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Abstract

This paper presents a general result from the study of shift-invariant spaces
that characterizes tight frame and dual frame generators for shift-invariant
subspaces of L?(R"). A number of applications of this general result are then
obtained, among which are the characterization of tight frames and dual frames

for Gabor and wavelet systems.

1 Introduction

The aim of this paper is to provide an unified approach to the characterization of a

large class of systems satisfying a reproducing formula of the form

F=Y {fi) b, (1)

el

or, more generally,

F=> (f b, (2)

i€T
where f,1;, ¢;,i € Z, belong to L?(R"). The kind of reproducing systems that we will
consider are generated by the action of translations, dilations and modulations on a
finite family of functions. To keep the notation to a minimum and focus on the main

ideas that we will present in this paper, let us restrict our attention, for the moment,



to one-dimensional systems generated by a single function. The Gabor system, for
example, is generated by the action of the translations 7., k € Z, ¢ > 0, and modu-
lations My,,, m € Z, b > 0, on a function ¢ € L*(R), where T, ¢(z) = ¢(x — ck) and
My, h(x) = ¥ 4)(x). The system thus obtained is {t; }icr = {Mpm Ter ¥ }mkez,
where the indexing set, in this case, is Z = {(m, k) : m,k € Z}. Wavelets are obtained
in a similar way, with the dilations Dy;, where Dyjtp(z) = 2//24)(27z), j € Z, replacing
the modulations. The system thus obtained has the form {v;}icz = {Dai T, ¥} gez.,
where Z = {(j,k) : j,k € Z}, and is often referred to as an affine system. In the case
of the Gabor system, the order of the modulation and translation operators can be
reversed; however, this is not the case for the affine system, if we want to preserve
the reproducing property (cf. Section 3 for more details).

In the Gabor case, the following simple result, which was originally found in [11]
with some mild decay assumptions on 1, characterizes all the Gabor systems for
which the reproducing formula (1) holds (cf. Section 3 for more references about this

and related results).

Theorem 1.1. Let i) € L*(R), b, ¢ > 0. Then

= f My Tatp) My T b for all f € L*(R)

k,m€EeZ

if and only if the following two equations are satisfied:

Z (& —cm)]> = b for a.e. £ € R, (3)
meZ
Z Y(E—cm)p(E—cem+b"tu) =0 fora.e. £ €R, ueZ\{0}. (4)

mez
The study of the characterization of affine systems is more complex. The program
of characterizing orthonormal wavelets and affine tight frames in terms of simple
equations has been carried out by G. Weiss and his collaborators, starting with the
characterization of band-limited orthonormal wavelets [1]. Similarly to the case of
Gabor systems, all the affine systems for which the reproducing formula (1) holds can
be characterized in terms of two simple equations (cf. Section 3 for references about

this and related results). In the one-dimensional case, with dyadic dilation, we have:

Theorem 1.2. Let ¢ € L*(R), ¢ > 0. Then

f=> (f Do Teptp) Doy Tty for all f € L*(R)

J,k€EZ



if and only if the following two equations are satisfied:

Z (P EP =¢  forae £€R, (5)
jEz
Z@(ng)@/;(%(f—q)) =0 for a.e. £E€R, g€ 27+ 1. (6)

j20

Observe that equations (3) and (4) in Theorem 1.1 can be replaced by the following
equations in terms of ¢ instead of ¢ (cf. Corollary 3.3):

d (e —btm))> =c  forae (€R (7)
meZ
S P —bm) P —bm+cu) =0 forae (R uecZ\{0}.  (8)

meZ

A comparison of these equations with equations (5) and (6) shows that the equations
that characterize an affine reproducing system are in a certain sense the analog of
the equations that characterize a Gabor reproducing system, where the modulation
operator is replaced by the dilation operator. One of the motivations of our work is
to better understand the analogy between these two systems.

Related to this, is the research of Ron and Shen, who have shown that, if the
affine system {Ds; Ty )} is modified so that, for j < 0, Dy Tex ¢ is replaced by
2/2 T... Dyi 1), then this new collection, which they called a quasi-affine system, is a
reproducing system whenever the affine system has this property [27]. The importance
of the quasi-affine system is that, unlike the affine system, but similarly to the Gabor
system, it is shift-invariant, i.e., any integer translation of the functions in the system
leaves the system unchanged. Ron and Shen have used this observation to study both
wavelets and Gabor systems using techniques from the theory of shift-invariant spaces
(cf. [25, 26, 27]). These considerations indicate the special role of the translation
operator in the study of Gabor and affine systems. For example, it was recently
pointed out by Weiss and Wilson [WWO01], that the translations, more than the
dilations, play a critical role in the discretization of continuous wavelets.

Let us consider now the general n-dimensional case. Let g;, i € Z, be elements
of L*(R"), and X(g) = {Trg; : k € Z",i € T}. Since any multi-integer shifts of
the functions in X (g) leave the system unchanged, X(g) is clearly a shift-invariant
system, and the space generated as the closure of its span is a called a shift-invariant

subspace of L?(R"). The general properties of these spaces have been investigated by
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a number of authors, including [19, 13, 25] and [3]. In this paper, we will present
a new approach to the characterization of all the shift-invariant systems X (g) that
realize a reproducing system, and will show that such systems are characterized by
two simple equations, similar to the equations of Theorem 1.1 and 1.2. With respect
to [25], where similar results were obtained, our approach is more direct and more
focused on the characterization of functional systems in terms of equations. As an
application of our general result, we will deduce the equations that characterize a
large class of reproducing systems, including Gabor systems, wavelets and related
systems.

The paper is organized as follows. In Section 2 we establish some notation and
definitions that will be useful throughout the paper. In Section 3 we describe the
main result and its implications. We develop our approach to the characterization of
shift-invariant systems for L*(R") in Section 4, and then apply these results to the
study of affine and Gabor systems in Sections 5 and 6, respectively.

Acknowledgements. We are grateful to to Marcin Bownik, Eugenio Herndndez,
Brody Johnson, Hrvoje Siki¢, Fernando Soria, Guido Weiss and Edward Wilson for

several stimulating discussions on this subject during the preparation of this paper.

2 Preliminaries

We consider three fundamental operators on L*(R"): the translations T, : (T,f)(z) =
f(z —y), where y € R; the dilations D4 : (Daf)(z) = |det A2 f(Az), where A is
an expanding n X n dilation matrix preserving Z", i.e., A is an integer matrix and all
eigenvalues A of A satisfy |[A| > 1; and the modulations M, : (M, f)(x) = ™7 f(x),
where z € R".

We use the standard notation ||f|| for the norm of f € L*(R"), and (f,g) for
the usual inner product of f,g € L*(R"). The Fourier transform is defined as
F(&) = [, f(x) e ™% dy; the inverse Fourier transform is f(x) = [, f(£) e>™ "¢ dé.
Throughout the paper, the space T" will be identified with [0, 1]™.

We will need the following facts from the theory of frames. Additional information
on the subject can be found in [14, 18, 20]. Let H be a separable Hilbert space and

Z a countable indexing set.

Definition 2.1. A sequence g = {g; }iez of elements of H is a Bessel sequence if there



exists a constant B, > 0 so that

STUF gl < ByllfI> forall f € H.

1€l

If, in addition, there is a constant 0 < A, < B, so that

A AP < D 1P < BollfIIP forall f €A,

i€T
then {g;}icr is a frame for H.

The numbers Ay, B, are called the lower and upper frame bounds, respectively.
The frame is a tight frame if A, and B, can be chosen so that A, = By, and is a
normalized tight frameif A, = B, = 1.

Given a frame g = {g;}icz of H with lower and upper frame bounds A, and B,
respectively, the frame operator S, defined by S, f = >_../(f. i) g, is a bounded,
invertible and positive mapping of H onto itself. This provides the frame decomposi-
tion:

F=> 5" gygi = (fr9) S, gi,  forall feH, (9)

ieT i€T
with convergence in H. The sequence {S;lgi}iez is also a frame for H, called the
canonical dual frame of {g;}icz, and has upper and lower frame bounds B;l and A;l,
respectively. If the frame is tight, i.e. A, = By, then Sg_l = Ag_l I, where [ is the

identity operator, and the frame decomposition becomes:

1
f= A—gZ<f, g)g:  forall f € H, (10)
€L
with convergence in H.
Equations (9) and (10) show that a frame provides a basis-like representation. In
general, however, a frame need not be a basis. If the frame {g;}icz happens to form

a basis, then the only way to write

f= Zci 9i» fen, (11)

ieT
is with ¢; = (f, Sg_lgi>. If the frame is not a basis, then there will be other choices of
{ci}ier so that equation (11) is satisfied. However, among all these (non-canonical)

choices, the canonical dual frame ¢; = (f, S, 'g;) satisfies the following “minimal”

5



property: the sequence {c;}icz that minimizes the quantity Y, |c;|* over all {¢;}iez
satisfying (11) is uniquely given by ¢; = (f, S, g;) (cf. [10, p.62]). Furthermore, the
elements of a frame {g;};,cz must satisfy ||g;|| < /B, for all i € 7, as can easily be

seen from

lgll* = Kgi g)1* < >~ g 90)* < By llgell*
1€l

In particular, if {g;}ic7 is a normalized tight frame, then [|g;]| < 1 for all i € Z, and
the frame is an orthonormal basis for # if and only if ||g;]| = 1 for all i € T (cf.
Chapter 8 in [20]).

The following terminology will also be used. Let g = {g;}icz and v = {v; }iez be

Bessel sequences for H. Then the operator
Koo(F,1) =D (F.9:) (s )
ieT
defines a bounded sesquilinear operator on H X H. We have the following definition.

Definition 2.2. Let g = {g;}iez and v = {7;}ier be Bessel sequences for H. Then
{7i}iez is called a dual frame of {g;}iez, if

K,.(f,h) = (f,h),  forall f,heH. (12)

If this is the case, then we have:

F=Y{fwe =) (fgdw  forall feH,

icT i€T
with convergence in H. Note that, by the polarization identity for sesquilinear forms,
we have K, (f,h) = % S 0" K, (f +i"h, f +i"h). Therefore, (12) holds if and
only if it holds for all f =h € H.

We complete this section by recalling the following useful properties of tight frames
and dual frames for L*(R").

Lemma 2.1 ([20]). Let {gi}icx C L*(R™). Then the following are equivalent.

IFIP = D 1P forall f € L*(R"),

i€l
IfII? = Z [(f, 9i) 7, for all f € D, where D is dense in L*(R").

i€l



Lemma 2.2 ([15]). Suppose that {g;}icz, {vitiex C L*(R") are Bessel sequences.

Then the following are equivalent.

(f,h) =D (fr90) (vish),  for all f € L*(R"),

i€T
(f,hy = Z(f, gi) (vi, h), for all f € D, where D is dense in L*(R").

3 Main Results

In this section, we will present the main results of this paper and show that the
characterizations of a large class of reproducing systems, including wavelets and Gabor
systems, can be obtained as corollaries to a general result from the theory of shift-
invariant systems. To focus on this main idea, most of the proofs, together with some
additional results, will be discussed in Sections 4, 5 and 6.

Let P be a countable indexing set. We have the following characterization of
tight frame generators for L?(R") under multi-integer shifts, which is due to Ron and
Shen [25, Cor.3.3.6] (cf. also [23, Th.1.2.5]). As described in Section 1, we will present

in Section 4 a new proof of this result.

Theorem 3.1. Let {g,},er C L*(R") and let C' be a non-singular n X n matriz with

real entries. Then,

Z Z ‘<f, Tek gp) C = IfII> forall f € L*(R") (13)
pEP keZ™
if and only if
Z Gp(&) Gp(€ + (CT)"tu) = [det C| by for a.e. £ € R", (14)

peEP

for each u € Z™, where ¢ is the product Kronecker delta in Z".

Equation (13) asserts that the system {ZT¢t gy, k € Z", p € P} is a normalized
tight frame for L*(R"). Observe that, by the properties of tight frames discussed in
in Section 2, equation (14) with the assumption that ||g,|| = 1, for every p € P, is
necessary and sufficient for {Tcy. g, reznpep to form an orthonormal basis. A similar
observation will hold for all the characterizations of tight frames that we will discuss

in this section as applications of Theorem 3.1.
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For our first application of Theorem 3.1, we will consider {g,},cp, where P is
described by
P={(,m):£=1,2,...Land m € Z"},

and g,, p = (¢, m), is defined by
9p(%) = gem) (1) = (Mpm ¢')(x) = 2™ g (), (15)

where B is a fixed non-singular n x n matrix with real entries. Under multi-integer
translations in Z", the collection {g,},cp generates the Gabor or Weyl-Heisenberg
system, {TCk Mpng' :kkmeZrl=1,.. .,L}.

Observe that the order of the modulation and translation operators in the Gabor
system can be reversed without affecting the reproducing property of the system.
In fact, Mgy, Ter, = €™ B™Ck T Mp,,, and so Zk’m<f, Ter M g) Tor Mgy =
> ks M Ter g) Mpm Tey 7y, for any f, g,y € L*(R") (provided that the sum con-
verges).

Using Theorem 3.1, we then obtain the following known characterization of Gabor
tight frames. This result (or the equivalent one stated in Corollary 3.3) can be found

in the literature in [26, 6, 9], while it also follows from the developments in [23].

Corollary 3.2. Let ¢g*,..., g% € L*(R") and let C,B be non-singular matrices with

real entries. Then,

L
Z Z ‘<f7TClc Mg, g°) g IfII*  forall f € L*(R")

(=1 k,mezZm™

iof and only iof

L
Z Z §'(€ — Bm) §*(€ — Bm + (CT)"lu) = |det C| 0,0, for a.e. £ €R™, (16)

l=1 mezZ"

where u € Z™ and ¢ is the product Kronecker delta in Z".

The following alternative characterization of Gabor tight frames, stated in terms

of g instead of g, is more common in the Gabor literature.

Corollary 3.3. Let g*,..., g% € L?*(R") and let C,B be non-singular matrices with

real entries. Then,

L
S S [ Ten Mo g = 117 for alt f € LR

(=1 k,meZ"



iof and only iof

L
Z Z g'(x — Ck) g'(x — Ck + (BT) 'u) = |det B| 8,0, for a.e. z €R", (17)

(=1 keZ™

where u € Z™ and ¢ is the product Kronecker delta in Z".

As a second application of Theorem 3.1, it is natural to consider the systems that

are obtained by replacing the modulation operator in (15) with the dilation operator.
Let P be defined by

P={(0):j€Z, and t=1,...,L},

and let 6, p = (j,£), be defined by

0,(r) = 50-,,3)(1;) = (| det AP/2Dy; ") (z) = | det A *(Alx),

where A is a n X n nonsingular matrix with real entries, and ¥ = {¢!,... %} is a
finite collection of functions in L*(R"). We observe that with this choice for P and
gp, the system {7} §p .k € Z",p € P} is the system X () = {|det AJ7/2T}, D ¢* :
jEZLkeZ"{=1,..., L}, which will be called a co-affine system. We refer to [16]
for more details about this system and its relation to the affine group.

We obtain the following characterization of the co-affine system X ().

Corollary 3.4. )N((\If) is a normalized tight frame if and only if

L
D [((ATYE)|P =1 for a.e. € € R,

(=1 j€Z

and

ZZW((AT)JE) W((AT)]'(f + 8)) =0 forae £€R",

(=1 jez

where s € Z" \ {0}.

A comparison of Corollary 3.4 with Corollaries 3.2 shows that the equations that
characterize the co-affine system are the analog of the equations that characterize the
Gabor system, where the modulations are replaced by dilations. On the other hand,

a comparison with the affine system, that we will discuss next (Corollary 3.8), shows



that the conditions that characterize the co-affine system are more difficult to meet
than the conditions of the affine system. In fact, there are no (nontrivial) co-affine
normalized tight frames. This can be observed trivially from the fact that the norms
| det AIPTLD 49" = |det AJ/2 ||)*|| are unbounded when j — oo, and therefore
)?(\I!) cannot be a Bessel system. The following surprising result shows that this
situation cannot be improved by changing the normalization factor in the definition

of the co-affine system.

Theorem 3.5 ([16]). Let {+',... 4L} be a finite collection of functions in L*(R"),
and {c;};jecz be a sequence of constants. Then the system {cj T.Dy': 5 €T, ke
Z"el=1,... L} cannot be a frame for L*(R").

The third application of Theorem 3.1 of interest here regards the characterization
of affine (wavelet) tight frames for L?(R"). Let ¥ = {4, ..., 4L} be a finite collection
of functions in L?(R"™). The affine system generated by ¥, denoted as X (¥), is defined
by

X(W)={i,:jet ke t=1,... L}, (18)

where 1/)fk = D4 Tp " and A is an expanding n x n dilation matrix with integer
entries. Observe that the affine system is not shift-invariant, in general, and thus
Theorem 3.1 does not apply here directly.

In order to study the affine system X (¥), we will make use of the quasi-affine
system generated by ¥, denoted by )?(N)(II/), which is defined by

XM(0) = {4, jeLker" t=1,...,L} (19)
where N > 0 is fixed, and

- |det A| T, D, j < N

(.
Jk
e .
(U j > N.

Observe that this definition generalizes the definition of quasi-affine systems intro-
duced by Ron and Shen where N = 0 [27], and, as we will show later, the reproducing
properties of the quasi-affine system depend on N. Also notice that the quasi-affine
system, unlike the affine system is shift-invariant. In fact, if j < N, then i/:fk is shift-
invariant by construction, while, if 7 > N, then %{k = %{k is shift-invariant since A

is integer-valued and N > 0.
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The utility of the quasi-affine system is demonstrated by the following result,
which shows that there is some sort of equivalence between affine and quasi-affine
systems when N = 0. This result was discovered originally by Ron and Shen [27]
under a mild decay assumption on ¥, and proved in full generality by Chui, Shi, and
Stockler [8, Th. 2, Th. 3]. Remark that we always assume that A is an ezpanding
n X n dilation matrix with integer coefficients, and the proof of the following theorem

requires this assumption.

Theorem 3.6 ([8]). Let ¥, ® be finite subsets of L*(R") with the same cardinality.
Then,

(1) X(U) is a Bessel sequence if and only if X©(W) is a Bessel sequence.

Furthermore, the upper frame bounds are equal.

(2) X(V) is a frame if and only if X© (V) is a frame. Furthermore, their lower

and upper frame bounds are equal.

(3) X(®) is a (affine) dual sequence of X (V) if and only if X©(®) is a (quasi-
affine) dual sequence of X ().
Observe the statement (3) in Theorem 3.6 is not stated and proved in [8], but
it follows from the techniques developed in their paper, as observed by Bownik |2,
Theorem 4.1].

Since the quasi-affine system )?(N)(\Il) is invariant under translations by & € Z",

we can realize X ) () by exhibiting a generating set under Z"-translations. We have
XM(0) = Ty, k€2, jeLde Dyl =1,...,L},

where, for j > N, D; denotes a complete set of representatives of distinct cosets of
Z"(AIZ) and, for j < N, D; = {0}. This description of X (W), when N = 0, can
be also found in [4].

In accordance with the above observation, we now define the collection {6, },cp to
which Theorem 3.1 will be applied for the characterization of quasi-affine normalized
tight frames. Let P be defined by

P={(jd():j€Z deD; and £ =1,...,L},
and let ¢, be
0p(2) = 0000 () 1= (Das Ty ) () = | det AP/2 (Al — d).

11



We observe that with this choice for P and 6,, the system {7} 0, : k € Z",p € P} is
the quasi-affine system X ) ().
We have the following characterization of the quasi-affine systems X (D).

Corollary 3.7. Let N > 0. )N((N)(\If) is a normalized tight frame if and only if

S (AT =1 for ae. ¢ € R 20)

(=1 jeL
and
L
ZZ AT )@/}”((AT) £+ (AT)s)) =0  for a.e. £ €R", (21)
=1 j>0
forr=0,—1,...,—N, where s € Z"\ ATZ".
Observe that (21), with r = 0,—1,..., =N, is a set of N + 1 equations. In case

N = 0, then (21) reduces to one equation, and, by Theorem 3.6, equations (20)
and (21) also characterize the affine system X (W). It is easy to construct examples
of quasi-affine normalized tight frames with N > 0. Consider, for instance, the
one-dimensional quasi-affine system generated by z/;(f) = X[=1/2,-1/4)u1/4,1/2] (§), With
dyadic dilation, L =1 and N = 1. Then, the quasi-affine system )?(1)(111) satisfies the
assumptions of Corollary 3.7, and thus it forms a (quasi-affine) normalized tight frame.
In general, it is clear that, if X(V)(0) is a normalized tight frame, then X 2)(),
with Ny < N; has the same property. On the other hand, as N increases, and more
(affine) functions ¢, are replaced by (co-affine) functions |det A|*/2 T}, D 4; 9", there
are fewer quasi-affine normalized tight frames.

As we mentioned in the preceding paragraph, by Theorem 3.6, an affine system
X (W) is a normalized tight frame if and only if the quasi-affine system X (©)(¥) has the
same property. Therefore, using Corollary 3.7, with N = 0, we obtain the following
known characterization of multiwavelets. This result can be found in the literature
n [2, 4, 5]. This result is also obtained in [27] under some decay conditions on
1, and for special dilations in [20] and [15]. A more general result, with arbitrary

(non-integer) expanding dilation matrices, has recently been found in [7].

Corollary 3.8. X (V) is a normalized tight frame if and only if (20) and

SN P((ATYE) YH((AT)i(E +5)) =0 for a.e. £ ER, (22)

=1 j>0

where s € Z™\ ATZ"™, hold.
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4 Shift-invariant systems

In this section, we present the proof of Theorem 3.1 and discuss some additional
properties of multivariate shift-invariant systems, including the characterization of
dual frames for L?(R").

The following useful facts are easy to verify.

Lemma 4.1. Let A be nonsingular a n x n matriz with real entries, and y,z € R".

~

(1) (T, )" =My f, (M.f)* =T.f. (Daj )" = Diary-i f:
(2) Ty M. f = e >V M. T,f;

(3) (T, M. f)" = e "=V T, M_, f;

(4) (D T, f)(€) = M_y 5, Doary-s f(€) = | det A|73/2 f((AT)=ig) e=2miA7vE,;
(5) (Ty Dai f)(&) = M_y Diary- f(g) = | det A| /2 f((AT)~9¢) e 2miv€,

In order to prove Theorem 3.1, we need to discuss some useful properties of shift-

invariant systems. From now on, let
D= {f c L*(R") : fer® (R") and f has compact support in R”}.

It is clear that D is a dense subspace of L?(R"). For simplicity, we will use the
notation g,, = T} g,.
Let C be a non-singular n X n matrix with real entries. Then the C-bracket product

of f and g is defined as
[, 9)(z;C) = Y flz = Ck) g(z — Ck). (23)
keZn
This is an extension of the notion and and notation introduced in [13] when C' = I.
It is easy to verify that for f,g € L?(R") the series (23) converges absolutely a.e. to a
function in L'(C'T™). This follows from the following: by the Monotone Convergence

Theorem,

/CWZ |f(x — Ck) g(x — Ck)| dx = Z/CT”V(:E—Ck)g(:E—C’kHd:(;

kezZn
[ 11w gl dr < oo

The following observation is easy to verify:

13



Lemma 4.2. Let C' be a non-singular n x n matriz with real entries. Then,

/m[f B2, Cyde = (f,h),  forall f, h € L2(R").

Observe that, by Lemma 4.2, [...[f,h](z,C)dz = fC’]I‘n[f’ h|(€,C)de. Tt also
follows from Lemma 4.2 that the integral [...[f,h](z,C)dxz is independent of the
choice of the matrix C.

We make the following useful observation:

Lemma 4.3. Let C' be a non-singular n x n matriz with real entries, and let CT =
(CT)"L. For all g,y € L*(R") and f € D, we have

1 P oa
> (. Terg) (Tery, f) = Taei [f,91(&; CT) [3, £1(&: CT) dE€,

'
kezn ¢

with absolute convergence of the integral.

~

Proof. Since [f, §](&; CT) € LY(C'T"), we have that, for every k € Z",

(f,Terg) = - (&) §(€) ™o dg = [£,9)(& T emiOFtde, (24

cITn
which presents us with the Fourier coefficients of [f, §](&; CT). From (24), using the

Plancherel theorem for Fourier series, we obtain

Z(f,TCk9> <T0k%f> =

kezn

— C’I e2miCk-E g FAL(E: OT) e2riChe€
-3 [ e e [ 1£,30(6 1) ermien< dg

kezn cITn
1

= 140t 0] Jorn OGN 1ANE D e O

The following result will be the main ingredient in the proof of Theorem 3.1 and
the successive characterization of dual frames. The proof that we will present contains

some ideas from [23] adapted to our setting.

Proposition 4.4. Let C' be a n x n nonsingular matrixz with real entries, and let
CT = (CT)~'. Assume that g,,v, € L*(R") for everyp € P, with Y- 5 |3,(€)|* < By,
> per ()P < By, By, By > 0. Then, for every f € D, the function

H(l‘) = Z<Tx fa gp,Ck> <7p,Cka T:v f> (25)

p:k
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is continuous and CZ"-periodic, i.e., H(x + Cl) = H(x) for every { € Z", and
coincides pointwise with its Fourier series Y, ;n ]:I(u) e2miCTur ypith,

. 1
H =
(W) = Tqet o]

| F© fe+ ot (ng 9 +CM)) s, (26)

where w € 7 and the integral in (26) converges absolutely.

Remark. The hypotheses 3 1 [3,(§)[> < By and Y- 5 [35(€)]* < B, are natu-
ral. We will show later (see Proposition 4.5), for example, that this follows from the

better known assumption that {g, cx}pr and {vp.cr}pr are Bessel systems.

Proof of Proposistion 4.4. Choose f € D. For p € P fixed, let

Hy(z) = Y (T: fogpor) oen Ta f) = D (F dpcra) (pcra ). (27)

k k

Equality (27) shows that H,(x) is CZ"-periodic. Using Lemma 4.3 and a change of

index, we have
| det C| H,(z) =
= [ @B b (T O d
- /C,Tn > FE+CN) g€+ CTN Ap(E+ CMm ) F(€ + CTm) 2miC! (m=ya g

[,mezZ™

:/ Z FE+CT) f(E+CT1+u)) 3, (€ + CTI) 4y (€ + CT(1L + u)) 27w ¢
CITnluEZ"

— Z( A f—|—701) ( )/}\/p(é-—i_clu) df) p2miClur (28)

uEZL™

The interchange of sum and integral in (28) is justified since f € D, which implies
that the sum in (28) is finite.
By the Cauchy-Schwarz inequality, we have

1> 3@ wE+Cn < O 13O O 1€+ Cch»)? < BY? B2 (29)
peEP peP peEP

Therefore, since f € D and g,,7, € L*(R"), using the Lebesgue Dominated Conver-

gence Theorem, we have

15



1 F miCTu-x
=§n<m Rnf( FE+Cmu) 33,6 3p(€ + CMu )d§>62 o (30)

pEP

with absolute convergence of the integral. The function H(z) is certainly continuous
since the sum over w € Z" is finite. By the uniqueness of the Fourier series, (30) is
the Fourier series of H(x). O

From the proof of Proposition 4.4, we deduce the following observation, that can
also be found in [Jan97, Prop.1.2.1].

Proposition 4.5. Let C' be a n X n nonsingular matriz with real entries and assume
that the sequence {gycr : k € Z",p € P} of elements of L*(R™) is a Bessel sequence
with upper frame bound By. Then

Z|gp (&)]? < |det C| By, for a.e. £ €R". (31)

peP

Proof. Tt is sufficient to prove the statement for f in a dense subspace of L*(R").

Let f € D. Since {gp.ck}pr is a Bessel sequence, then

(AT S (T f gy < | det C) B, | £ (32)

pEPkEL™

for every x € R* and every f € D. On the other hand, by direct calculation, using
the fact that {g,cr}pr is a Bessel sequence, we find that

AWZ]Tf%m|M—§:AWf%mx|M
=Dl MUTASIRE
é@@mmwx
-2,
=Z@W@V
= X [ e e i

/UFZMP% (33)

pEP

[ FOa@ ] a

dx

16



for every f € D. Equation (31) then follows by comparing (32) and (33). O

Now we can prove Theorem 3.1.

Proof of Theorem 3.1
By Lemma 2.1, it is sufficient to prove the theorem when f € D. Define (formally)

— Z |<Tx f7 gp,C’k> |2
D,k

Observe that this function coincides with the function H(z) of Proposition 4.4 when
gp =, for every p € P (see (25)).

If equation (13) holds, then N(z) = (T, f, T, f) = || f||? for every f € D. Further-
more, {g,cr : k € Z",p € P} is a Bessel sequence with upper frame bound B, = 1,
and, by Proposition 4.5,

Z 13,(€)] < | det O for a.e. £ € R". (34)

peEP

Since N(z) is a constant function, then N(z) equals its constant Fourier coefficient

N(0) = ||f||>. By Proposition 4.4 with g, = 7, for every p € P, we then have

1 =
Tdet 0] Rnf(f)f(§+ (CT)~ (ng &) g€+ (CT)™ )>d§:6u70||f||2, (35)

with u € Z", for every f € D. By (34) the function > 5 9,(£) §,(€ — (CT)71u) is
locally integrable, and so, making appropriate choices of f in (35), we establish (14).

Conversely, assume that equation (14) holds. This implies that Y- . [G,(£)[* <
| det C| for a.e. £ € R" and, therefore, we can apply Proposition 4.4 with g, = ~, for
every p € P. By Proposition 4.4 and equation (14), the function N(z) is continuous

and its Fourier series is
T
§ :N 2mC’ wr N(.ZL'),
UEL™

for every x € R”, with

A~

Nw) = buo [ FOFE+(CT)u)de.

Therefore, N(z) is a constant function and N(x) = ||f||* for every x € R". Taking
x = 0, this establishes equation (13). O

17



From Proposition 4.4, we will now obtain a characterization of the shift-invariant
dual frame generators for L?(R"). A similar characterization can also be found in
[25,Cor.4.2], and, for n = 1, in [23,Th.1.2.2]. Some applications of Theorem 4.6,
including the characterization of wavelet and Gabor dual frames, will be discussed in

Sections 5 and 6

Theorem 4.6. Let C' be a n x n nonsingular matriz with real entries and {gp.ck }p.k
{Vp.cktpr: kK € Z",p € P, be Bessel sequences with upper frame bounds B, and B.,

respectively. Then

S {Fsdpcr) perh) = (fB)  for all f,h € L*(R") (36)
p,k
iof and only iof
> 5p(&) €+ (CT) Tu) = |det C|dy0,  for a.e. £ ER", (37)
pEP

for each u € Z™, where ¢ is the product Kronecker delta in Z™ .

Proof. By Lemma 2.2, it is sufficient to prove the theorem when f,h € D. Fur-
thermore, by the polarization identity, we can set f = h.

Since {gp.ck }rp and {7V,.cr }rp are Bessel sequences, it follows from Proposition 4.5
that

> 1,67 < |det C| By, Z 15,(6) 2 < | det C| B, for a.e. £ €R™.  (38)

pEP

Therefore, we can apply Proposition 4.4, which involves the function H, where H(z) =
Zp,k <T:v fa gp,Ck> <7p,Cka Tx f>

If (36) holds, then H(z) = (T, f, T, f) = ||f||* for every x € R". Since H(x)
is a constant function, then H(z) equals its Fourier coefficient H(0) = ||f]>.

Proposition 4.4, we then have that for every f € D

1
| det C|

[ J© e+ e (ng (6 +(CT) M) ) de = bun 1P, (39)

with u € Z". By (38) and the Cauchy-Schwarz inequality, it follows that the function

> pep 9p(&) V(€ + (CT)~1u) is locally integrable, and so, making appropriate choices
of f in (39) we establish (37).

18



Conversely, assume that (37) holds. By Proposition 4.4 the function H(z) coin-

cides pointwise with its Fourier series

H(z) = Y H(w) ™o,

uEZ™
and, by (37),
H(u) = buo [ f(€) F(€+(CT) 1u) de.
Rn
Therefore, H is a constant function and H(z) = ||f||* for every x € R*. The choice

x = 0 gives us equation (36). O
The following characterization of tight frame generators for shift-invariant sub-

spaces of L?(R") appears to be new.

Theorem 4.7. Let {g,}p,er C L*(R") and let C' be a non-singular n x n matriz with
real entries. Then,
2 n
22 e =1 Jorall f € LA(RY) (40)
pEP kEZ™

if and only if the following two equations hold:

SUST [Fogpen) < IR for all f € LA(RY) (41)
pEP keZn
Z 13,(€))? = | det C| for a.e.{ € R". (42)
peEP

Proof. By Lemma 2.1, it is sufficient to prove the theorem when f € D.

Equation (40) clearly implies (41). Furthermore, by Theorem 3.1, (40) implies
(42).

For the converse, argue as follows. Let N(x) = 37 cp repn (T fy gp.or)[P. Since
{9p.ck}er is a Bessel sequence with upper frame bound B, = 1, then, by Proposi-
tion 4.5, 37 [G,()[> < |det C| for a.e. £ € R", and therefore Proposition 4.4 can be
applied. Using Proposition 4.4 with g, = v, for every p € P, we have that

A

— 1 2
8O = [Y (T Ll

pEPkEL™

B |de1tC’| /CTJf(f)'z > 19(€)1P e = [If |- (43)

peEP

By (41), N(z) = >« KT f, gp.cx) P < ||f|)? for all € R?, and N(z) is continuous
by Proposition 4.4. Therefore, (43) implies that N(z) = || f||?* for every x € R". The
proof is completed by taking x =0. O
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5 Affine Systems

In this section we prove Corollaries 3.4, 3.7 and 3.8. Next, we present the character-

ization of affine dual frames for L?(R").

Proof of Corollary 3.4. _ _

Let P = {(j,f) : j € Z, and £ = 1,...,L}, and 6, = 0, = |det AJ/>D,; ¢".
With this choice for P and gp, then {1} 0, : k € Z",p € P} is the co-affine system
X (). )

By Theorem 3.1 with C' = I, the system {7} gp :k € Z™ p € P} is a normalized
tight frame if and only if

ZQ §—i— u) = 0y0, for a.e. £ € R, (44)

pEP

with w € Z". Using Lemma 4.1, we compute the left hand side of equation (44) as

N 0,(6) 0,(¢ +u) = ZZ@D ((AT) 7€) ((AT) F (€ + ). O

pEP (=1 jeZ

In order to prove Corollaries 3.7 and 3.8, we need the following result, which can
be found in [17, Lemma 5.1].

Lemma 5.1. Let A be a n x n dilation matriz with integer coefficients, and q =
|det A|. Choose a complete set {d,}'; of distinct representatives of the group Z" | AZ"
with dy = 0, that is, Z" = J'_y(d, + AZ"). Then

L)

-1 . Trn
2riAT Lk _ 1 ifk e ATZ

o

0 otherwise.

I
=)

r

We will now prove Corollary 3.7. The proof that we will present contains some

ideas from [4] adapted to our setting.

Proof of Corollary 3.7. Let P = {(j,k,{) : j € Z,d € Dj, and £ =1,...,L}, and
0p = 0.0 = Dai Ty @Ze, where, for 7 > N, D; denotes a complete set of representa-
tives of distinct cosets of Z"/(AIZ") and, for j < N, D; = {0}. With this choice for
P and 6, the system {1} 0, : k € Z",p € P} is the quasi-affine system XM ().
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By Theorem 3.1 with C' = I, the system {1} 6, : k € Z",p € P} is a normalized
tight frame if and only if

> 6,(¢) 0,(6 +u) =0,0, forae £€R" (45)

pEP

with w € Z". Using Lemma 4.1, we compute the left hand side of equation (45) as

S OO TE ) = 3 3 (AT ) T e + ) +

pEP (=1 j<N
L
1 e TN—F ¢\ 0 T\—i —2miA" I d-u
+303 reap VAN IO AN ) Y .
(=1 j>N dGD]‘
(46)
Observe that, by Lemma 5.1,
o det A} if u e (AT)IZ"
Z e—2mA Tdu _ | | ( ) (47)
deD; 0 otherwise.

If w =0, then u € (AT)/Z" for every j > N, and thus, by (46) and (47), it follows
that
L

D10 = D> 1A P

peP (=1 jez
which proves (20).

On the other hand, if u # 0, let s € Z"\ ATZ", s # 0. Then any u € Z", u # 0,

is of the form u = (AT)"s, for some r > 0. Now, if u = (AT)"s for some 0 < r < N,
then, by (47), > de; e 2miATdu — () for every j € Z, and thus, from (46) we obtain:

> 0,(6) 0,6 + ) :Z P((AT) T PU(AT) (€ + (AT)rs))

= Z ' P ((AT) ) L((AT) (€ + (AT)rs))
= 203 BATY ((AT) ) JH(ATY ((AT) N6 + (ATY =),

(48)
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Finally, if u = (AT)"s for some r > N, then, by (47), 3 cp, e 2miATldu — | det A,
for every N < j < r. In this case, from (46) we obtain:

3" 0,(6) 6,(¢ + ) Z Z P ((AT) T GU((AT) T (€ + (AT)rs))

= Zzwe ((AT) (—r) ¢Z((AT)] (€ + (AT)rs))
= ZZW ((ATY ((AT)7€)) PL((AT)I ((AT) e +5)).  (49)

Combining (48) and (49), and makmg a change of variables, we thus obtain (21). O

In order to study the characterization of affine dual system, we will again ex-
ploit the relation between affine and quasi-affine systems given by Theorem 3.6. Let
Ky.s(f,h) and K, 4(f,h) be the operators defined by

l

K¢¢f7 :ZZZ fv ]kv >

(=1 jET keZn

and
!

ngﬁfh ZZZ fwe, ],k’ >7

(=1 jEZ kez™

where ¢f, and z/)f . are defined in (18) and (19), respectively.
We have the following characterization of duality for quasi-affine systems. Since

the proof is very similar to the proof of Corollary 3.7, we will only sketch it.

Theorem 5.2. Let N > 0, and assume that X () and XN (®) have the same

cardinality and generate two affine Bessel sequences. Then
Kyo(f h) = (f,h)  forall f,h € L*(R")

if and only if

L ~
DN G((ATYE) $((AT)E) =1 for ae. EER, (50)
(=1 jer
and 5
DD PH(ATYE) 9 ((ATYI(E + (AT)s)) =0 for a.e. £ R, (51)
(=1 j>0
forr=0,-1,...,—N, with s € Z"\ ATZ".
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Proof. Let P = {(j,k,ﬁ) :j € Z,d € Dj, and l = 1,...,L}, Ip = YGdo) =
Dy Ty Je, and v, = Ya0 = Daily gAz;e. Under these assumptions, the systems
{Tk 9p}rp and {TVp}tryp, k € Z",p € P, are the quasi-affine system )A(:(N)(\I!) and
)A(:(N)(fl)), respectively. By Proposition 4.6 with C' = I, the systems {7} g, }1, and
{Tk ¥} ip k € Z",p € P are dual systems if and only if

ng Yo §+“) = 0u,0- (52)
peEP

Using Lemma 4.1, we compute the left hand side of equation (52) as

D 0 H(E+u) = ZZ@D ((A")77€) $H((AT) I (6 +u)) +

PEP (=1 <0
L
+ Z Z | det A| 7 P ((AT) 7€) GL((AT) = (€ + u)) Z p-2miAT du
(=1 j>0 icD;

The proof now continues exactly like the proof of Corollary 3.7. O
From Theorem 5.2 with N = 0, using Theorem 3.6, we now immediately obtain

the characterization of duality for the affine systems.

Corollary 5.3. Assume that X (V) and X (®) have the same cardinality and generate

two affine Bessel sequences. Then
Ky o(f.h) = (f,h) for all f,h € L*(R")

if and only if equations (50) and

SN P((ATYE) $(ATY(E+5)) =0 for ae. EER”, (53)

(=1 j>0

where s € 7"\ ATZ", hold.

6 Gabor systems

In this section, we present the proofs of Corollaries 3.2 and 3.3 and then we discuss

the characterization of duality for Gabor systems.

Proof of Corollary 3.2. Let P = {(¢{,m):¢=1,...,L and m € Z"}, and let g, =
9ie,m) = Mpp, g*. With this choice for P and g,, the system {Tcy g, : k € Z",p € P}
is the Gabor system {TCk Mg, ge}k i
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By Theorem 3.1, the system {T¢y. g, }r,p is a normalized tight frame if and only if

> 5 g€+ (CT)Mu) = |det C[ b, for ae £ € R, (54)

pEP

where u € Z™. Using Lemma 4.1, the left hand side of (54) is computed as follows:

> 3(€) §(E + (CT)- ZZ (€ — Bm) §'(€ — Bm + (CT)~lu). O

pEP (=1 mez™

We give a direct proof of Corollary 3.3.

Proof of Corollary 3.3. By Plancherel Theorem and Lemma 4.1 we have

L L
>y |(f. Tex Mpm g . (Tew Mo g) )|
(=1 k,mezr =1 mGZ"
L
:Z Z fTBmMC’k9>‘
(=1 k,me

This shows that the collection {Ttx Mpng trme is a normalized tight frame if and
only if {Tsy Mck §°}em,e is a normalized tight frame.

By Theorem 3.1, with g replaced by g, the system {T,, §p}myp is a normalized
tight frame if and only if

> 0(€) gp(€+ (BT) u) = |det B|0,p  forae £ € R, (55)
peP
where u € Z".
Let P = {((,k): ¢=1,...,Land k € Z"}, and let g, = G = Mcy, §*. With
this choice for P and g,, the system {Tg,, g, : m € Z",p € P} is the Gabor system
{TBm Mcy §*} k- Using Lemma 4.1, the left hand side of (55) is thus computed as

follows:

> 9,(8) 9,(E+ (BT) - Zng Ck)§7€ —Ck + (BT) ). O

peEP (=1 keZm™

There is an alternative argument for Corollary 3.3 which we present as an appli-
cation of the bracket product introduced in Section 4.
(Second) Proof of Corollary 3.3. Let C! = (CT)"!. In order to compare (16) and
(17), we will compare the Fourier coefficients of the functions F,(§) = >, ,czn 9(§ —
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Bm) §(§ — Bm+ CTu), uw € Z", and G,(§) = >_,,cz. 9(§ — Cm) g(§ — Cm + Bv),
v € Z" . Since g € L*(R"), then the F € L(B7*0,1]") is BZ"—periodic and the
G € L(C70,1]") is CZ"—periodic. Notice that the index ¢ in (16) and (17) will
be disregarded, since it plays no role in the proof. Using Lemma 4.2, we obtain the

following relation between the Fourier coefficients of F, and G,:

~ 1 T
Fu k) = o T ~ B —2miB kfd
( ) |det B| B’]I‘"[g7 —Clu g](év )6 5
1
= M g, T g B)d
|detB| B'JI“"[ —BI'k 9,1 _cIy g](év ) 6
1 | det C| =
= T, M dr = _ .
| det B C’]I‘”[ Bk 9, M_c1, g)(v,C) dx | det B G_p(u) (56)

If (16) holds, then Fy(§) = |det C|, and F,(§) = 0, when u # 0. This implies that
Fy(0) = |det C|, Fy(k) = 0, if k # 0, and F, (k) = 0, for each k, when u # 0. By (56),
then Go(0) = |det B|, Go(u) = 0, if u # 0, and Gi(u) = 0, for each u, when k # 0.
This implies that Go(§) = | det B|, and G,(§) = 0, when v # 0, which is equation (17).
The proof that (17) implies (16) is similar. O

As a consequence of Theorem 4.6 we obtain the following proof of the Wexler—Raz
theorem which characterizes the duality for Gabor systems. This theorem was found
by Wexler and Raz [29], and proved in [21, 22, 12, 25]. Our proof adapts to the

n-dimensional case the approach used in [21, Prop. A].

Theorem 6.1 (Wexler-Raz). Let B,C be n x n nonsingular matrices with real
entries, and let {Tcy Mpy §"Vime and {Tor Mpm ¥ eme, where k, m € Z", [ €
1,..., L, be Bessel sequences for L*(R"). Then

L
>N (. Tex Mpm g")(Ter Mpm ', h) = (f.h)  for all f,h € L*(R")  (57)

(=1 k,mezm"
iof and only iof
L

Z<g€a T(BT)AU M(CT)—lu ’}/€> == | det B| | det C| 5u,0 61},0 (58)

=1
for each u, v € 7", where § is the product Kronecker delta in 7" .
Proof. Denote C' = (CT)™. Let P = {(m,¢) :m € Z", £ = 1,..., L}, and let
9p = Gme = {Mpp, g"}m.e- Under these assumptions, the collection {T g1, is the
Gabor system {Tcr Mpm g e m.e- Similarly for .
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By Theorem 4.6, (57) holds if and only if

Fu(€) =Y 5p(©) %€+ CTu) = | det C| 6,0,  for ae. £ R, (59)

pEP

where u € Z". Using Lemma 4.1, we obtain

Fu(§)=>_ Y §'(¢ - Bm)4'({ — Bm + C'u). (60)

l=1 mezZ"

It is clear from (60) that F' € L*(B[0,1]") and is BZ" periodic, i.e., F({+ Bl) = F(§)
for every [ € Z". Using Lemma 4.2, Lemma 4.1 and Plancherel theorem, we compute
the Fourier coefficients F,(v), v € Z", of the function F,:

L
Fy(v) = |det B|™! / > 155 T er (€, B) e > B dg
BT =1
L
= [det BT 3 / M_pry 3, T, 31)(€. B) dg (61)
=1 7 BT"

L
= [det B M Y (M g1, §', T o1, 4)

(=1
L
= |det B|71 Z<T(BT)_1’U gZ7 M,(CT)—lu ’)/Z>
(=1
L
= |det B|_1 Z<gz, T_(BT)—lv M_(CT)—lu ’}/€>. (62)
(=1

Observe that Equation (61) is justified since the sum in (60) is absolutely convergent.
By (62), thus equation (59) is equivalent to

L
Z<gz, Tf(BT)—lv Mf(CT)—lu ’)/e> = | det B| | det C| (Su,g 51},07
(=1

for each w,v € Z". 0O

Remark. The condition that {Tc, Mpy, ¢ }rm.e and {Tcr, Mpy, ¥} im.e ave Bessel

sequences cannot be removed in Theorem 6.1 (cf. [21]).

Theorem 6.1 implies the following result, which is due to Rieffel [24]. Our proof

adapts to the n-dimensional case the approach in [21].
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Corollary 6.2. Let g € L*(R"), and let C, B be n x n nonsingular matrices with
real coefficients. If |det C||det B| > 1, then the set {Tcr, Mpm g : k € Z",m € Z"}

cannot be a frame.

Proof. Choose g € L?*(R") so that the set {Tcx Mpy g @ k,m € Z"} is a frame.

Then we have the frame decomposition
f={(f,Tex Mpm 7) Tor Mg~ forall f,h € L*(R"),

where 7 = Sg_lg is the canonical dual of g, and S, is the frame operator associ-
ated with {Tcr. Mg, g}rm- By the “minimal” property of the canonical dual frame
(cf. Section 2), then >, (g, Tck MpmV)|* < D24, lakml® for all vectors o =
{km}emezn € C2(Z" x Z™) satistying

= Z Wm Tk Mpm 9. (63)

k,m

If we set f = g in (63), then we can write g = Zk,m 0k,0 Om.0 Ter Mpm g, and, therefore,

2 1.

g M1 <D 19 Tor Mpm 1P <Y 1680 o
km

k,m

On the other hand, by (58) with v = 0,v = 0,L = 1, we have that (g,v) =
|det C'||det B]. O

References

[1] Bonami, A., Soria, F,, and Weiss, G. Band-Limited Wavelets, J. Geom.
Anal., 3(6), 544-578, (1993).

2] Bownik, M. A Characterizations of Affine Dual Frames in L?(R"), Appl.
Comput. Harmon. Anal., 8(2), 203-221, (2000).

3] Bownik, M. The Structure of Shift-Invariant Subspaces Spaces in
L2(R"), J. Funct. Anal., 177(2), 282-309, (2000).

[4] Bownik, M. On Characterizations of Multiwavelets in L?(R"), Proc.
Am. Math. Soc., 129, 3265-3274, (2001).

27



[10]

[11]

[12]

[13]

[14]

[15]

Calogero, A. A Characterization of Wavelets on General Lattices, .J.
Geom. Anal., 10(4), 597-622, (2000).

Casazza, P., Christensen, O., and Janssen, A.J.E.M. Classifying Tight
Weyl-Heisenberg Frames, The functional and harmonic analysis of
wavelets and frames, (San Antonio, TX, 1999), Contemp. Math., 247,
Am. Math. Soc., Providence, R.I., 131-148, (1999).

Chui, C., Czaja, W., Maggioni, M., Weiss, G. Characterization of Gen-
eral Tight Wavelets Frames with Matriz Dilations and Tightness Pre-
serving Oversampling, J. Fourier Anal. Appl., to appear, (2001).

Chui, C., Shi, X., and Stockler, J. Affine Frames, Quasi-Affine Frames
and Their Duals, Adv. Comp. Math., 8, 1-17, (1998).

Czaja, W. Characterizations of Gabor Systems via the Fourier Trans-
form, Collect. Math., 51 2, 205-224, (2000).

Daubechies, I. Ten Lectures on Wavelets, CBMS—NSF Regional Con-
ference Series in Applied mathematics, Vol.61, SIAM, Philadelphia,
(1992).

Daubechies, 1., Jaffard, S., Journes, J. A Simple Wilson Ortonormal
Basis with Exponential Decay, SIAM J. Math. Anal., 22, 554-572,
(1991).

Daubechies, 1., Landau, H., Landau, Z. Gabor Time—Frequency Lat-
tices and the Wexler—Raz Identity, J. Fourier Anal. Appl., 1, 437478,
(1995).

DeBoor C., DeVore, R.A., Ron A. The Structure of Finetely Generated
Shift-Invariant Spaces in L2(R"), J. Funct. Anal., 119, 37-78, (1994).

Duffin, R.J., and Schaeffer, A.C. A Class of Nonharmonic Fourier Se-
ries, Trans. Amer. Math. Soc., 72, 341-366, (1952).

Frazier, M., Garrigés, G., Wang, K., Weiss, G. A Characterization of
Functions that Generate Wavelets and Related Expansions, J. Fourier
Anal. Appl., 3, 883-906, (1997).

28



[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

Gressman, P., Labate, D., Weiss, G., and Wilson, E.N. Affine, Quasi-
Affine and Co-Affine and Wavelets, in Beyond Wavelets, Stockler, J.
and Welland, G.V., Eds., Academic Press, (2001)

Grochenig, K., and Haas A. Self-Similar Lattice Tilings, J. Fourier
Anal. Appl., 2, 131-170, (1994) .

Heil, C., and Walnut, D. Continuous and Discrete Wavelet Transforms,
SIAM Rev., 31(4), 628-666, (1989).

Helson, H., Lectures on Invariant Subspaces, Academic Press, New
York, (1994).

Hernandez, E., and Weiss, G. A first course on wavelets, CRC Press,
Boca Raton, FL, (1996).

Janssen, A.J.E.M. Signal Analystic Proofs of Two Basic Results on
Lattice Expansions, Appl. Comput. Harm. Anal., 1, 350-354, (1994).

Janssen, A.J.E.M. Duality and Biorthogonality for Weyl-Heisenberg
Frames, J. Fourier Anal. Appl., 4, 403-436, (1995).

Janssen, A.J.E.M. The Duality Condition for Weyl-Heisenberg Frames,
in Gabor Analysis and Algorithms: Theory and Applications, Fe-
ichtinger, H.G., and Strohmer, T., Eds., Birkhauser, Boston, 33-84,
(1998).

Rieffel, M.A. Von Neumann Algebras Associated with Pair of Lattices
in Lie Groups, Math. Ann., 257, 403-418, (1981).

Ron, A., and Shen, Z. Frames and Stable Bases for Shift-Invariant
Subspaces of Ly(R?), Can. J. Math., 47, 1051-1094, (1995).

Ron, A., and Shen, Z. Weyl-Heisenberg frames and Riesz bases in
L*(R?), Duke Math. J., 89, 237-282, (1997).

Ron, A., and Shen, Z. Affine Systems in Ly(R?): The Analysis of the
Analysis Operator®, J. Funct. Anal., 148, 408-447, (1997).

29



[28] Rzeszotnik, Z. Calderén’s Condition and Wavelets, Collect. Math.,
52(2), (2001).

[29] Wexler, J., and Raz, S. Discrete Gabor Expansions, Signal Processing,
21, 207-221, (1990).

[30] G. Weiss, and E.N. Wilson The mathematical theory of wavelets, in
Proceedings of the NATO-ASI meeting: Harmonic Analysis 2000 - A
Celebration, Kluwer, (2001).

Department of Mathematics, Washington University, St.Louis, MO 63130.

email: dlabate@math.wustl.edu

30



