πiξ·p,

it follows that the functions ψ̂(1)
as1s2p

have supports in the sets:

{(ξ1, ξ2, ξ3) : ξ1 ∈ [− 2
a
,− 1

2a
] ∪ [ 1

2a
, 2
a
], | ξ2

ξ1
− s1| ≤

√
2
4
a

1
2 , | ξ3

ξ1
− s2| ≤

√
2
4
a

1
2}.

That is, the frequency support of each function is a pair of hyper-trapezoids,
symmetric with respect to the origin, with orientation determined by the
shearing variables s1, s2. The support regions become increasingly more elon-
gated as a→ 0. Examples of these support regions are illustrated in Figure 1.

There is a variety of examples of functions ψ1 and ψ2 satisfying the assump-
tions of Proposition 2.1. In particular, one can find a number of such ex-
amples with the additional property that ψ̂1, ψ̂2 ∈ C∞

0 [6,16]. For the applica-
tions which are discussed in this paper, some additional properties are needed.
Namely, in the following we will assume that

ψ̂1 ∈ C∞
0 , supp ψ̂1 ⊂ [−2,−1

2
] ∪ [1

2
, 2], odd, nonnegative in [1

2
, 2]

and it satisfies (1); (3)
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Fig. 1. Support of the shearlet ψ̂
(1)
as1s2p, in the frequency domain, for a = 1/4,

s1 = s2 = 0 (blue region) and for a = 1/16, s1 = 0.7, s2 = 0.5 (magenta region).

ψ̂2 ∈ C∞
0 , supp ψ̂2 ⊂ [−

√
2
4
,
√
2
4
], even, nononegative, decreasing

in [0,
√
2
4
) and ∥ψ2∥ = 1. (4)

According to Proposition 2.1, the shearlet system Ψ(1), given by (2), is a
reproducing system for only a proper subspace of L2(R3). To extend this
construction and the corresponding continuous shearlet transform to deal with
the whole space L2(R3), one can introduce similar systems defined on the
complementary truncated pyramidal regions. Namely, let

C(2) = {(ξ1, ξ2, ξ3) ∈ R3 : |ξ2| ≥ 2, | ξ1
ξ2
| < 1, | ξ3

ξ2
| ≤ 1}.

and
C(3) = {(ξ1, ξ2, ξ3) ∈ R3 : |ξ3| ≥ 2, | ξ2

ξ3
| < 1, | ξ1

ξ3
| < 1},

and, for i = 2, 3, define the sets

Λ(i)= {(Mas1s2 , p)
(i) : 0 ≤ a ≤ 1

4
, −3

2
≤ s1 ≤

3

2
,−3

2
≤ s2 ≤

3

2
, p ∈ R2},

where

M (2)
as1s2

=


a1/2 0 0

−a1/2 s1 a −a1/2 s2
0 0 a1/2

 , M (3)
as1s2

=


a1/2 0 0

0 a1/2 0

−a1/2 s1 −a1/2 s2 a

 .

Next, let
ψ̂(2)(ξ) = ψ̂(2)(ξ1, ξ2, ξ3) = ψ̂1(ξ2) ψ̂2(

ξ1
ξ2
) ψ̂2(

ξ3
ξ2
),

ψ̂(3)(ξ) = ψ̂(2)(ξ1, ξ2, ξ3) = ψ̂1(ξ3) ψ̂2(
ξ1
ξ3
) ψ̂2(

ξ2
ξ3
),
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where ψ̂1, ψ̂2 satisfy the same assumptions as in Proposition 2.1, and denote

ψ(i)
as1s2p

= | detM (i)
as1s2

|−
1
2ψ(i)(M (i)

as1s2
)−1(x− p)), for i = 2, 3.

Hence, an argument similar to Proposition 2.1 shows that, for i = 2, 3, the
functions

Ψ(i) = {ψ(i)
as122p : 0 ≤ a ≤ 1

4
, −3

2
≤ s1 ≤ 3

2
, −3

2
≤ s1 ≤ 3

2
, p ∈ R2}

are continuous shearlets for L2(C(i))∨. Accordingly, for i = 2, 3, the map-

pings f → SH(i)
ψ f(a, s1, s2, p) = ⟨f, ψ(i)

as1s2p
⟩ are the continuous shearlet trans-

forms on L2(C(i))∨ with respect to Λ(i). Finally, by introducing an appropriate
smooth, bandlimited window function W , the functions with frequency sup-
port on the set [−2, 2]3 can be expanded as

f =
∫
R3
⟨f,Wp⟩Wp dp,

where Wp(x) = W (x − p). As a result, any function f ∈ L2(R3) can be rep-
resented with respect to the full system of shearlets consisting of the systems∪3
i=1Ψ

(i) together with the coarse-scale isotropic functions Wp. The shear-
let representation we have just described generalizes a similar representation
originally introduced in [16] for dimension n = 2.

Notice that, for the purposes of this paper, it is only the behavior of the
fine-scale shearlets that matters. Indeed, the continuous shearlet transforms
SH(i)

ψ , i = 1, 2, 3, will be applied at fine scales (a→ 0) to resolve and precisely
describe the boundaries of certain solid regions. Since the behavior of these
transforms is essentially the same on each cone domain C(i), in the following
sections, without of loss of generality, we will only consider the continuous
shearlet transform SH(1)

ψ . For simplicity of notation, we will drop the upper-
script (1) in the following.

3 Main Results

As described above, the continuous shearlet transform has the ability to char-
acterize very precisely the set of singularities of multivariable functions and
distributions through its asymptotic decay properties as a→ 0. The situation
in dimension n = 2 was completely solved in [11,8]. In higher dimensions, only
the special case of boundary regions with nonvanishing Gaussian curvature
was known so far [10]. In this paper, we are able to deal with the situation
of general boundaries of 3D solid region, thanks to a new argument that also
simplifies many of the results previously known.
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Consider the functions B = χΩ, where Ω is a subset of R3 whose boundary
∂Ω is a 2-dimensional manifold. We say that ∂Ω is piecewise smooth if:

(i) ∂Ω is a C∞ manifold except possibly for finite many separating C3 curves
on ∂Ω;

(ii) at each point on a separating curve, ∂Ω has exactly two outer normal
vectors which are not on the same line.

Let the outer normal vector of ∂Ω be n⃗p = ±(cos θ0 sinϕ0, sin θ0 sinϕ0, cosϕ0)
for some θ0 ∈ [0, 2π], ϕ0 ∈ [0, π]. We say that s = (s1, s2) corresponds to the

normal direction n⃗p if s1 = a−
1
2 tan θ0, s2 = a−

1
2 cotϕ0 sec θ0.

The following theorem shows that for a bounded region in R3 whose boundary
is a piecewise smooth 2-dimensional manifold, the continuous shearlet trans-
form of B, denoted by SHψB(a, s1, s2, p), has rapid asymptotic decay as a→ 0
for all locations p ∈ R3, except when p is on the boundary of Ω and the orien-
tation variables s1, s2 correspond to normal direction of the boundary surface
at p, or when p is on a separating curve and the shearing variables s1, s2
correspond to normal directions of the boundary surface at p (see Figure 2).

x2

O(aN)

O(a)

x1

O(

O(a)

x

O(aN)

x3

Ω

Fig. 2. The continuous shearlet transform of a bounded region Ω with piecewise
smooth boundary has rapid decay everywhere, except when the location variable p
is on the surface and the shearing variables correspond to the normal orientation,
in which case it decays like O(a), as a→ 0.

Theorem 3.1 Let Ω be a bounded region in R3 and denote its boundary by
∂Ω. Assume that ∂Ω is a piecewise smooth 2-dimensional manifold. Let γj, j =
1, 2, · · · ,m be the separating curves of ∂Ω. Then we have

(i) If p /∈ ∂Ω then

lim
a→0+

a−N SHψB(a, s1, s2, p) = 0, for all N > 0.

(ii) If p ∈ ∂Ω\∪mj=1 γj and (s1, s2) does not correspond to the normal direction
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of ∂Ω at p, then

lim
a→0+

a−N SHψB(a, s1, s2, p) = 0, for all N > 0.

(iii) If p ∈ ∂Ω \ ∪mj=1 γj and (s1, s2) corresponds to the normal direction of
∂Ω at p or p ∈ ∪mj=1 γj and (s1, s2) corresponds to one of the two normal
directions of ∂Ω at p, then

lim
a→0+

a−1 SHψB(a, s1, s2, p) ̸= 0.

(iv) If p ∈ γj and (s1, s2) does not correspond to the normal directions of ∂Ω
at p, then

|SHψB(a, s1, s2, p)| ≤ Ca
3
2 .

The proof of Theorem 3.1 is given in the next section.

Before presenting the proof, we mention that the result presented above is
expected to extended to higher dimensions using a similar argument, at least
in the situation of smooth boundaries. Similar to the result valid in dimen-
sions n = 2 and n = 3, the continuous shearlet transform will exhibit rapid
asymptotic decay for all locations and orientations, except when the location
parameter is at the boundary and the shearing parameters correspond to the
normal orientation, in which case the decay will be of the order of a

n+1
4 .

4 Proof of The Theorems

The proof requires some construction.

4.1 Useful lemmata and constructions

Our first observation is that, by using the divergence theorem, one can make
explicit the dependence of the shearlet transform of a compactly supported
function f and the boundaries of the support of f . Notice that this property
was also employed in [8] and follows a classical method from [14].

Let Ω ⊂ R3 be a solid region whose boundary surface S = ∂Ω is a 2-
dimensional manifold. Let B = χΩ. By the divergence theorem, the Fourier
transform of B can be expressed as

B̂(ξ)= χ̂Ω(ξ) = − 1

2πi|ξ|2
∫
S
e−2πiξ·x ξ · n⃗(x) dσ(x), (5)
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where n⃗ is the outer normal vector to S at x (see [14]). By representing ξ ∈ R3

using spherical coordinates as ξ = ρΘ, where ρ ∈ R+ and Θ = Θ(θ, ϕ) =
(sinϕ cos θ, sinϕ sin θ, cosϕ) with 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π, expression (5)
can be written as

B̂(ρ, θ, ϕ)=− 1

2πiρ

∫
S
e−2πiρΘ(θ,ϕ)·xΘ(θ, ϕ) · n⃗(x) dσ(x). (6)

The second observation is that the shearlet transform is a local transform, in
the sense that the shearlet transform of a function f decays rapidly (as a→ 0)
away from the locations where f is discontinuous.

Let p ∈ R3. For ϵ > 0, let βϵ(p) be the ball with radius ϵ and center p and
let Pϵ(p) = S

∩
βϵ(p). Using this notation, we break up the integral (6) into a

component close to p and another component away from p as

B̂(ρ, θ, ϕ) = T1(ρ, θ, ϕ) + T2(ρ, ϕ, θ),

where

T1(ρ, θ, ϕ)=− 1

2πiρ

∫
Pϵ(p)

e−2πiρΘ(θ,ϕ)·xΘ(θ, ϕ) · n⃗(x) dσ(x)

T2(ρ, θ, ϕ)=− 1

2πiρ

∫
S\Pϵ(p)

e−2πiρΘ(θ,ϕ)·xΘ(θ, ϕ) · n⃗(x) dσ(x)

It follows that

SHψB(a, s1, s2, p) = ⟨B,ψas1s2p⟩ = I1(a, s1, s2, p) + I2(a, s1, s2, p),

where

I1(a, s1, s2, p)=
∫ 2π

0

∫ π

0

∫ ∞

0
T1(ρ, θ, ϕ) ψ̂as1s2p(ρ, θ, ϕ) ρ

2 sinϕ dρ dϕ dθ (7)

I2(a, s1, s2, p)=
∫ 2π

0

∫ π

0

∫ ∞

0
T2(ρ, θ, ϕ) ψ̂as1s2p(ρ, θ, ϕ) ρ

2 sinϕ dρ dϕ dθ

The following lemma from [10] shows that the asymptotic decay of the shearlet
transform SHψB(a, s1, s2, p), as a → 0, is only determined by the values of
the boundary surface S which are close to the location variable p.

Lemma 4.1 [10] For any positive integer N , there is a constant CN > 0 such
that

|I2(a, s1, s2, p)| ≤ CN a
N ,
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asymptotically as a→ 0, uniformly for all s1, s2 ∈ [−3
2
, 3
2
].

Since the proof of this lemma will be used below, we repeat the following
argument from [10].

By direct computation, we have that:

−2πi I2(a, s1, s2, p)

=
∫
S\Pϵ(p)

∫ 2π

0

∫ π

0

∫ ∞

0
e−2πiρΘ·xΘ · n⃗(x) ψ̂as1s2p(ρ, ϕ, θ) ρ sinϕ dρ dϕ dθ dσ(x)

= a
∫
S\Pϵ(p)

∫ 2π

0

∫ π

0

∫ ∞

0
ψ̂1(aρ sinϕ cos θ) ψ̂2(a

− 1
2 (tan θ − s1))

ψ̂2(a
− 1

2 (cotϕ sec θ − s2)) e
2πiρΘ(ϕ,θ)·(p−x)Θ · n⃗(x) ρ sinϕ dρ dϕ dθ dσ(x)

=
1

a

∫
S\Pϵ(p)

∫ 2π

0

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 (tan θ − s1))

ψ̂2(a
− 1

2 (cotϕ sec θ − s2)) e
2πi ρ

a
Θ(ϕ,θ)·(p−x) Θ · n⃗(x) ρ sinϕ dρ dϕ dθ dσ(x).

Notice that, by assumption, there exists an ϵ > 0 such that ∥p − x∥ ≥ ϵ
for all x ∈ S \ Pϵ(p). Let s1 = tan θ0 with |θ0| < π

2
and s2 = cotϕ0 sec θ0

with |ϕ0 − π
2
| < π

2
. By the support condition of ψ̂2, it follows that, for a near

0, θ is away from π
2
or 3π

2
and ϕ is away from 0 or π. Let J be the set of

these θ and ϕ. It is easy to see that {Θ(ϕ, θ), Θϕ(ϕ, θ), Θθ(ϕ, θ)} form a basis
for R3 for (ϕ, θ) ∈ J . It follows that there is a constant Cp > 0 such that
|Θ(ϕ, θ) · (p− x)|+ |Θϕ(ϕ, θ) · (p− x)|+ |Θθ(ϕ, θ) · (p− x)| ≥ Cp, where Cp is
independent of (ϕ, θ) ∈ J, and x ∈ S \ Pϵ(p).

Define

J1= {ϕ, θ) : inf
x∈S\Pϵ(p)

|Θ(ϕ, θ) · (p− x)| ≥ Cp
3
},

J2= {ϕ, θ) : inf
x∈S\Pϵ(p)

|Θϕ(ϕ, θ) · (p− x)| ≥ Cp
3
},

J3= {ϕ, θ) : inf
x∈S\Pϵ(p)

|Θθ(ϕ, θ) · (p− x)| ≥ Cp
3
}.

We can express integral I2 as a sum of three integrals corresponding to J1, J2,
and J3 respectively. On J1, we integrate by parts with respect to the variable
ρ; on J2 we integrate by parts with respect to the variable ϕ, and on J3 we
integrate by parts with respect to the variable θ. Doing this repeatedly, it
yields that, for any positive integer n, |I2| ≤ Cn a

n
2 . This finishes the proof.

2

The following lemma is a special case of Proposition 5 at page 342 in [21].
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Lemma 4.2 Suppose ψ is smooth and is supported in the unit ball; also let ϕ
be a real-valued function so that, for some k ≥ 1 we have |ϕ(k)| ≥ 1 throughout
the support of ψ. Then ∣∣∣∣∫ ∞

−∞
eiλϕ(x)ψ(x) dx

∣∣∣∣ ≤ Ck λ
− 1

k .

For the proof of Theorem 3.1, we also need the following Lemmata. The first
one is a generalization of Lemma 4.4 in [8]; the second one is contained in the
proof of Lemma 4.4 in [8]

Lemma 4.3 For α ∈ [0, 2π), y > 0, let

h(α, y) =
∫ √

2

0
ψ̂2(r cosα) ψ̂2(r sinα) sin(πyr

2)r dr,

where ψ2 satisfies the assumptions given by (4). Then h(α, y) > 0.

Lemma 4.4 Let ψ2 ∈ L2(R) be chosen so that it satisfies the assumptions
given by (4). Then, for each ρ > 0,

∫ 1

−1
ψ̂2(u) sin(πρu

2) du > 0 and
∫ 1

−1
ψ̂2(u) cos(πρu

2) du > 0.

The final observation which will be needed is that, in order to estimate the
asymptotic decay of the shearlet transform of B = χΩ as a→ 0, it is possible
to locally approximate the smooth surface S = ∂Ω using a quadratic surface.
This observation will play a crucial role in the the proof of Theorem 3.1.

Near the point p ∈ R3, let S = (G(u), u), where u ∈ U ⊂ R2 and G(u)
is a smooth function on U . There exists u0 ∈ U such that p = (G(u0), u0).
Without loss of generality, we may assume that p = (0, 0, 0) so that u0 = (0, 0)
and G(0, 0) = 0. Hence we define the quadratic approximation of S near
p = (0, 0, 0) by

S0 = (G0(u), u),

where G0 is the second order approximation of G at (0, 0), given by by G0(u) =
Gu1(0, 0)u1+Gu2(0, 0)u2+

1
2
[Gu21

(0, 0)u21+2Gu1u2(0, 0)u1u2+Gu22
(0, 0)u22]. We

define the function B0 = χΩ0 , where ∂Ω0 is obtained by replacing S = ∂Ω in
B = χS with the surface S0 near the point p = (0, 0, 0). We can now state the
following result.

Lemma 4.5 For any s = (s1, s2) ∈ R2 with |s1| ≤ 3
2
, |s2| ≤ 3

2
, we have

lim
a→0+

a−1 |SHψB(a, s, 0))− SHψB0(a, s, 0)| = 0.

12



Proof. Without loss of generality, we may assume s = (0, 0). Let γ be chosen
such that 2

5
< γ < 1

2
and assume that a is sufficiently small, so that aγ < ϵ.

A direct calculation shows that

|SHψB(a, 0, 0)− SHψB0(a, 0, 0)| ≤
∫
R3

|ψa00(x)| |χΩ(x)− χΩ0(x)| dx

= T1(a) + T2(a),

where, for x = (x1, x2, x3), we have:

T1(a)= a−1
∫
D(aγ ,(0,0,0))

|ψ(a−1x1, a
− 1

2x2, a
− 1

2x3)| |χΩ(x)− χΩ0(x)| dx,

T2(a)= a−1
∫
Dc(aγ ,(0,0,0))

|ψ(a−1x1, a
− 1

2x2, a
− 1

2x3)| |χΩ(x)− χΩ0(x)| dx.

Observe that:

T1(a)≤C a−1
∫
D(aγ ,(0,0,0))

|χΩ(x)− χΩ0(x)| dx.

To estimate the above quantity, it is enough to compute the volume between
the regions Ω and Ω0. Since G0 is the Taylor polynomial of G of degree 2, we
have

T1(a) ≤ C a−1
∫
|x|<aγ

|x|3dx ≤C a−1
∫
r<aγ

r4dr ≤ C a5γ−1.

Since γ > 2
5
, the above estimate shows that T1(a) = o(a).

The assumptions on ψ imply that, for each N > 0, there is a constant CN > 0
such that |ψ(x)| ≤ CN (1+ |x|2)−N . Thus, for a < 1, we can estimate T2(a) as:

T2(a)≤C a−1
∫
Dc(aγ ,(0,0,0))

|ψ(a−1x1, a
− 1

2x2, a
− 1

2x3)| dx

≤CN a
−1
∫
Dc(aγ ,(0,0,0))

(
1 + (a−1x1)

2 + (a−
1
2x2)

2 + (a−
1
2x3)

2
)−N

dx

≤CN a
−1
∫
Dc(aγ ,(0,0,0))

(
(a−1/2x1)

2 + (a−
1
2x2)

2 + (a−
1
2x3)

2
)−N

dx

=CN a
N−1

∫
Dc(aγ ,(0,0,0))

(
x21 + x22 + x23

)−N
dx

=CN a
N−1

∫ ∞

aγ
r1−2N dr

=CN a
2N( 1

2
−γ) a2γ−1.

13



Since γ < 1
2
and N can be chosen arbitrarily large, it follows that T2(a) = o(a).

2

4.2 Proof of Theorem 3.1

The proof of statement (i) of the theorem follows directly from Lemma 4.1.
The proof of statement (iii), which is the “hardest” part of the proof, is based
on a completely new argument and will be presented first. Next, we shall
present the proofs of statements (ii) and (iv), which are much simpler.

Proof of (iii). This is the situation where either p ∈ ∂Ω \ ∪mj=1 γj and the
shearing variables (s1, s2) correspond to the normal orientation or p is on
a separating curve and the shearing variables (s1, s2) correspond to one of
the two normal orientations. We discuss separately the situations where (I)
p ∈ ∂Ω \ ∪mj=1 γj and where (II) p ∈ γj for some j. We will only examine
the behavior of I1(a, s, p) for |s1|, |s2| ≤ 1 (in which case we use the shearlet
transform on the truncated pyramidal region C(1)). The other cases can be
handled in a very similar way.

(iii) – Situation (I): Let p ∈ ∂Ω \ ∪mj=1 γj.

By Lemma 4.1 and Lemma 4.5, in order to prove statement (iii) it is sufficient
to show that

lim
a→0+

a−1 I1(a, s1, s2, p) ̸= 0,

where the integral I1 is taken on S0 rather than S.

For simplicity, let p = (0, 0, 0), θ0 = 0, ϕ0 = π
2
, so that s1 = s2 = 0. The

general situation can be reduced to this special case, as shown in Remark 4.1
at the end of this section. Also, let S,G(u), S0, G0(u) be given as in Lemma 4.5,
with S = (G(u), u) and p = (G(0), 0). Using polar coordinates, the integral
I1(a, 0, 0, 0), taken on S0, can be written as

I1(a, 0, 0, 0)

=− 1

2πia

∫ 2π

0

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ)ψ̂2(a

− 1
2 (tan θ))ψ̂2(a

− 1
2 (cotϕ sec θ))

×
∫
U
e2πi

ρ
a
Hθ,ϕ(u) Θ(θ, ϕ) · (−1,∇G0(u)) du ρ sinϕ dρ dϕ dθ. (8)

where
Hθ,ϕ(u) = −Θ(θ, ϕ) · (G0(u), u) (9)

Let F (ϕ, θ, u) = (F1(ϕ, θ, u), F2(ϕ, θ, u)), where

F1(ϕ, θ, u)= (Hθ,ϕ)u1 = −Θ(θ, ϕ) · (G0u1(u), 1, 0)
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F2(ϕ, θ, u)= (Hθ,ϕ)u2 = −Θ(θ, ϕ) · (G0u2(u), 0, 1).

Since n⃗(p) = (1, 0, 0) and Θ(θ0, ϕ0) = ±n⃗(p), it follows that ϕ0 =
π
2
and θ0 = 0

or π. We will only consider the case θ0 = 0 since the argument for the case
θ0 = π is similar. In this situation, we have

G0u1(u0) = G0u1(0, 0) = 0, G0u2(u0) = Gu2(0, 0) = 0

so that

G0(u) =
1

2

(
Gu21

(0, 0)u21 + 2Gu1u2(0, 0)u1u2 +Gu22
(0, 0)u22

)
.

Without loss of generality (if necessary, by changing the (u1, u2) coordinates),
we may assume that Gu1u2(0, 0) = 0. As a consequence, we have that

G0(u) =
1

2
(Gu21

(0, 0)u21 +Gu22
(0, 0)u22).

For brevity, in the following we will use the notation:

A = Gu21
(0, 0), B = Gu22

(0, 0). (10)

Hence we have:

F1(ϕ, θ, u)=−Θ(θ, ϕ) · (Au1, 1, 0) = − cos θ sinϕAu1 − sin θ sinϕ

F2(ϕ, θ, u)=−Θ(θ, ϕ) · (Bu2, 0, 1) = − cos θ sinϕBu2 − cosϕ.

IfA ̸= 0, let u1,θ,ϕ =
− sin θ sinϕ
A cos θ sinϕ

= − 1
A
tan θ so that F1(ϕ, θ, u1,θ,ϕ) = 0. Similarly,

if B ̸= 0, let u2,θ,ϕ = − 1
B
sec θ cotϕ so that F2(ϕ, θ, u2,θ,ϕ) = 0. We have now

four cases to discuss, corresponding on A ̸= 0, B ̸= 0 or A = B = 0 or
A = 0, B ̸= 0 or A ̸= 0, B = 0. Notice that the last two cases are equivalent.

• Case 1: A ̸= 0, B ̸= 0. In this case, the phase term Hθ,ϕ(u), given by (9),
can be expressed as

Hθ,ϕ(u1, u2) =−1

2
cos θ sinϕ A(u1 − u1,θ,ϕ)

2 +
sin2 θ sin2 ϕ

2A cos θ sinϕ
+

− 1

2
cos θ sinϕ B(u2 − u2,θ,ϕ)

2 +
cos2 ϕ

2B cos θ sinϕ
.

Since p = (0, 0, 0) is an interior point in S0, from the proof of Lemma 4.1 it
follows that we may choose the domain U of G0 as U = {(u1, u2) : α1 ≤ u1 ≤
β1, α2 ≤ u2 ≤ β2} with α1, α2 < 0, β1, β2 > 0. Hence, the integral over U
from (8) becomes:
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∫
U
e2πi

ρ
a
Hθ,ϕ(u) Θ(θ, ϕ) · (−1,∇G0(u)) du

= eπi
ρ
a
( sin

2 θ sin2 ϕ
A cos θ sinϕ

+ cos2 ϕ
B cos θ sinϕ

)

×
∫ β1

α1

∫ β2

α2

e−πi
ρ
a
cos θ sinϕA(u1−u1,θ,ϕ)2e−πi

ρ
a
cos θ sinϕB(u2−u2,θ,ϕ)2

× (− cos θ sinϕ+ A sin θ sinϕ u1 +B cosϕ u2) du2 du1
= K0(θ, ϕ, a) +K1(θ, ϕ) +K2(θ, ϕ, a), (11)

where

K0(θ, ϕ, a)=− cos θ sinϕ eπi
ρ
a
( sin

2 θ sin2 ϕ
A cos θ sinϕ

+ cos2 ϕ
B cos θ sinϕ

)

×
∫ β1

α1

e−πi
ρ
a
cos θ sinϕA(u1−u1,θ,ϕ)2du1

∫ β2

α2

e−πi
ρ
a
cos θ sinϕB(u2−u2,θ,ϕ)2du2

K1(θ, ϕ, a)=A sin θ sinϕ eπi
ρ
a
( sin

2 θ sin2 ϕ
A cos θ sinϕ

+ cos2 ϕ
B cos θ sinϕ

)

×
∫ β1

α1

e−πi
ρ
a
cos θ sinϕA(u1−u1,θ,ϕ)2u1du1

∫ β2

α2

e−πi
ρ
a
cos θ sinϕB(u2−u2,θ,ϕ)2du2

K2(θ, ϕ, a)=B cosϕ eπi
ρ
a
( sin

2 θ sin2 ϕ
A cos θ sinϕ

+ cos2 ϕ
B cos θ sinϕ

)

×
∫ β1

α1

e−πi
ρ
a
cos θ sinϕA(u1−u1,θ,ϕ)2du1

∫ β2

α2

e−πi
ρ
a
cos θ sinϕB(u2−u2,θ,ϕ)2u2du2

In the expression (8) for I1, the domain of integration with respect to θ can
be broken up into the intervals [−π

2
, π
2
] and [π

2
, 3π

2
]. For the interval [π

2
, 3π

2
], we

apply the change of variable θ′ = θ−π, so that θ′ ∈ [−π
2
, π
2
] and sin θ = − sin θ′,

cos θ = − cos θ′. Using this observation and expression (11), it follows that

I1(a, 0, 0, 0) = I10(a, 0, 0, 0) + I11(a, 0, 0, 0) + I12(a, 0, 0, 0),

where, for j = 0, 1, 2,

I1j(a, 0, 0, 0)

=− 1

2πia

∫ π
2

−π
2

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ)ψ̂2(a

− 1
2 (tan θ))ψ̂2(a

− 1
2 (cotϕ sec θ))

×Kj(θ, ϕ, a) ρ sinϕ dρ dϕ dθ +

+
1

2πia

∫ π
2

−π
2

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ)ψ̂2(a

− 1
2 (tan θ))ψ̂2(a

− 1
2 (cotϕ sec θ))

×Kj(θ + π, ϕ, a)ρ sinϕdρdϕdθ.

For θ ∈ (−π
2
, π
2
), ϕ ∈ (0, π), let t1 = a−

1
2 tan θ and t2 = a−

1
2 cotϕ sec θ, so

that cos2 θ = 1
at21+1

, sin2 ϕ =
at21+1

at21+at
2
2+1

, and J(θ, ϕ) = − 1
a cos3 θ sin2 ϕ

. Under this

change of variables, we have
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2πi I10(a, 0, 0, 0)

=
∫ ∞

0

∫ 1

−1

∫ 1

−1
ψ̂1

(
ρ√

at21+at
2
2+1

)
ψ̂2(t1)ψ̂2(t2)K0(t1, t2, a)

ρ dt1 dt2 dρ

(at21 + at22 + 1)3/2

+
∫ ∞

0

∫ 1

−1

∫ 1

−1
ψ̂1

(
ρ√

at21+at
2
2+1

)
ψ̂2(t1)ψ̂2(t2) K̄0(t1, t2, a)

ρ dt1 dt2 dρ

(at21 + at22 + 1)3/2

where, (with an abuse of notation, we let K0(t1, t2, a) denote the function
K0(θ, ϕ, a) after the change of variables),

K0(t1, t2, a)=− e

πi
ρ√

at2
1
+at2

2
+1

( 1
A

t21+
1
B

t22)

√
at21+at

2
2+1

∫ β1

α1

e
−πi ρ√

at2
1
+at2

2
+1
A(

u1√
a
+

t1
A
)2

du1

×
∫ β2

α2

e
−πi ρ√

at2
1
+at2

2
+1
B(

u2√
a
+

t2
B
)2

du2.

Notice that, due to the change of variable,K0(θ+π, ϕ, a) has become−K̄0(t1, t2, a),
where K̄0 denoted the complex conjugate of K0.

Taking the limit for a→ 0, we have

lim
a→0

1

a
K0(t1, t2, a)=−eπiρ(

1
A
t21+

1
B
t22)
∫ ∞

−∞
e−πiρA(u1+

t1
A
)2du1

∫ ∞

−∞
e−πiρB(u2+

t2
B
)2du2

=−Cρ eπiρ(
1
A
t21+

1
B
t22),

where
Cρ =

∫ ∞

−∞
e−πiρAu

2
1 du1

∫ ∞

−∞
e−πiρBu

2
2 du2.

Recalling the Fresnel integrals∫ ∞

−∞
cos(πx2) dx =

∫ ∞

−∞
sin(πx2) dx =

√
2

2
,

it follows that

Cρ =
−i

ρ
√
AB

. (12)

Notice that Cρ is a real or imaginary quantity, depending on the signs of A
and B. Similarly, we have

lim
a→0

1

a
K̄0(t1, t2, a) = C̄ρe

−πiρ( 1
A
t21+

1
B
t22).

Due to the presence of the linear term u1 and u2 in the integrals of K1 and
K2, respectively, a similar calculation to the one above shows that K1(θ, ϕ, a),

K1(θ+ π, ϕ, a), K2(θ, ϕ, a) K2(θ+ π, ϕ, a) are all O(a
3
2 ). That is, as a→ 0, all

those terms are dominated by the term K0 and, thus,

lim
a→0

2πi

a
I1(a, 0, 0, 0) = lim

a→0

2πi

a
I10(a, 0, 0, 0).
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It follows that

lim
a→0

2πi

a
I1(a, 0, 0, 0)

=
∫ ∞

0
Cρ ψ̂1(ρ)

∫ 1

−1
eπiρ

1
A
t21ψ̂2(t1) dt1

∫ 1

−1
eπiρ

1
B
t22ψ̂2(t2) dt2 ρdρ

+
∫ ∞

0
C̄ρ ψ̂1(ρ)

∫ 1

−1
e−πiρ

1
A
t21ψ̂2(t1) dt1

∫ 1

−1
e−πiρ

1
B
t22ψ̂2(t2) dt2 ρdρ

=2ℜ
{∫ ∞

0
Cρ ψ̂1(ρ)

∫ 1

−1
e−πiρ

1
A
t21ψ̂2(t1) dt1

∫ 1

−1
e−πiρ

1
B
t22ψ̂2(t2) dt2 ρdρ

}
, (13)

where Cρ is given by (12). The value of the above limit depends on the various
combinations of signs of A and B, which determines whether Cρ is real or
imaginary. Hence we have the following two possible subcases.

Subcase 1.1: A > 0, B > 0 or A < 0, B < 0. In this case, Cρ =
−i

ρ
√

|AB|
is an

imaginary number. It follows from (13) that

lim
a→0

2πi

a
I1(a, 0, 0, 0)

=
2√
|AB|

ℜ
{
−i

∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
e−πiρ

1
A
t21ψ̂2(t1) dt1

∫ 1

−1
e−πiρ

1
B
t22ψ̂2(t2) dt2 dρ

}

=
2√
|AB|

ℜ
{
−
∫ ∞

0
ψ̂1(ρ)

∫ 1

−1

∫ 1

−1
i e−πiρ(

1
A
t21+

1
B
t22) ψ̂2(t1) ψ̂2(t2)dt1 dt2dρ

}

=
−2√
|AB|

∫ ∞

0
ψ̂1(ρ)

∫ 2π

0

∫ √
2

0
sin

(
πρ(

1

A
sin2 α +

1

B
sin2 α)r2

)

×ψ̂2(cosαr) ψ̂2(sinαr) rdr dα dρ.

Using Lemma 4.3, with y = ρ( 1
A
sin2 α+ 1

B
sin2 α), and the assumptions on ψ̂1,

it follows that the last expression is a strictly negative quantity if A > 0, B > 0
and a strictly positive quantity if A < 0, B < 0.

Subcase 1.2: A > 0, B < 0 or A < 0, B > 0. In this case, Cρ = −1

ρ
√

|AB|
is a

real number. It follows that

lim
a→0

2πi

a
I1(a, 0, 0, 0)

=
−2√
|AB|

ℜ
{∫ ∞

0
ψ̂1(ρ)

∫ 1

−1
e−πiρ

1
A
t21ψ̂2(t1) dt1

∫ 1

−1
e−πiρ

1
B
t22ψ̂2(t2) dt2 dρ

}

=
−2√
|AB|

∫ ∞

0
ψ̂1(ρ)

(∫ 1

−1
cos(πρ

1

A
t21) ψ̂2(t1) dt1

∫ 1

−1
cos(πρ

1

B
t22) ψ̂2(t2) dt2+
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−
∫ 1

−1
sin(πρ

1

A
t21) ψ̂2(t1) dt1

∫ 1

−1
sin(πρ

1

B
t22) ψ̂2(t2) dt2

)
dρ.

The expression in parenthesis in the last equation is strictly positive by Lemma 4.4
(notice in particular that exactly one of A and B is positive, the other is neg-
ative). Hence, using the properties of ψ̂1 it follows that the last expression is
strictly negative.

• Case 2: A = 0, B = 0. Since G0(u) = 0, the phase term Hθ,ϕ(u), given by
(9), vanishes. Hence, and choosing again the domain U of G0 as U = {(u1, u2) :
α1 ≤ u1 ≤ β1, α2 ≤ u2 ≤ β2} with α1, α2 < 0, β1, β2 > 0, as in Case 1, the
integral over U from (8) becomes:

∫
U
e−2πi ρ

a
Hθ,ϕ(u) Θ(θ, ϕ) · (−1,∇G0(u))du

=− cos θ sinϕ
∫ β1

α1

∫ β2

α2

e−2πi ρ
a
(sin θ sinϕu1+cosϕu2) du2 du1.

It follows that

2πia I1(a, 0, 0, 0)

=
∫ ∞

0

∫ 2π

0

∫ π

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 (tan θ)) ψ̂2(a

− 1
2 (cotϕ sec θ))

×
(∫ β1

α1

∫ β2

α2

e−2πi ρ
a
(sin θ sinϕu1+cosϕu2) du2 du1

)
ρ cos θ sin2 ϕ dϕ dθ dρ

=
∫ β1

α1

∫ β2

α2

(∫ ∞

0

∫ 2π

0

∫ π

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 (tan θ)) ψ̂2(a

− 1
2 (cotϕ sec θ))

×e−2πi ρ
a
(sin θ sinϕu1+cosϕu2)ρ cos θ sin2 ϕ dϕ dθ dρ

)
du2 du1

=
∫ β1

α1

∫ β2

α2

(∫ ∞

0

∫ π
2

−π
2

∫ π

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 (tan θ)) ψ̂2(a

− 1
2 (cotϕ sec θ))

×e−2πi ρ
a
(sin θ sinϕu1+cosϕu2)ρ cos θ sin2 ϕ dϕ dθ dρ

)
du2 du1

+
∫ β1

α1

∫ β2

α2

(∫ ∞

0

∫ π
2

−π
2

∫ π

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 (tan θ)) ψ̂2(a

− 1
2 (cotϕ sec θ))

×e−2πi ρ
a
(sin θ sinϕu1−cosϕu2)ρ cos θ sin2 ϕ dϕ dθ dρ

)
du2 du1.

Notice that, in the last step, we have split the integral over [0, 2π] with respect
to θ into two integrals over [−π

2
, π
2
] and [π

2
, 3π

2
]. For the second integral, we

have applied the change of variable θ′ = θ − π, so that θ′ ∈ [−π
2
, π
2
] and

sin θ = − sin θ′, cos θ = − cos θ′, and used the fact that ψ̂2 is even and ψ̂1 is
odd.

From the last expression, using the change of variables t1 = a−
1
2 tan θ and

t2 = a−
1
2 cotϕ sec θ, as in Case 1, and taking the limit as a→ 0, we have:
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lim
a→0

2πi

a
I1(a, 0, 0, 0)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
ρ ψ̂1(ρ)

∫ 1

−1

∫ 1

−1
ψ̂2(t1)ψ̂2(t2) e

−2πiρt1u1e−2πiρt2u2dt1dt2dρ du1du2

+
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
ρ ψ̂1(ρ)

∫ 1

−1

∫ 1

−1
ψ̂2(t1)ψ̂2(t2) e

−2πiρt1u1e2πiρt2u2dt1dt2dρ du1du2

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
ψ̂1(ρ)ψ2(ρu1)ψ2(ρu2) ρ dρ du1 du2

+
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
ψ̂1(ρ)ψ2(ρu1)ψ2(−ρu2) ρ dρ du1 du2

=2 (ψ̂2(0))
2
∫ ∞

0

ψ̂1(ρ)

ρ
dρ.

This quantity is positive, due to the assumptions on ψ̂1. Notice that, in the
last step, we have used the property that ψ̂2 is even.

• Case 3: A = 0, B ̸= 0 (the case A ̸= 0, B = 0 is similar and is omitted).
Without loss of generality, we may assume that B > 0. In this case, choosing
again the domain U of G0 as U = {(u1, u2) : α1 ≤ u1 ≤ β1, α2 ≤ u2 ≤ β2}
with α1, α2 < 0, β1, β2 > 0, as in Case 1, the integral over U from (8) becomes:∫

U
e−2πi ρ

a
Hθ,ϕ(u) Θ(θ, ϕ) · (−1,∇G0(u))du = K0(θ, ϕ, a) +K1(θ, ϕ, a),

where

K0(θ, ϕ, a)=− cos θ sinϕ eπi
ρ
a

cos2 ϕ
B cos θ sinϕ

×
∫ β1

α1

∫ β2

α2

e−πi
ρ
a
B cos θ sinϕ(u2−u2,θ,ϕ)2 e−2πi ρ

a
sin θ sinϕu1 du2 du1

K1(θ, ϕ, a)=B cosϕ eπi
cos2 ϕ

B cos θ sinϕ

×
∫ β1

α1

∫ β2

α2

e−πi
ρ
a
B cos θ sinϕ (u2−u2,θ,ϕ)2 e−2πi ρ

a
sin θ sinϕu1 u2 du2 du1.

Hence, after splitting the integral with respect to θ in (8) into two integrals
over [−π

2
, π
2
] and [π

2
, 3π

2
], and applying the change of variable θ′ = θ − π, as it

was done in Case 1 and case 2, we can write

I1(a, 0, 0, 0) = I10(a, 0, 0, 0) + I11(a, 0, 0, 0),

where, for j = 0, 1,

2πia I1j(a, 0, 0, 0)

=−
∫ π

2

−π
2

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 (tan θ)) ψ̂2(a

− 1
2 (cotϕ sec θ))×
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×Kj(θ, ϕ, a) ρ sinϕ dρ dϕ dθ

+
∫ π

2

−π
2

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 (tan θ)) ψ̂2(a

− 1
2 (cotϕ sec θ))

×Kj(θ + π, ϕ, a) ρ sinϕ dρ dϕ dθ.

As in Case 1, we apply the change of variables t1 = a−
1
2 tan θ and t2 =

a−
1
2 cotϕ sec θ so that

2πi I10(a, 0, 0, 0)

=
∫ ∞

0

∫ 1

−1

∫ 1

−1
ψ̂1

(
ρ√

at21+at
2
2+1

)
ψ̂2(t1)ψ̂2(t2)K0(t1, t2, a)

ρ dt1 dt2 dρ

(at21 + at22 + 1)3/2

+
∫ ∞

0

∫ 1

−1

∫ 1

−1
ψ̂1

(
ρ√

at21+at
2
2+1

)
ψ̂2(t1)ψ̂2(t2) K̄0(t1, t2, a)

ρ dt1 dt2 dρ

(at21 + at22 + 1)3/2

where (again, with abuse of notation,K0(t1, t2, a) denotes the functionK0(θ, ϕ, a)
after the change of variables)

K0(t1, t2, a) =
−1√

at21+at
2
2+1

e
πiρ

t22
B

1√
1+at2

1
+at2

2

×
∫ β1

α1

∫ β2

α2

e
−πiρB 1√

at21+at
2
2+1

(
u2√
a
+

√
at2
B

)2

e
−2πiρ

t1√
at21+at

2
2+1

u1√
a

du2 du1.

As in Case 1, the term K1 is dominated by K0, as a→ 0, so that

lim
a→0

2πi

a
I1(a, 0, 0, 0) = lim

a→0

2πi

a
I10(a, 0, 0, 0).

Thus

lim
a→0

2πi

a
I1(a, 0, 0, 0)

= ψ̂2(0)
∫ ∞

0
ψ̂1(ρ)

(∫ ∞

−∞
e−iπBρu

2
2du2

∫ 1

−1
eiπ

1
B
ρt22ψ̂2(t2) dt2

)
dρ

+ψ̂2(0)
∫ ∞

0
ψ̂1(ρ)

(∫ ∞

−∞
eiπBρu

2
2du2

∫ 1

−1
e−iπ

1
B
t22ψ̂2(t2) dt2

)
dρ

=2 ψ̂2(0)
∫ ∞

0
ψ̂1(ρ)ℜ

{∫ ∞

−∞
e−iπBρu

2
2du2

∫ 1

−1
eiπ

1
B
ρt22ψ̂2(t2) dt2

}
dρ

=

√
2 ψ̂2(0)√
B

∫ ∞

0

ψ̂1(ρ)√
ρ

(∫ 1

−1
cos(πρ

1

B
t22) ψ̂2(t2) dt2

+
∫ 1

−1
sin(πρ

1

B
t22) ψ̂2(t2) dt2

)
dρ.

The last quantity is strictly positive by Lemma 4.4 and the properties of
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ψ̂1. This completes the proof of (iii) in Situation (I). Let us now consider
Situation (II).

(iii) – Situation (II): Let p ∈ γj for some j.

Without loss of generality, we may assume that there is only one separating
curve γ. Also in this case, as above, it is sufficient to show that

lim
a→0+

a−1 I1(a, s1, s2, p) ̸= 0,

where the integral I1 is given by (8). We still adopt the same notation intro-
duced above with S0 = (G0(u), u), where u ∈ U .

If p = (0, 0, 0) is on the curve γ, then locally we may choose the domain
U of G0 as U = {(u1, u2) : α1 ≤ u1 ≤ β1, g(u1) ≤ u2 ≤ g(u1) + β2} with
α1 < 0, β1, β2 > 0, where g is a C3 smooth function (this follows from the
assumption that the separating curve γ is C3 smooth) and g(0) = 0. Notice
that {(G(u1, g(u1)), α1 ≤ u1 ≤ β1} ⊂ γ. We can write g(u1) = g′(0)u1 +
O(u21). As described in the following, the proof is a simple modification of the
argument for the smooth boundaries (Situation (I)).

Also in this case, we need to consider 3 cases, depending on the signs of A
and B in (10). In the following, for brevity, we only describe below how the
argument above need to be modified for each one of these cases.

For Case 1 (A,B ̸= 0), as in Situation (I), we have that the I1 integral, as
a→ 0, is dominated by the term involving K0. For this term, we have that

lim
a→0

1

a
K0(θ, ϕ, a)

= eπiρ(
t21
A
+

t22
B
)
∫ ∞

−∞
e−πiρA(u1+

t1
A
)2
∫ ∞

g′1(0)u1
e−πiρB(u2+

t2
B
)2du2du1

= eπiρ(
t21
A
+

t22
B
)
∫ ∞

−∞
e−πiρAu

2
1

∫ ∞

g′1(0)(u1−
t1
A
)+

t2
B

e−πiρBu
2
2du2du1

= eπiρ(
t21
A
+

t22
B
)
∫ ∞

−∞
e−πiρAu

2
1

(∫ 0

g′1(0)(u1−
t1
A
)+

t2
B

e−πiρBu
2
2du2+

∫ ∞

0
e−πiρBu

2
2du2

)
du1.

Let

V (t1, t2) =
∫ ∞

−∞
e−πiρAu

2
1

∫ 0

g′1(0)(u1−
t1
A
)+

t2
B

e−πiρBu
2
2 du2 du1.

It can be verified that, for each (t1, t2), the improper integral V is convergent.
Notice that V (−t1,−t2) = −V (t1, t2), that is, V is an odd function of (t1, t2).
Since ψ̂2 is even, it follows that this term will give no contribution in the
integral I1. Thus, using the same argument as in Situation I (Case 1), we have
that

22



lim
a→0

2πi

a
I1(a, 0, 0, 0)

= ℜ{
∫ ∞

0
ψ̂1(ρ)Cρ

∫ 1

−1
e−πiρ

1
A
t21 ψ̂2(t1) dt1

∫ 1

−1
e−πiρ

1
B
t22 ψ̂2(t2) dt2dρ},

where Cρ is given by (12). Notice that this expression is the same as (13), and
it is strictly negative, as proven above.

For Case 2 (A = B = 0), the same argument as in Situation I (Case 2) gives
that

lim
a→0

2πi

a
I1(a, 0, 0, 0) = 2

∫ ∞

−∞

∫ ∞

g′1(0)u1

∫ ∞

0
ψ̂1(ρ)ψ2(ρu2)ψ2(ρu1)ρ dρ du2 du1.

Notice that the functionW (u1) =
∫ g′1(0)u1
0 ψ2(ρu2)du2 is an odd function (recall

that ψ2 is even since ψ̂2 is even). It follows that the integral∫ ∞

−∞

∫ g′1(0)u1

0
ψ2(ρu2)ψ2(ρu1) du2 du1 = 0,

for any ρ > 0. This implies that

lim
a→0

2πi

a
I1(a, 0, 0, 0)

= 2
∫ ∞

−∞

∫ ∞

g′1(0)u1

∫ ∞

0
ψ̂1(ρ)ψ2(ρu2)ψ2(ρu1) ρ dρ du2 du1

= 2
∫ ∞

−∞

∫ ∞

0

∫ ∞

0
ψ̂1(ρ)ψ2(ρu2)ψ2(ρu1) ρ dρ du2 du1

=
∫ ∞

−∞

∫ ∞

0

∫ ∞

0

ψ̂1(ρ)

ρ
ψ2(u2)ψ2(u2) dρ du2 du1

= (ψ̂2(0))
2
∫ ∞

0

ψ̂1(ρ)

ρ
dρ > 0.

For Case 3 (A = 0, B > 0), again adapting the argument from Situation (I),
we have:

lim
a→0

2πi

a
I1(a, 0, 0, 0)

=
∫ 1

−1

∫ 1

−1

∫ ∞

0
ψ̂1(ρ) ψ̂2(t1) ψ̂2(t2)

(∫ ∞

−∞

∫ ∞

g′1(0)u1+
t2
B

e−iπρBu
2
2du2 e

−2πiρt1u1du1

)
× eiπ

1
B
ρt22ρ dρ dt1 dt2

+
∫ 1

−1

∫ 1

−1

∫ ∞

0
ψ̂1(ρ) ψ̂2(t1) ψ̂2(t2)

(∫ ∞

−∞

∫ ∞

g′1(0)u1+
t2
B

eiπρBu
2
2du2 e

2πiρt1u1du1

)
× e−iπ

1
B
ρt22ρ dρ dt1 dt2 =
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=
∫ 1

−1

∫ ∞

0
ψ̂1(ρ)ψ̂2(t2)

∫ ∞

−∞

∫ ∞

g′1(0)u1+
t2
B

e−iπρBu
2
2du2ψ2(ρu1)du1e

iπ 1
B
ρt22ρdρdt2

+
∫ 1

−1

∫ ∞

0
ψ̂1(ρ)ψ̂2(t2)

∫ ∞

−∞

∫ ∞

g′1(0)u1+
t2
B

eiπρBu
2
2du2ψ2(ρu1)du1e

−iπ 1
B
ρt22ρdρdt2.

Notice that

V (t2, ρ) =
∫ ∞

−∞

∫ 0

g′1(0)u1+
t2
B

e−iπρBu
2
2 du2 ψ2(ρu1) du1

is an odd function of t2 (this is shown by setting (u1, u2) = −(u′1, u
′
2) and using

the fact that ψ2 is even). Hence, this gives no contribution to the integral above
and we can replace the integral

∫∞
g′1(0)u1−

t2
B

with
∫∞
0 . It follows that

lim
a→0

2πi

a
I1(a, 0, 0, 0)

=
∫ 1

−1

∫ ∞

0
ψ̂1(ρ)ψ̂2(t2)

(∫ ∞

−∞

∫ ∞

0
e−iπρBu

2
2du2 ψ2(ρu1) du1

)
eiπ

1
B
ρt22ρ dρ dt2

+
∫ 1

−1

∫ ∞

0
ψ̂1(ρ)ψ̂2(t2)

(∫ ∞

−∞

∫ ∞

0
eiπρBu

2
2du2 ψ2(ρu1) du1

)
e−iπ

1
B
ρt22ρ dρ dt2.

Thus, using the same argument as in Situation (I) (Case 3), we conclude that

lim
a→0

2πi

a
I1(a, 0, 0, 0)

=
ψ̂2(0)√
2B

∫ ∞

0

ψ̂1(ρ)√
ρ

(∫ 1

−1
cos(πρ

1

B
t22) ψ̂2(t2) dt2

+
∫ 1

−1
sin(πρ

1

B
t22) ψ̂2(t2) dt2

)
dρ > 0.

This completes the proof of (iii).

Proof of (iv). In this case, the unit vector Θ(θ0, ϕ0) associated with the shear-
ing variables (s1, s2) does not correspond to the normal orientations of Ω at
p.

Again, without loss of generality, we may assume p = (0, 0, 0), θ0 = 0, ϕ = π
2

which yields s1 = s2 = 0. In this case, we can express the domain U of G as
U = U1

∪
U2 with U1 = {(u1, u2), α ≤ u1 ≤ β, g(u1) ≤ u2 ≤ g(u1) + ϵ} and

U2 = {(u1, u2), α ≤ u1 ≤ β, g(u1) − ϵ ≤ u2 ≤ g(u1)}, where α < 0, β > 0.
Correspondingly, we write the boundary region near p as S = S1

∪
S2 with

S1 = {(G1(u), u) : u ∈ U1} and S2 = {(G2(u), u) : u ∈ U2}. For j = 1, 2,
let n⃗j(p) be the outer normal vector of Sj at p. Also we write I1 as I11

∪
I12,

where I1j corresponds to Sj, for j = 1, 2.
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We will only examine the term I11 since the argument for the term I12 is
similar.

Since n⃗1(p) ̸= ±(1, 0, 0), it follows that ∇G1((0, 0)) ̸= (0, 0). Without loss
of generality, we may assume that G1u2(0, 0) ̸= 0. Since (ϕ, θ) → (ϕ0, θ0) =
(1, 0, 0) as a→ 0, we can choose ϵ sufficiently small so that Θ(ϕ, θ)·(G1u2(u), 0, 1) ̸=
0 for all ϕ, θ and all u ∈ U .

Using polar coordinates, we can express I11(a, 0, 0, 0) as

I11(a, 0, 0, 0)

= − 1

2πia

∫ 2π

0

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ)ψ̂2(a

− 1
2 (tan θ))ψ̂2(a

− 1
2 (cotϕ sec θ))

×
∫
U1

e−2πi ρ
a
Θ(ϕ,θ)·(G1(u),u)Θ(ϕ, θ) · (−1,∇G1(u))du ρ sinϕ dρ dϕ dθ.

Using the definition of U1, we have that

∫
U1

e−2πi ρ
a
Θ(ϕ,θ)·(G1(u),u)Θ(ϕ, θ) · (−1,∇G1(u))du

=
−a
2πiρ

∫ β

α

∫ g(u1)+ϵ

g(u1)

∂

∂u2
(e−2πi ρ

a
Θ(ϕ,θ)·(G1(u),u))

Θ(ϕ, θ) · (−1,∇G1(u))

Θ(ϕ, θ) · (G1u2(u), 0, 1)
du2du1

Integrating by parts twice for the inner integral and neglecting the endpoint
terms evaluated at u2 = g(u1) + ϵ (by Lemma 4.1) we have the estimate

−
∫ g(u1)+ϵ

g(u1)

∂

∂u2
(e−2πi ρ

a
Θ(ϕ,θ)·(G1(u),u))

Θ(ϕ, θ) · (−1,∇G1(u))

Θ(ϕ, θ) · (G1u2(u), 0, 1)
du2

= e−2πi ρ
a
Θ(ϕ,θ)·(G1(u1,g(u1)),u1,g(u1))

Θ(ϕ, θ) · (−1,∇G1(u1, g(u1)))

Θ(ϕ, θ) · (G1u2(u1, g(u1)), 0, 1)
+O(a).

Introducing the notation

Γ(ϕ, θ, u1) =
Θ(ϕ, θ) · (−1,∇G1(u1, g(u1)))

Θ(ϕ, θ) · (G1u2(u1, g(u1)), 0, 1)
,

H(ϕ, θ, u1) = Θ(ϕ, θ) · (G1(u1, g(u1)), u1, g(u1)),

and splitting the integral in θ over [−π
2
, π
2
] and [π

2
, 3π

2
], we can write:

I11(a, 0, 0, 0)=
1

(2π)2
I111(a, 0, 0, 0) +

1

(2π)2
I112(a, 0, 0, 0),

where (using again that ψ̂1 is odd and ψ̂2 is even)
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I111(a, 0, 0, 0) =
∫ π

2

−π
2

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 tan θ)

× ψ̂2(a
− 1

2 cotϕ sec θ)
∫ β

α
e−2πi ρ

a
H(ϕ,θ,u1)Γ(ϕ, θ, u1) du1 sinϕ dρ dϕ dθ

I112(a, 0, 0, 0) = −
∫ π

2

−π
2

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ) ψ̂2(a

− 1
2 tan θ)

×ψ̂2(a
− 1

2 cotϕ sec θ)
∫ β

α
e−2πi ρ

a
H(ϕ,θ+π,u1)Γ(ϕ, θ + π, u1) du1 sinϕ dρ dϕ dθ.

It is sufficient to examine the term I111(a, 0, 0, 0), since the behavior of I112(a, 0, 0, 0)
is similar.

Notice that g(0) = 0, G1(0, g(0)) = 0 and hence H(ϕ, θ, 0) = 0 for all a, ρ, ϕ,
and θ. Let Φ(u1) = G1(u1, g(u1)). If we assume Φ′(0) ̸= 0, then we have
∂
∂u1

(H(ϕ0, θ0, 0)) ̸= 0 and hence we may assume that ∂
∂u1

(H(ϕ, θ, u1) ̸= 0 for
all ϕ, θ and u1. Since u1 = 0 is an interior point of the interval (α, β), the same
argument used in the proof of (ii) in Theorem 3.1 yields that I111(a, 0, 0, 0) has
rapid decay as a→ 0. It remains to consider the two cases Φ′(0) = 0, Φ′′(0) ̸=
0 and Φ′(0) = 0, Φ′′(0) = 0.

• Case 1: Φ′(0) = 0, Φ′′(0) ̸= 0.

In this case, we have that ∂2

∂u21
H(ϕ0, θ0, 0) ̸= 0 and hence we may assume that

∂2

∂u21
H(ϕ, θ, u1) ̸= 0 for all ϕ, θ and u1. Choose η(u1) ∈ C∞

0 (α, β) such that

η(u1) = 1 for u1 near 0 and let

Γ(ϕ, θ, u1) = Γ1(ϕ, θ, u1) + Γ2(ϕ, θ, u1),

where Γ1(ϕ, θ, u1) = Γ(ϕ, θ, u1)(1 − η(u1)) and Γ2(ϕ, θ, u1) = Γ(ϕ, θ, u1)η(u1).
For j = 1, 2, let I111j be defined by replacing Γ in I111 by Γj. For I1111, one can
follow the proof of Lemma 4.1 to show that I1111 has rapid decay as a → 0.
For I1112, one can apply Lemma 4.2 for the integral on u1, and t1 = a−

1
2 tan θ

and t2 = a−
1
2 cotϕ sec θ for the integral on ϕ and θ to show that I1112 = O(a

3
2 )

as a→ 0.

• Case 2: Φ′(0) = 0, Φ′′(0) = 0.

In this case, we have that Φ(u1) = O(u31) as u1 → 0. Write g(u1) = g′(0)u1 +

O(u21). Again, letting t1 = a−
1
2 tan θ, t2 = a−

1
2 cotϕ sec θ and v = a−

1
2u1, one

can verify that

lim
a→0

ρ

a
H(ϕ, θ, u1) = ρ (t1v + t2g

′(0) v).

It follows that

lim
a→0

a−
3
2 I1112(a, 0, 0, 0) = − 1

(2π)2Gu2(0, 0)

∫ ∞

0

∫ 1

−1

∫ 1

−1
ψ̂1(ρ)ψ̂2(t1) ψ̂2(t2)×
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×
∫ ∞

−∞
e−2πρi(t1v+t2g′(0)v)dv dt1 dt2 dρ

= − 1

(2π)2Gu2(0, 0)

∫ ∞

0
ψ̂1(ρ)

∫ ∞

−∞
ψ2(ρv)ψ2(ρg

′(0)v) dv dρ.

Combining Case 1 and Case 2, it follows that

I111(a, 0, 0, 0) = O(a
3
2 ).

As mentioned above, the behavior of I112(a, 0, 0, 0) is similar, so that we have
that

I11(a, 0, 0, 0) = O(a
3
2 )

This completes the proof of (iv).

Proof of (ii). This is the situation where p ∈ ∂Ω \∪mj=1 γj, and the unit vector
Θ(θ0, ϕ0) associated with the shearing variables (s1, s2) does not correspond
to the normal orientation, that is Θ(θ0, ϕ0) ̸= ±n⃗(p)

As in the proof of (iii), Situation (I), it is sufficient to examine the integral
I1, given by (7), with p = (0, 0, 0), θ0 = 0, ϕ = π

2
, which yields s1 = s2 = 0. In

particular, using polar coordinates, we can express the integral I1(a, 0, 0, 0) as

I1(a, 0, 0, 0)

= − 1

2πia

∫ 2π

0

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ)ψ̂2(a

− 1
2 (tan θ))ψ̂2(a

− 1
2 (cotϕ sec θ))

×
∫
U
e−2πi ρ

a
Θ(ϕ,θ)·(G(u),u) Θ(ϕ, θ) · (−1,∇G(u))du ρ sinϕ dρ dϕ dθ.

As in the proof of (iii), we can express U as U = {(u1, u2) : α1 ≤ u1 ≤
β1, α2 ≤ u2 ≤ β2} with α1, α2 < 0, β1, β2 > 0. Also, as in the proof of (iv),
we may assume that Θ(ϕ, θ) · (G1u2(u), 0, 1) ̸= 0 for all ϕ, θ and all u ∈ U . It
follows that

∫
U
e−2πi ρ

a
Θ(ϕ,θ)·(G(u),u)Θ(ϕ, θ) · (−1,∇G(u))du

=− a

2πiρ

∫ β1

α1

∫ β2

α2

∂

∂u2
(e−2πi ρ

a
Θ(ϕ,θ)·(G(u),u))

Θ(ϕ, θ) · (−1,∇G(u))
Θ(ϕ, θ) · (Gu2(u), 0, 1)

du2du1.

Integrating by parts the inner integral, this can be written as:∫ β2

α2

∂

∂u2

(
e−2πi ρ

a
Θ(ϕ,θ)·(G(u),u)

) Θ(ϕ, θ) · (−1,∇G(u))
Θ(ϕ, θ) · (Gu2(u), 0, 1)

du2 = J1(u1)− J2(u1),
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where

J1(u1)=

(
e−2πi ρ

a
Θ(ϕ,θ)·(G(u1,u2),u1,u2)

Θ(ϕ, θ) · (−1,∇G(u1, u2)
Θ(ϕ, θ) · (Gu2(u1, u2), 0, 1)

)u2=β2
u2=α2

J2(u1)=
∫ β2

α2

e−2πi ρ
a
Θ(ϕ,θ)·(G(u1,u2),u1.u2)

∂

∂u2
(
Θ(ϕ, θ) · (−1,∇G(u1, u2))
Θ(ϕ, θ) · (Gu2(u1, u2), 0, 1)

) du2.

Since β2 ̸= 0, α2 ̸= 0, it follows that (G(u1, β2), u1, β2) ̸= (0, 0, 0) and that
(G(u1, α2), u1, α2) ̸= (0, 0, 0) for all u1 ∈ [α1, β1]. Using the argument of
Lemma 4.1, for u1 fixed, it follows that the J1 term yields the desired decay
aN . Integrating by parts the integral J2, an argument by induction shows that
also the J2 term gives the desired decay aN . This is completes the proof of (ii).

Remark 4.1 In the proof of Theorem 3.1, we made the assumption that
s = (s1, s2) = (0, 0). Let us examine how to modify the argument for the case
(iii) - Situation (I) when s = (s1, s2) ̸= (0, 0). For other cases, the modification
is either trivial or straight forward.

Since s = (s1, s2) ̸= (0, 0), we have s1 = tan θ0, s2 = cot θ0 cotϕ0 with
(θ0, ϕ0) ̸= (0, π

2
) (or (π, π

2
)). In this case, letting S,G(u), S0, G0(u) be given as

in Lemma 4.5, with S = (G(u), u) and p = (G(0), 0) with G(0) = 0, and using
spherical coordinates, the integral I1(a, s1, s2, 0), taken on S0, can be written
as

I1(a, s1, s2, 0)=− 1

2πia

∫ 2π

0

∫ π

0

∫ ∞

0
ψ̂1(ρ sinϕ cos θ)ψ̂2(a

− 1
2 (tan θ − tan θ0))

× ψ̂2(a
− 1

2 (cotϕ sec θ − sec θ0 cotϕ0))
∫
U
e−2πi ρ

a
Θ(ϕ,θ)·(G0(u),u)

× Θ(ϕ, θ) · (−1,∇G0(u)) du ρ sinϕ dρ dϕ dθ.

We assume Gu1u2(0, 0) = 0 so that

G0(u) = Gu1(0, 0)u1 +Gu2(0, 0)u2 +
1

2
(Au21 +Bu22),

where A, B are given by (10). Since Θ(θ0, ϕ0) = ±n⃗(p), we have that

F1(ϕ0, θ0, 0)=−Θ(θ0, ϕ0) · (Gu1(0, 0), 1, 0) = 0,

F2(ϕ0, θ0, 0)=−Θ(θ0, ϕ0) · (Gu2(0, 0), 0, 1) = 0.

It follows that Gu1(0, 0) = − tan θ0 and Gu2(0, 0) = − cot θ0 cotϕ0. Also we
have that

F1(ϕ, θ, u)=−Θ(θ, ϕ) · (Gu1(0, 0) + Au1, 1, 0) =
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=− cos θ sinϕ (Gu1(0, 0) + Au1)− sin θ sinϕ;

F2(ϕ, θ, u)=−Θ(θ, ϕ) · (Gu2(0, 0) +Bu2, 0, 1)

=− cos θ sinϕ (Gu2(0, 0) +Bu2)− cosϕ.

Solving u1,θ,ϕ from F1(ϕ, θ, u) = 0 and u2,θ,ϕ from F2(ϕ, θ, u) = 0, we obtain
that, if A ̸= 0,

u1,θ,ϕ = − 1

A
(tan θ +Gu1(0, 0)) = − 1

A
(tan θ − tan θ0),

and, if B ̸= 0,

u2,θ,ϕ = − 1

B
(sec θ cotϕ+Gu2(0, 0)) = − 1

B
(sec θ cotϕ− sec θ0 cotϕ0).

Now if we let t1 = a−
1
2 (tan θ − tan θ0), t2 = a−

1
2 (sec θ cotϕ − sec θ0 cotϕ0),

then the rest of the argument is the same as for the case s = (0, 0).
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