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Abstract. The traditional study of reproducing systems involves the Gabor
systems, that are generated by the action of translations and modulations on
a single or finite family of functions in L2(Rn), and the affine systems, where
the dilations are used rather than the modulations. In this paper, we show
that the interplay of all three operators yield a wide variate of reproducing
systems, and we employ the term wave packet systems, which has been
used by other authors, to describe those function systems generated by the
combined action of a class of translations, modulations and dilations on a
finite family of functions. We will examine in detail both the continuous and
discrete versions of these systems. We shall show that these systems can be
studied by using a unified approach that the authors have developed in some
of their previous work.

1. Preliminaries

Before embarking in this study, it will be useful to introduce some notation
and definitions. We consider three fundamental operators on L2(Rn): the transla-
tions Ty : (Ty f)(x) = f(x − y), where y ∈ Rn; the dilations Da : (Da f)(x) =
|det a|1/2f(ax), where a ∈ GLn(R); and the modulations Mν : (Mν f)(x) =
e2πiν·xf(x), where ν ∈ Rn.

The Fourier transform is defined as

f̂(ξ) = (Ff)(ξ) =
∫

Rn

f(x) e−2πiξ·x dx,

and the inverse Fourier transform is

f̌(x) = (F−1f)(x) =
∫

Rn

f(ξ) e2πix·ξ dξ.

The following proposition, which is easily verified, states some basic properties
of the translation, modulation and dilation operators.
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Proposition 1.1. Let

(1.1) G = {U = cDa Mν Ty : c ∈ C, |c| = 1, (a, ν, y) ∈ GLn(R)× Rn × Rn}.
G is a subgroup of the group of unitary operators on L2(Rn) which is preserved by
the action of the operator U 7→ Û , where Û f̂ = (Uf)∧. In particular, we have:

(i) Ty Mν = e−2πiν·y Mν Ty;
(ii) Da Ty = Ta−1y Da;
(iii) Da Mν = MaT ν Da;
(iv) for U = cDa Mν Ty, then Û = c DaI Tν M−y, where aI = (aT )−1.

2. Wave packet systems

In [CF], Córdoba and Fefferman introduced “wave packets” as those families
of functions obtained by applying certain collections of dilations, modulations and
translations to the Gaussian function. In this paper, we will adopt the same expres-
sion to describe, more generally, any collections of functions which are obtained by
applying a combination of dilations, modulations and translations to a finite family
of functions in L2(Rn). Unlike the original wave packets of Córdoba and Fefferman,
the systems that we will consider will not always be “well localized” in time and
frequency.

Definition 2.1. Let Ψ = {ψ` : 1 ≤ ` ≤ L} ⊂ L2(Rn), where L is a finite
integer, and let S ⊆ GLn(R)×Rn. The continuous wave packet system relative
to S generated by Ψ is the collection:

(2.1) WS(Ψ) =
{
Da Mν Ty ψ` : (a, ν) ∈ S, y ∈ Rn, 1 ≤ ` ≤ L

}
.

Let us make several remarks about this definition.
Note that the map

(a, ν, y) 7→ U
(0)
(a,ν,y) = Da Mν Ty

is a one-to-one function from S × Rn into G, where G is the group introduced
by (1.1). By changing the oder of the operators, we can also define the following
one-to-one functions from S × Rn into G:

U
(1)
(a,ν,y) = Da Ty Mν

U
(2)
(a,ν,y) = Ty Da Mν

U
(3)
(a,ν,y) = Mν Da Ty

U
(4)
(a,ν,y) = Ty Mν Da

U
(5)
(a,ν,y) = Mν Ty Da.

In view of Proposition 1.1, we can generate alternate continuous wave packet sys-
temsW(i)

S (Ψ), with 1 ≤ i ≤ 5, by replacing the operator U
(0)
(a,ν,y) = Da Ty Mν in Def-

inition 2.1 with the operators U
(i)
(a,ν,y), 1 ≤ i ≤ 5. The systems W(0)

S (Ψ) = WS(Ψ)

and W(1)
S (Ψ) are equivalent since they only differ by a unimodular scalar. The

same is true for the systems W(4)
S (Ψ) and W(5)

S (Ψ). The remaining systems, on the
other hand, have substantial differences that we will explicitly discuss later.
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One could also define more general wave packet systems of the form:

{Up ψ` : p ∈ P, 1 ≤ ` ≤ L},

where L is a finite integer, P is a parameter set and the map p 7→ Up is one-to-one
from P into G, where G is given by (1.1). We will consider some specific examples
of this type in the following.

Finally, observe that we will also consider discrete analogs of the wave packet
systems given by Definition 2.1. These systems are obtained by letting S in Defi-
nition 2.1 be countable and by sampling the translations over a lattice. The reader
is probably already familiar with special cases of these systems, including Gabor
systems, wavelets and their close variants. Some more general examples will be
discussed in Section 3.

A very important class of wave packet systems are those associated with a
reproducing formula. More precisely, we introduce the following definition.

Definition 2.2. Let S ⊆ GLn(R)×Rn and λ be a measure on S. Fix i, where
0 ≤ i ≤ 5. Then the system W(i)

S (Ψ) is a continuous Parseval frame wave
packet system relative to (S, λ) for L2(Rn), provided that the functions

(a, ν, y) 7−→ 〈f, U
(i)
(a,ν,y) ψ〉

are λ−measurable for all f , ψ ∈ L2(Rn), and

‖f‖2 =
L∑

`=1

∫

S×Rn

|〈f, U
(i)
(a,ν,y) ψ`〉|2 dλ(a, ν) dy

for all f ∈ L2(Rn).

The following theorem gives a characterization of all those families Ψ ⊂ L2(Rn)
such that the wave packet system WS(Ψ) = W(0)

S (Ψ) is a continuous Parseval frame
wave packet system for L2(Rn).

Theorem 2.1. Let Ψ = {ψ` : 1 ≤ ` ≤ L} ⊂ L2(Rn). The system WS(Ψ),
given by (2.1), is a continuous Parseval frame wave packet system relative to (S, λ)
for L2(Rn) if and only if

(2.2) ∆Ψ(ξ) =
L∑

`=1

∫

S

|ψ̂`(aIξ − z)|2 dλ(a, z) = 1 for a.e. ξ ∈ Rn.

Proof. Observe first that, for each ψ` ∈ L2(Rn), ` = 1, · · · , L, using Proposi-
tion 1.1 we obtain that Da Mν Ty ψ` = e2πiy·ν Ta−1y Da Mν ψ`. Hence, using again
Proposition 1.1, we have that

(
Da Mν Ty ψ`

)∧ = e2πiy·ν M−a−1y DaI Tν ψ̂`, and,
thus,

(2.3) |〈f, Da Mν Ty ψ`〉| = |〈f̂ , M−a−1y DaI Tν ψ̂`〉|.
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Let u = a−1y, so that |det a| du = dy, and, then, using (2.3) and the Plancherel
Theorem, we have that for every f ∈ L2(Rn):

∫

Rn

|〈f, Da Mν Ty ψ`〉|2 dy =
∫

Rn

|〈f̂ ,M−u DaI Tν ψ̂`〉|2 | det a| du

=
∫

Rn

∣∣
∫

Rn

f̂(ξ) ψ̂`(aIξ − ν) e2πiu·ξ∣∣2 du

=
∫

Rn

∣∣{f̂ ψ̂`(aI · −ν)
}∨(u) dξ

∣∣2 du

=
∫

Rn

|f̂(ξ)|2 |ψ̂`(aIξ − ν)|2 dξ.(2.4)

Thus, using (2.4) and Fubini’s theorem, we see that the system WS(Ψ) is a contin-
uous Parseval frame if and only if

‖f‖2 =
L∑

`=1

∫

S

∫

Rn

|〈f, Da Mν Ty ψ`〉|2 dy dλ(a, ν)

=
L∑

`=1

∫

S

∫

Rn

|f̂(ξ)|2 |ψ̂`(aIξ − ν)|2 dξ dλ(a, ν)

=
∫

Rn

|f̂(ξ)|2 ∆Ψ(ξ) dξ,

for all f ∈ L2(Rn), and (2.2) follows easily. ¤

Notice that the main step in the proof of Theorem 2.1 is the application of the
Plancherel Theorem in (2.4). This computation shows the essential role played by
the translation variable y (or u = a−1y) in the proof of Theorem 2.1 and, also,
explains the reason for using all translations Ty, y ∈ Rn, in Definition 2.1. Later
we will consider a similar situation in the case of discrete wave packet systems,
which will involve all the translations arising from a lattice. Some authors (e.g.,
[ACM], [CDH], [CKS], [HK], [W]) have considered the Beurling density and sev-
eral variants of this notion in order to understand the restrictions on the dispersion
of elements in situations where a Parseval frame is obtained from an irregular trans-
lation set, as well as irregular dilation and/or modulation sets. To our knowledge,
however, there are no results to date on irregular translation sets with an abstract
measure replacing the Lebesgue measure. In this paper, we restrict ourselves to
lattices (Zn) or continuous (Rn) translations.

It is clear that, by choosing a different order of the operators, one obtains other
versions of Theorem 2.1 for the systems W(i)

S (Ψ), 1 ≤ i ≤ 5. Indeed, using argu-
ments similar to the ones for Theorem 2.1, we obtain the following characterizing
equalities.

Corollary 2.2. Let Ψ = {ψ` : 1 ≤ ` ≤ L} ⊂ L2(Rn). For 1 ≤ i ≤ 5,
the system W(i)

S (Ψ) is a continuous Parseval frame wave packet system relative to
(S, λ) for L2(Rn) if and only if

(2.5) ∆(i)
Ψ (ξ) = 1 for a.e. ξ ∈ Rn,
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where

∆(1)
Ψ (ξ) = ∆Ψ(ξ),

∆(2)
Ψ (ξ) =

L∑

`=1

∫

S

|ψ̂`(aIξ − ν)|2 | det a|−1 dλ(a, ν),

∆(3)
Ψ (ξ) =

L∑

`=1

∫

S

|ψ̂`(aI(ξ − ν))|2 dλ(a, ν),

∆(4)
Ψ (ξ) = ∆(5)

Ψ (ξ) =
L∑

`=1

∫

S

|ψ̂`(aI(ξ − ν))|2 | det a|−1 dλ(a, ν).

Thus we have seen that the changes in the order in which the operators are
taken give us four different characterizations corresponding to the four functions
∆Ψ = ∆(1)

Ψ , ∆(2)
Ψ , ∆(3)

Ψ , ∆(4)
Ψ = ∆(5)

Ψ .

2.1. Examples. We will describe a number of examples of continuous wave
packet systems, according to Definition 2.1, for different choices of the set S.

Example (a). Let S = {0} × Rn ' Rn and ψ ∈ L2(Rn), then

WS(ψ) = GS(ψ) =
{
Mν Ty ψ : ν ∈ S, y ∈ Rn

}

is the continuous Gabor system (also known as the Weyl–Heisenberg sys-
tem) associated with S. Furthermore, if one chooses λ to be Lebesgue measure,
then Theorem 2.1 shows that WS(ψ) is a continuous Parseval frame relative to
(S, dν) for any function ψ ∈ L2(Rn) with ‖ψ‖ = 1 (this property of Gabor systems
is well known; see, for example, [G, Ch. 3]).

Example (b). Let S = {0} × Zn ' Zn and ψ ∈ L2(Rn), then

WS(ψ) = GS(ψ) =
{
Mk Ty ψ : k ∈ S, y ∈ Rn

}

is the continuous Gabor system associated with S. If one chooses λ to be the
counting measure, then it follows from Theorem 2.1 that WS(ψ) is a continuous
Parseval frame relative to (S, λ) iff

(2.6)
∑

k∈Zn

|ψ̂(ξ − k)|2 = 1 for a.e. ξ ∈ Rn.

Observe that equation (2.6) is equivalent to the property that {Tk ψ : k ∈ Z} is an
orthonormal system (cf. [HW, Prop. 2.1.11]).

Example (c). Let S ⊆ GLn(R)× {0} ' GLn(R), then

WS(Ψ) = AS(Ψ) =
{
Da Ty ψ` : a ∈ S, y ∈ Rn, 1 ≤ ` ≤ L

}

is the continuous affine system associated with S. If S is a closed subgroup of
GLn(R) or, more generally, a topological group continuously embedded in GLn(R),
then it is natural to take λ to be the right Haar measure on S. In this case, the
function ∆Ψ(ξ) in (2.2) is S-invariant, in the sense that ∆Ψ(aI ξ) = ∆Ψ(ξ) for all a ∈
S, ξ ∈ Rn, and equation (2.2) is the classical Calderón condition (see [C], where this
equation was originally obtained, or [WW], for the generalizations). In [LWWW],
it is shown that the affine group G = SnRn must be non–unimodular if there exists
a continuous Parseval frame AS(Ψ). Conversely, if G is non–unimodular and almost
every ξ ∈ Rn has a compact ε–stabilizer Kε

ξ = {a ∈ S : |aI ξ − ξ| ≤ ε}, then one
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can find ψ ∈ L2(Rn) for which AS(Ψ) is a continuous Parseval frame relative to
(S, λ). In [LWWW], the authors have considered other examples involving either
integration over a coset space of a group or over products of subgroups. Also observe
that the continuous Gabor systems in (a) may be viewed as obtained by integration
over a coset space of the Weyl–Heisenberg group (see, for example, [F] or [G] for
more details on this approach to the continuous Gabor systems).

The following two examples, unlike the previous ones, are not continuous Par-
seval frames. However, they can still be described according to Definition 2.1.

Example (d). Let S = {((1 + ν2)1/4In, ν) : ν ∈ Rn} ⊂ GLn(R) × Rn, where In is
the n× n identity matrix, and φ(x) = 2n/4 e−πx2

, x ∈ Rn. Then the functions

WS(φ) =
{
Ty Mν Da φ : (a, ν) ∈ S, y ∈ Rn

}

are the wave packets introduced by Còrdoba and Fefferman in [CF]. In the same
paper, Còrdoba and Fefferman show that their wave packets form, “approximately”,
a continuous Parseval frame, in the sense that, for each f ∈ S(Rn), the system
WS(φ) is reproducing up to a small error that is controlled by a Sobolev norm of
f .

Example (e). The following example, which is a generalization of the wave packets
of Còrdoba and Fefferman, is due to Hogan and Lakey [HL]. Let S = {(|ν|1/2, ν) :
ν ∈ R} ⊂ R× R and define the collections

WS(ψ) =
{
ψ(y,ν) = Ty Mν Da(ν) ψ : (a(ν), ν) ∈ S, y ∈ R}

.

In [HL] it is shown that, if ψ ∈ L1
⋂

L2(R) is real and if |ξ| |ψ̂(ξ)| ∈ L1(R), then
there are constants 0 < A < B < ∞ such that

A ‖f‖2 ≤
∫ ∫

R2

∣∣〈f, ψ(y,ν)〉
∣∣2 dy dν ≤ B ‖f‖2,

for all f ∈ L2(R).

3. Discrete wave packet systems

In this section, we will examine the case of discrete wave packet systems. These
systems are discrete analogs of the continuous wave packets considered in the pre-
vious section, and are obtained by restricting the ordered pairs of dilations and
modulations to a countable set and by sampling the translations over a regular
lattice (while, in the continuous case, the translations involve all y ∈ Rn).

More precisely, let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), P be a countable set and,
corresponding to each p ∈ P, let ap ∈ GLn(R) and νp ∈ Rn. We define the
(discrete) wave packet systems generated by Ψ relative to P as the collections

(3.1) WP(Ψ) =
{
Dap Mνp Tk ψ` : k ∈ Zn, p ∈ P, ` = 1, . . . , L

}
.

Special cases of the set WP(Ψ) are the classical (discrete) Gabor and affine
systems. Indeed, if P = Zn, νp = b p, where b ∈ GLn(R), p ∈ P, and ap = In, for
each p ∈ P, where In is the n× n identity matrix, then

WP(Ψ) = Gb(Ψ) = {Mbp Tk ψ` : p, k ∈ Zn, ` = 1, . . . , L
}

is the Gabor system generated by Ψ. Alternatively, if P = Z, ap = ap, where
a ∈ GLn(R), and νp = 0, for each p ∈ P, then

WP(Ψ) = Aa(Ψ) = {Dp
a Tk ψ` : p ∈ Z, k ∈ Zn, ` = 1, . . . , L

}
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is the affine system generated by Ψ and the integer powers of the dilation matrix
a ∈ GLn(R).

We will also consider variants of the (discrete) wave packet systems obtained by
using a larger collection of translations and an appropriate renormalization of the
generators. More precisely, we define the (discrete) oversampled wave packet
systems generated by Ψ relative to the set P and the matrices {γp}p∈P ⊂ GLn(R)
as the collections

(3.2) Wγp

P (Ψ) =
{
Dap

Mνp
Tγ−1

p k

( 1√| det γp|
ψ`

)
: k ∈ Zn, p ∈ P, ` = 1, . . . , L

}
.

The notion of oversampling plays a very important role, for example, in the case
of the affine systems, and Definition (3.2) includes, as special cases, the oversam-
pled affine systems of Chui and Shi [CS] and the quasi affine systems of Ron and
Shen [RSb] (cf. [HLWW] for a more detailed study of the notion of oversampling
in relation to affine systems and other reproducing systems). For example, let
P = Z, ap = ap, where a ∈ GLn(R) and p ∈ P, νp = 0, as in the case of affine
systems, and, in addition, let γp = In, if p ≥ 0, γp = a−p, if p < 0. Under these
assumptions, the collections WP(ψ) are the quasi affine systems

WP(ψ) = Aq
a(ψ) = {ψq

p,k : p ∈ Z, k ∈ Zn
}
,

where

ψq
p,k =

{√
| det ap|Dp

a Tapk ψ, k ∈ Zn, p < 0
Dp

a Tk ψ, k ∈ Zn, p ≥ 0.

This example also illustrates the role of the normalization factor 1√
| det γp|

in Defi-

nition 3.2.
More general examples of oversampled wave packet systems will be considered

in Section 3.2.

3.1. Unified theory of discrete reproducing systems. In order to de-
scribe the properties of the discrete wave packet systems that we will consider in
this paper, it is useful to recall the notion of a frame.

A countable family {ej : j ∈ J } of elements in a separable Hilbert space H is
a frame if there exist constants 0 < A ≤ B < ∞ satisfying

A ‖v‖2 ≤
∑

j∈J
|〈v, ej〉|2 ≤ B ‖v‖2

for all v ∈ H. The constants A and B are called the lower and upper frame
bounds, respectively. If only the right hand side inequality holds, we say that
{ej : j ∈ J } is a Bessel system with constant B. A frame is a tight frame
if A and B can be chosen so that A = B, and is a Parseval frame (also called
normalized tight frame) if A = B = 1. Thus, if {ej : j ∈ J } is a Parseval frame
in H, then

(3.3) ‖v‖2 =
∑

j∈J
|〈v, ej〉|2

for each v ∈ H. This is equivalent to the reproducing formula

(3.4) v =
∑

j∈J
〈v, ej〉 ej
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for all v ∈ H, where the series in (3.4) converges in the norm of H (we refer the
reader to [HW, Ch. 8] for the basic properties of frames).

One main problem in the study of wavelets, Gabor systems and related systems
is to determine conditions on the families Ψ ⊂ L2(Rn) such that these systems form
a basis or a Parseval frame or, more generally, a frame. In this section, we will
examine this problem in relation to the wave packet systems.

The following simple observation, which is adapted from [HLWW, Prop. 2.1]
shows that in order for the system Wγp

P (Ψ), given by (3.2), to be a frame (or even
a Bessel system), there are some restrictions on the choice of the oversampling
matrices {γp}p∈P .

Proposition 3.1. If the oversampled wave packet system Wγp

P (Ψ), given by
(3.2), is a Bessel system with constant B > 0, then, for each ` = 1, · · · , L,

| det γp| ≥ 1
B
‖ψ`‖2 for each p ∈ P.

Proof. Since Wγp

P (Ψ) is a Bessel system with constant β, then

(3.5)
L∑

`=1

∑

p∈P

∑

k∈Zn

|〈f, ψ`
p,k〉|2 ≤ β ‖f‖2

for all f ∈ L2(Rn), where ψ`
p,k = |det γp|−1/2 Dap Mνp Tγ−1

p k ψ`. Equation (3.5)
implies that, for any p0 ∈ P, k0 ∈ Zn, 1 ≤ `0 ≤ L, we have:

(3.6) |〈ψ`0
p0,k0

, ψ`0
p0,k0

〉|2 ≤ β ‖ψ`0
p0,k0

‖2.
Since ‖ψ`0

p0,k0
‖2 = |det γp0 |−1 ‖ψ`0‖2, from (3.6) we deduce:

| det γp0 |−2 ‖ψ`0‖4 ≤ β | det γp0 |−1 ‖ψ`0‖2,
and, thus, | det γp0 | ≥ β−1 ‖ψ`0‖2, for all p0 ∈ P, 1 ≤ `0 ≤ L. ¤

In [HLW] and [HLWW], the authors and their collaborators have developed
a general approach to the study of reproducing systems generated by a finite family
Ψ ⊂ L2(Rn). After recalling some basic results from these papers, and making some
additional observations, we will apply this approach to the study of the discrete
wave packet systems WP(Ψ), given by (3.1).

Let P be a countable collection of indices, {gp : p ∈ P} a family of functions
in L2(Rn) and {Cp : p ∈ P} a corresponding collection of matrices in GLn(R) and
consider the families of the form

(3.7) Φ{gp}
{Cp} =

{
TCpk gp : k ∈ Zn, p ∈ P}

.

We obtained a characterization of all those {gp}p∈P such that Φ{gp}
{Cp} is a Parseval

frames for L2(Rn). In order to state the main result, we need to introduce the
following notation. Define:

(3.8) Λ =
⋃

p∈P
CI

p (Zn) ,

where CI
p = (CT

p )−1, and, for α ∈ Λ, let

(3.9) Pα = {p ∈ P : α ∈ CI
p Zn}.
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If α = 0 ∈ Λ, then P0 = P (since CT
p 0 = 0 for all p ∈ P); otherwise the best we

can say is that Pα ⊂ P. Also, let

(3.10) D = DE =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact in Rn \ E

}
,

where E is a subspace of Rn of dimension smaller than n to be specified later, and
appropriately chosen for each of the systems defined by (3.7) (for example, we use
E = {0} in Proposition 3.8 and a nontrivial set E in Section 3.3). It is clear that
D is a dense subspace of L2(Rn). We have the following result.

Theorem 3.2 ([HLW]). Let {gp}p∈P be a collection of functions in L2(Rn),
where P is a countable indexing set, and {Cp}p∈P ⊂ GLn(R). Assume the local
integrability condition (L.I.C.):

(3.11) L(f) =
∑

p∈P

∑

m∈Zn

∫

supp f̂

|f̂(ξ + CI
pm)|2 1

| detCp| |ĝp(ξ)|2 dξ < ∞

for all f ∈ D, where D is given by (3.10) and CI
p = (CT

p )−1. Then the system

Φ{gp}
{Cp}, given by (3.7), is a Parseval frame for L2(Rn) if and only if

(3.12)
∑

p∈Pα

1
|det Cp| ĝp(ξ) ĝp(ξ + α) = δα,0 for a.e. ξ ∈ Rn,

for each α ∈ Λ, where δ is the Kronecker delta for Rn.

In the same paper, we also obtained a similar theorem for the characterization
of dual systems (cf. [HLW, Thm.9.1]), as well as the following result about Bessel
families (cf. [HLW, Prop.4.1]) which will be useful in the next section.

Proposition 3.3 ([HLW]). Let {gp}p∈P ⊂ L2(Rn), where P is a countable
set, and {Cp}p∈P ⊂ GLn(R). If the system Φ{gp}

{Cp}, given by (3.7), is Bessel with
constant B > 0, then

(3.13)
∑

p∈P

1
|det Cp| |ĝp(ξ)|2 ≤ B for a.e. ξ ∈ Rn.

In the case of general frames (not just Parseval frames) no characterization
results in the spirit of Theorem 3.2 are known for the collections Φ{gp}

{Cp}. Neverthe-
less, the following theorem, which uses an idea from [D, Sec. 3.3], gives sufficient
conditions for Φ{gp}

{Cp} to be a frame for L2(Rn).

Theorem 3.4. Let {gp}p∈P ⊂ L2(Rn), where P is countable, and {Cp}p∈P ⊂
GLn(R). Suppose that there are 0 < α ≤ β < ∞ such that

(3.14) α ≤
∑

p∈P

1
|det Cp| |ĝp(ξ)|2 ≤ β, for all ξ ∈ Rn

and that

(3.15)
∑

m6=0

sup
ξ∈Rn

∑

p∈P

1
| detCp| |ĝp(ξ) ĝp(ξ + CI

pm)| < α.
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Then the family Φ{gp}
{Cp}, given by (3.7), is a frame for L2(Rn) with lower and upper

frame bounds

A = α−
∑

m 6=0

sup
ξ∈Rn

∑

p∈P

1
| detCp| |ĝp(ξ) ĝp(ξ + CI

pm)|

and

B = β +
∑

m 6=0

sup
ξ∈Rn

∑

p∈P

1
|det Cp| |ĝp(ξ) ĝp(ξ + CI

pm)|,

respectively.

Proof. It suffices to prove the theorem for f ∈ D, where D is given by (3.10).
We fix p ∈ P and estimate first the quantity

∑
k∈Zn |〈f, TCpk gp〉|2. Since

(TCpk gp)∧(ξ) = e−2πiCpk·ξ ĝ(ξ), it follows from the Plancherel theorem that

(3.16)
∑

k∈Zn

|〈f, TCpk gp〉|2 =
∑

k∈Zn

∣∣∣
∫

Rn

f̂(ξ) ĝp(ξ) e2πiCpk·ξ dξ
∣∣∣
2

.

Let Tn = [0, 1)n. Since Rn =
⋃

l∈Zn{CI(Tn− l)} is a disjoint union, the integral in
(3.16) can be written in the form

∑

l∈Zn

∫

CI
p(Tn)

f̂(ξ − CI
p l) ĝp(ξ − CI

p l) e2πiCpk·ξ dξ =

=
∫

CI
p(Tn)

( ∑

l∈Zn

f̂(ξ − CI
p l) ĝp(ξ − CI

p l)
)

e2πiCpk·ξ dξ.

Since the function
∑

l∈Zn f̂(ξ − CI
p l) ĝp(ξ − CI

p l) is CI
p Zn-periodic and belongs to

L2(CI
pTn) (recall that f ∈ D), it follows that the right hand side of (3.16) is, up to a

constant, the square of the l2-norm of the Fourier coefficients of this CI
p Zn-periodic

function, with respect to the orthonormal basis

{
√
|det Cp| e2πiCpk·ξ : k ∈ Zn}

of L2(CI
pTn). Therefore, from this observation we obtain:

(3.17)
∑

k∈Zn

|〈f, TCpk gp〉|2 =
1

|det Cp|
∫

CI
pTn

|
∑

l∈Zn

f̂(ξ − CI
p l) ĝp(ξ − CI

p l)|2 d ξ,

From equation (3.17), making the change of indices u = l + m we obtain:

| detCp|
∑

k∈Zn

|〈f, TCpk gp〉|2 =

=
∫

CI
pTn

∑

l,u∈Zn

f̂(ξ + CI
p l) ĝp(ξ + CI

p l) f̂(ξ + CI
pu) ĝp(ξ + CI

pu) dξ

=
∫

CI
pTn

∑

l,m∈Zn

f̂(ξ + CI
p l) ĝp(ξ + CI

p l) f̂(ξ + CI
p (l + m)) ĝp(ξ + CI

p (l + m)) dξ

=
∑

m∈Zn

∫

Rn

f̂(ξ) ĝp(ξ) f̂(ξ + CI
pm) ĝp(ξ + CI

pm) dξ.
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From this expression, summing over p ∈ P and splitting the sum in m into the case
m = 0 and m 6= 0 we obtain:

(3.18)
∑

p∈P

∑

k∈Zn

|〈f, TCpk gp〉|2 =
∫

Rn

|f̂(ξ)|2
∑

p∈P

1
| detCp| |ĝp(ξ)|2 dξ + R(f),

where

(3.19) R(f) =
∑

p∈P

∑

m 6=0

1
|detCp|

∫

Rn

f̂(ξ) ĝp(ξ) f̂(ξ + CI
pm) ĝp(ξ + CI

pm) dξ.

Using the Cauchy-Schwarz inequality and the change of variables η = ξ + CI
pm, for

each p ∈ P we have:∫

Rn

f̂(ξ) ĝp(ξ) f̂(ξ + CI
pm) ĝp(ξ + CI

pm) dξ ≤

≤
(∫

Rn

|f̂(ξ)|2 |ĝp(ξ) ĝp(ξ + CI
pm)| dξ

)1/2 (∫

Rn

|f̂(ξ + CI
pm)|2×

× |ĝp(ξ) ĝp(ξ + CI
pm)| dξ

)1/2

=
(∫

Rn

|f̂(ξ)|2 |ĝp(ξ) ĝp(ξ + CI
pm)| dξ

)1/2(∫

Rn

|f̂(η)|2 |ĝp(η − CI
pm) ĝp(η)| dη

)1/2

.

Thus, using the inequality 2 ab ≤ a2 + b2, and summing over m, from the above
expression we obtain that

∑

m 6=0

∫

Rn

f̂(ξ) ĝp(ξ) f̂(ξ + CI
pm) ĝp(ξ + CI

pm) dξ ≤

≤
∑

m 6=0

∫

Rn

|f̂(ξ)|2 |ĝp(ξ) ĝp(ξ + CI
pm)| dξ.

Using this observation into (3.19) we obtain:

R(f) ≤
∑

m 6=0

∫

Rn

|f̂(ξ)|2
∑

p∈P

1
| detCp| |ĝp(ξ) ĝp(ξ + CI

pm)| dξ

≤ ‖f‖2
∑

m 6=0

sup
ξ∈Rn

∑

p∈P

1
| detCp| |ĝp(ξ) ĝp(ξ + CI

pm)|.(3.20)

The proof now follows from (3.18) and (3.20), and by making appropriate choices
of f ∈ D. ¤

3.2. Discrete wave packet Parseval frames. We will now apply the unified
theory presented in the previous section to the study of the discrete wave packet
systems. As a first application, we will use Theorem 3.2 to deduce a characterization
of the functions that generate a discrete wave packet system Parseval frame, in the
same spirit as the results which are known in the case of affine and Gabor systems
(cf. [HLW] and the references there).

We obtain the following characterization of all families Ψ = {ψ1, · · · , ψL} ⊂
L2(Rn), for which the wave packet systems Wγp

P (Ψ), given by (3.2) form a Parseval
frame for L2(Rn), provided the L.I.C. is satisfied. It is clear that the corresponding
characterization for the systems WP(Ψ), given by (3.1), follows by considering the
case γp = In, for each p ∈ P.
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Theorem 3.5. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), P be countable and, corre-
sponding to each p ∈ P, let ap, γp ∈ GLn(R) and νp ∈ Rn. Assume the L.I.C.:

(3.21) L(f) =
∑

p∈P

∑

m∈Zn

∫

supp f̂

|f̂(ξ + aT
p γT

p m)|2 |ψ̂(aI
p ξ − νp)|2 dξ < ∞,

for all f ∈ D, where D is given by (3.10). Then the system WP(Ψ), given by (3.1),
is a Parseval frame for L2(Rn) if and only if

(3.22)
∑

p∈Pα

ψ̂(aI
p ξ − νp) ψ̂(aI

p(ξ + α)− νp) = δα,0 for a.e. ξ ∈ Rn,

for each α ∈ Λ =
⋃

p∈P aT
p γT

p Zn, where Pα = {p ∈ P : α ∈ aT
p γT

p Zn}.
Proof. Since

Dap Mνp Tγ−1
p k ψ = e2πiνp·γ−1

p k Ta−1
p γ−1

p k Dap Mνp ψ,

using the notation introduced before Theorem 3.2 we can write equation (3.1) as

WP(ψ) =
{
TCp k gp : k ∈ Z, p ∈ P}

,

where

Cp = a−1
p γ−1

p and gp =
e2πiνp·γ−1

p k

√|det γp|
Dap Mνp ψ.

Thus, we have:

Λ =
⋃

p∈P
aT

p γT
p Zn, and, for α ∈ Λ, Pα = {p ∈ P : α ∈ aT

p γT
p Z}.

With the assumptions that we made for P and gp, the functional L(f), given by
the left hand side of (3.11), takes the form

L(f) =
∑

p∈P

∑

m∈Zn

∫

supp f̂

|f̂(ξ + aT
p γT

p m)|2 |ψ̂(aI
p ξ − νp)|2 dξ,

and, by (3.21), we have that L(f) < ∞ for all f ∈ D. It now follows from Theo-
rem 3.2 that the system WP(Ψ) is a Parseval frame if and only if (3.22) holds. ¤

As in the case of continuous wave packet systems, we have different versions of
Theorem 3.5 if we change the order of the operators in Definition 3.1. Let

U
(1)
(p,k) = Dap Tγ−1

p k Mνp ,

U
(2)
(p,k) = Tγ−1

p k Dap Mνp ,

U
(3)
(p,k) = Mνp Dap Tγ−1

p k,

U
(4)
(p,k) = Tγ−1

p k Mνp Dap ,

U
(5)
(p,k) = Mνp Tγ−1

p k Dap .

We obtain alternate versions of the discrete wave packet systems W(i)
P (Ψ), with

1 ≤ i ≤ 5, by replacing the operator U
(0)
(p,k) = Dap Tγ−1

p k Mνp in Definition 3.1 with

the operators U
(i)
(a,ν,y), 1 ≤ i ≤ 5. We have the following characterization result.
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Corollary 3.6. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), P be countable and, corre-
sponding to each p ∈ P, let ap, γp ∈ GLn(R) and νp ∈ Rn. Assume L(i)(f) < ∞,
1 ≤ i ≤ 5, for all f ∈ D, where D is given by (3.10) and

L(1)(f) = L(f) =
∑

p∈P

∑

m∈Zn

∫

supp f̂

|f̂(ξ + aT
p γT

p m)|2 |ψ̂(aI
p ξ − νp)|2 dξ,

L(2)(f) =
∑

p∈P

∑

m∈Zn

∫

supp f̂

|f̂(ξ + γT
p m)|2 |ψ̂(aI

p ξ − νp)|2 dξ,

L(3)(f) =
∑

p∈P

∑

m∈Zn

∫

supp f̂

|f̂(ξ + aT
p γT

p m)|2 |ψ̂(aI
p(ξ − νp))|2 dξ,

L(4)(f) = L(5)(f) =
∑

p∈P

∑

m∈Zn

∫

supp f̂

|f̂(ξ + γT
p m)|2 |ψ̂(aI

p(ξ − νp))|2 dξ.

Then the system W(i)
P (Ψ), 1 ≤ i ≤ 5, is a Parseval frame for L2(Rn) if and only if

E
(i)
α (ξ) = δα,0, for a.e. ξ ∈ Rn, for each α ∈ Λ(i), where

E
(1)
α (ξ) = E(2)

α (ξ) = Eα(ξ) =
∑

p∈Pα

ψ̂(aI
p ξ − νp) ψ̂(aI

p(ξ + α)− νp),

E
(3)
α (ξ) = E(4)

α (ξ) = E(5)
α (ξ) =

∑

p∈Pα

ψ̂(aI
p(ξ − νp)) ψ̂(aI

p(ξ + α− νp)),

and Λ(1) = Λ(3) = Λ =
⋃

p∈P aT
p γT

p Zn, Λ(2) = Λ(4) = Λ(5) =
⋃

p∈P γT
p Zn,

P(1)
α = P(3)

α = Pα = {p ∈ P : α ∈ aT
p γT

p Zn}, P(2)
α = P(4)

α = P(5)
α = {p ∈ P : α ∈

γT
p Zn}.

There are special classes of wave packet systems WP(Ψ) for which the L.I.C.,
given by (3.21), is satisfied, and, as a consequence, one obtains versions of Theo-
rem 3.5 which do not contain this hypothesis. For simplicity, in the following, we
will restrict our attention to one dimensional systems with one generator. However,
the same ideas can be extended to higher dimensions.

The following theorem deals with the case of (one-dimensional) wave packet
systems where the dilations are generated by the integer powers of a real number.
We have the following simple characterization result.

Theorem 3.7. Let ψ ∈ L2(R), P be countable and

(3.23) WP(ψ) =
{
Dajp Mνp Tk ψ : k ∈ Z, p ∈ P}

,

where jp ∈ Z, νp, a ∈ R, a > 1, and, for each j ∈ Z, there is a finite number Kj

of indices p ∈ P for which jp = j. Then the system WP(ψ), given by (3.23), is a
Parseval frame for L2(R) if and only if

(3.24)
∑

p∈Pα

ψ̂(a−jpξ − νp) ψ̂(a−jp(ξ + α)− νp) = δα,0 for a.e. ξ ∈ R,

for each α ∈ Λ =
⋃

p∈P ajp Z, where Pα = {p ∈ P : α ∈ ajp Z}.
In order to prove this theorem, we need the following result which uses an

idea from [HLW, Prop.5.2] (where a similar result is proved in the case of affine
systems).
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Proposition 3.8. Let ψ ∈ L2(R), P be countable, νp, a ∈ R, a > 1, and, for
each j ∈ Z, assume that there is a finite number Kj of indices p ∈ P for which
jp = j. Also assume that

(3.25)
∑

p∈P
|ψ̂(a−jpξ − νp)|2 ≤ β for a.e. ξ ∈ Rn,

for some β > 0. Then

(3.26) L(f) =
∑

p∈P

∑

m∈Z

∫

supp f̂

|f̂(ξ + ajpm)|2 |ψ̂(a−jpξ − νp)|2 dξ < ∞,

for all f ∈ D, where D is given by (3.10) with E = {0}.
To prove this proposition, we need the following two lemmas that are special

cases of Lemma 5.10 and Lemma 5.11 from [HLW] (it suffices to set E = {0}). For
r ∈ R, r > 0, define:

Q(r) = {x ∈ R :
1
r

< |x| < r}.

Lemma 3.9. Let a ∈ R, a > 1, and r ∈ R. There exists N = N(a, r) ∈ N such
that

#{j ∈ Z : aj η ∈ Q(r)} ≤ N

for all η ∈ Rn.

Lemma 3.10. Let a ∈ R, a > 1, and r ∈ R. There exists C = C(a, r) ∈ R such
that

#{m ∈ Zn \ {0} : aj m ∈ Q(r)} ≤ C a−j

for all j ∈ Z.

We can now prove the Proposition 3.8.

Proof of Proposition 3.8.
Without loss of generality, we can assume that, for each f ∈ D, there exists

r ∈ R such that supp f̂ ⊂ Q(r).
Write L0(f) for the sum of the terms in (3.26) for which m = 0 and L1(f) for

the sum of the terms in (3.26) for which m 6= 0. Then L(f) = L0(f) + L1(f).
We first estimate L0(f). If m = 0, then, using (3.25), we have:

(3.27) L0(f) =
∑

p∈P

∫

Q(r)

|f̂(ξ)|2 |ψ̂(a−jpξ − νp)|2 dξ ≤ β ‖f‖2 < ∞.

We now estimate L1(f). Using the change of variable a−jpξ = η, from (3.26)
we have:

(3.28) L1(f) =
∑

p∈P

∑

m6=0

∫

ajp η∈supp f̂

|f̂(ajp(η + m)|2 |ψ̂(η − νp)|2 ajp dη.

Suppose m ∈ Z \ {0}, ajp η ∈ Q(r) and ajp(η + m) ∈ Q(r); then, for jp ∈ Z, we
have:

|ajpm| ≤ |ajp(η + m)|+ |ajpη| < r + r = 2r.

Thus, with the notation we introduced before Lemma 3.9, we have that

{m ∈ Z\{0} : ajpη ∈ Q(r) and ajp(η+m) ∈ Q(r)} ⊂ {m ∈ Z\{0} : ajpm ∈ Q(2r)},
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for every jp ∈ Z. By Lemma 3.10, the number of elements in the last set does not
exceed C(a, 2r) a−jp , for each jp ∈ Z. Thus, it follows that

L1(f) ≤ C(a, 2r)‖f̂‖2∞
∑

p∈P

∫

ajp η∈Q(r)

|ψ̂(η − νp)|2 dη.

Next, observe that, by Lemma 3.9, the number of distinct jp ∈ Z such that ajpη ∈
Q(r) does not exceed a fixed number N(a, r), independently of η ∈ R. Furthermore,
by hypothesis, for any (of these finitely many distinct) jp there is a finite number
Kjp indices p′ ∈ P such that jp = jp′ . Hence, letting K(a, r) to be the maximum
of the (finitely many) Kjp

, we have:

(3.29) L1(f) ≤ K(a, r)C(a, 2r)N(a, r) ‖f̂‖2∞ ‖ψ̂‖22 < ∞.

Finally, from (3.27) and (3.29), we deduce that, if f ∈ D, then L(f) < ∞. ¤
We can now prove Theorem 3.7.

Proof of Theorem 3.7.
We apply Theorem 3.5 with ap = ajp and γp = 1, for each p ∈ P. Under

these assumptions, equation (3.22) becomes equation (3.24) and, thus, in order to
complete the proof, we only need to show that the L.I.C. (3.21) is satisfied. In
order to show that this is the case, we apply Proposition 3.8. Indeed, if the system
WP(ψ), given by (3.23), is a Parseval frame, then, by Proposition 3.3 applied to
WP(ψ), we obtain (3.25). Conversely, if the equalities (3.24) are satisfied, then also
in this case (3.25) is true (it suffices to take α = 0 in (3.24)). In both cases, we can
apply Proposition 3.8 and, thus, we obtain condition (3.26) (which is exactly the
L.I.C. (3.21) under our assumptions for ap, γp). ¤

As we mentioned at the beginning of Section 3, the oversampled wave packet
systems Wγp

P (ψ), given by (3.2), are obtained from the corresponding wave packet
systems by using a larger collection of translations and an appropriate renormal-
ization of the generators. For example, corresponding to the wave packet system
WP(ψ), given by (3.23), we define the oversampled wave packet system generated
by ψ ∈ L2(R), relative to the oversampling coefficient γ ∈ Z\{0}, as the collections
of the form

(3.30) Wγ
P(ψ) =

{
γ−1/2 Dajp Mνp Tγ−1k ψ : k ∈ Z, p ∈ P}

,

where jp ∈ Z, νp, a ∈ R. Observe that these systems include as special cases the
classical oversampled affine systems introduced by Chui and Shi [CS], where νp = 0
for each p ∈ P.

Another interesting class of oversampled systems is obtained by considering the
following collection of oversampling coefficients γp, p ∈ P:

(3.31) γp =

{
a−jp if jp < 0,

1 if jp ≥ 0.

Corresponding to the wave packet system WP(ψ), given by (3.23), we then define
the quasi affine wave packet system generated by ψ ∈ L2(R) as the collections
of the form

(3.32) Wq
P(ψ) =

{
γ−1/2

p Dajp Mνp Tγ−1
p k ψ : k ∈ Z, p ∈ P}

,

where jp ∈ Z, νp, a ∈ R and γp is given by (3.31). The reason for the terminology
is that these systems include, as special cases, the quasi affine systems of Ron and
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Shen [RSb], where νp = 0 for each p ∈ P. As we will later show, these systems
also inherit the basic fundamental properties of the quasi affine systems.

In particular, it is simple to verify that the quasi affine wave packet systems
Wq
P(ψ), unlike the corresponding wave packet systemsWP(ψ), are shift-invariant,

that is, they are invariant with respect to integer translations, when a ∈ Z. Indeed,
to see that this is the case, let ψq

p,k = γ
−1/2
p Dajp Mνp Tγ−1

p k ψ, where γp is given by
(3.31). It is clear that, using this notation, we can write Wq(ψ) = {ψq

p,k : p ∈ P}.
Next consider the effect of a shifts T`, ` ∈ Z, on the system Wq(ψ). If j < 0, by
changing the order of the operators, we have:

T` ψq
p,k = ajp/2 T` Djp

a Mνp Tajp k ψ = ajp/2 e−2πiνp·ajp ` Djp
a Mνp Tajp (k+`) ψ =

= e−2πiνp·ajp ` ψq
p,k+`.

Similarly, if j ≥ 0, by changing again the order of the operators we have:

T` ψq
p,k = T` Djp

a Mνp Tk ψ = e−2πiνp·ajp ` Djp
a Mνp Tk+ajp ` ψ = e−2πiνp·ajp ` ψq

p,k+ajp `
,

and k +ajp` ∈ Z, since a ∈ Z and jp ≥ 0. Observe that the scalars e−2πiνp·ajp ` play
no role in the wave packets frame expansions.

Another basic property of the oversampled wave packet systems that we have
just described is that they preserve the tight frame property of the corresponding
wave packet system. More precisely, we have the following result.

Theorem 3.11. Let ψ ∈ L2(R) and assume that the wave packet system
WP(ψ), given by (3.23), where a ∈ Z \ {0}, is a Parseval frame for L2(R). Also
assume that, in (3.23), for each j ∈ Z, there is only a finite number Kj of indices
p ∈ P for which jp = j. We then have the following:

(a) If γ ∈ Z \ aZ, then the corresponding oversampled wave packet system
Wγ
P(ψ), given by (3.30), is also a Parseval frame for L2(R).

(b) The corresponding quasi affine wave packet systemWq
P(ψ), given by (3.32),

is also a Parseval frame for L2(R).

This theorem extends similar results for the affine and Gabor systems (cf.
[HLWW] and the references in there). In particular, if P = Z and νp = 0 for
each p ∈ P, then, as we observed before, WP(ψ) = Aa(ψ) is the affine system,
Wγ
P(ψ) = Aγ

a(ψ) is the corresponding oversampled affine system, and, in this case,
Theorem 3.11 gives the Second Oversampling Theorem originally discovered by
Chui and Shi [CS].

Before proving Theorem 3.11, we will make a few observations about the proof,
which uses the same main idea in both cases (a) and (b) of the theorem. In our
proof, we will apply Theorem 3.2 to the systems Wγ

P(ψ) and Wq
P(ψ) and obtain the

corresponding characterization equations, as we did for the system WP(ψ). Then
we will observe that every characterization equation of the systems Wγ

P(ψ) and
Wq
P(ψ) is also a characterization equation of the corresponding wave packet system

WP(ψ). The proof of Theorem 3.11 uses similar arguments to those of Theorem 3.7.
Here, in order to avoid undue repetitions, we will only sketch the main steps of the
proof.

Proof of Theorem 3.11.
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If the wave packet system WP(ψ) is a Parseval frame for L2(R), then, by
Theorem 3.7, equations (3.24) are satisfied and, as a consequence, the inequality
(3.26) is also satisfied. Furthermore, since a ∈ Z, for each α0 ∈ Λ =

⋃
p∈P ajp Z,

there are unique j0 ∈ Z and q0 ∈ Z \ aZ such that α0 = aj0 q0. Thus,

Pα0 = {p ∈ P : a−jp α0 ∈ Z} = {p ∈ P : a−jp+j0 q0 ∈ Z} = {p ∈ P : −jp + j0 ≥ 0},
and, using the change of variable η = a−j0ξ, from (3.24) we obtain

(3.33)
∑

p∈Pα0

ψ̂(a−jp+j0η − νp) ψ̂(a−jp+j0(η + q0)− νp) = δq0,0 for a.e. η ∈ R.

Case (a). We apply Theorem 3.5 to the system Wγ
P(ψ). This gives us that, if

the L.I.C.

(3.34) Lγ(f) =
∑

p∈P

∑

m∈Z

∫

supp f̂

|f̂(ξ + γ ajpm)|2 |ψ̂(a−jpξ − νp)|2 dξ < ∞

is satisfied for all f ∈ D, where D is given by (3.10) with E = {0}, then the system
Wγ
P(ψ) is a Parseval frame for L2(R) if and only if

(3.35)
∑

p∈Pγ
α

ψ̂(a−jpξ − νp) ψ̂(a−jp(ξ + α)− νp) = δα,0 for a.e. ξ ∈ R,

for each α ∈ Λγ =
⋃

p∈P γ ajp Z, where Pγ
α = {p ∈ P : α ∈ γ ajp Z}. Observe that,

since γ ∈ Z, (3.26) implies (3.34). Also observe that, since a ∈ Z and γ ∈ Z\aZ, for
each α1 ∈ Λγ , there are are unique j1 ∈ Z and q1 ∈ Z \ aZ such that α1 = aj1 γ q1.
Thus, we have that

Pγ
α1

= {p ∈ P : γ−1 a−jp α1 ∈ Z} = {p ∈ P : a−jp+j1 q1 ∈ Z} =

= {p ∈ P : −jp + j1 ≥ 0},
and, using the change of variable η = a−j1ξ, from (3.35) we obtain

(3.36)
∑

p∈Pγ
α1

ψ̂(a−jp+j1η − νp) ψ̂(a−jp+j1(η + γ q1)− νp) = δq1,0 for a.e. η ∈ R.

Since γ ∈ Z\aZ, then also γ q1 ∈ Z\aZ, and, consequently, (3.36) holds whenever
(3.33) holds. Thus, Wγ

P(ψ) is a Parseval frame for L2(R).
Case (b). Under the assumptions that, for each p ∈ P,

Cp =

{
1, jp < 0
a−jp jp ≥ 0

gp =

{
e2πiνp·ajp k ajp/2 D

jp
a Mνp ψ, jp < 0

e2πiνp·k D
jp
a Mνp ψ, jp ≥ 0,

the family {TCp k gp : p ∈ P} is exactly the system Wq
P(ψ), and so we can apply

again Theorem 3.5. We obtain that, if the L.I.C.

Lq(f) =
∑

{p∈P:jp<0}

∑

m∈Z

∫

supp f̂

|f̂(ξ + m)|2 |ψ̂(a−jpξ − νp)|2 dξ+

+
∑

{p∈P:jp≥0}

∑

m∈Z

∫

supp f̂

|f̂(ξ + ajpm)|2 |ψ̂(a−jpξ − νp)|2 dξ < ∞(3.37)
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is satisfied for all f ∈ D, where D is given by (3.10) with E = {0}, then the system
Wq
P(ψ) is a Parseval frame for L2(R) if and only if

(3.38)
∑

p∈Pq
m

ψ̂(a−jpξ − νp) ψ̂(a−jp(ξ + m)− νp) = δm,0 for a.e. ξ ∈ R,

for each m ∈ Λq = Z, where Pq
m = {p ∈ P : m ∈ ajp Z}. Observe that, as in part

(a), (3.26) implies (3.37). Also observe that, for each m1 ∈ Z, there are are unique
j1 ∈ Z, j1 ≥ 0, and q1 ∈ Z \ aZ such that m1 = aj1 q1. Thus,

Pq
m1

= {p ∈ P : a−jp+j1 q1 ∈ Z} = {p ∈ P : −jp + j1 ≥ 0},
and, using the change of variable η = a−j1ξ, from (3.38) we obtain

(3.39)
∑

p∈Pq
m1

ψ̂(a−jp+j1η − νp) ψ̂(a−jp+j1(η + q1)− νp) = δq1,0 for a.e. η ∈ R.

It is now clear that (3.39) holds whenever (3.33) holds (observe that j1 ≥ 0 while,
in (3.33), j0 ∈ Z and, thus, the converse implication does not hold). Thus, Wq

P(ψ)
is a Parseval frame for L2(R). ¤

Using Theorem 3.11 we can show that the continuous wave packets WS(Ψ),
given by (2.1), are, in a certain sense, the ”ultimate oversampling” over the discrete
wave packets WP(Ψ), given by (3.1) (a similar observation for the affine systems
can be found in [WW]) . This also sheds some light into the discretization process
that leads from the continuous to the discrete systems. For simplicity, we consider
the one-dimensional case only.

Let ψ ∈ L2(R) and consider the (discrete) wave packet system WP(ψ), given
by (3.23), with a ∈ Z \ {0}. Assume that WP(Ψ) is a Parseval frame for L2(R).
Now consider the corresponding oversampled wave packet systems WN

P (ψ), given
by(3.30), where the N ∈ Z \ aZ. By Theorem 3.11, the systems WN

P (ψ) are also a
Parseval frame for L2(R). Thus, for each f ∈ L2(R), we have

f =
1
N

∑

p∈P

∑

k∈Z
〈f, Djp

a Mνp TN−1k ψ〉Djp
a Mνp TN−1k ψ,

with convergence in L2(R), for each N ∈ Z \ aZ. We can interpret this sum as a
Riemann sum. Thus, choosing a sequence of N ∈ Z \ aZ, and taking the limit for
N tending to ∞, we obtain that, for each f ∈ L2(R)

f =
∑

p∈P

∫

R
〈f, Djp

a Mνp Ty ψ〉Djp
a Mνp Ty ψ dy,

with convergence in L2(R). This shows that the system WS(Ψ), given by (2.1)
where S = {(ajp , νp) : p ∈ P}, is a continuous Parseval frame wave packet system
relative to S for L2(R).

3.3. A very general example. In [HLWW], we gave an example of a Parse-
val frame wave packet system associated with a general disjoint covering of the real
line by intervals. In this section, we extend this example to dimension n = 2, where
the triangles assume the role played by the intervals. This construction presents
a very general example of wave packet systems: in fact, the dilations do not have
to be powers of a matrix and the modulations do not have to be associated with a
lattice.
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Consider a triangularization of R2. More precisely, let τ1 be the triangle of ver-
tices (0, 0), (1, 0), (0, 1), and consider a tiling of R2 given by the union of countably
many non-degenerate triangles {τj}j∈N:

(3.40) R2 =
⋃

j∈N
τj ,

where the triangles τj have disjoint interiors. For each triangle τj , j ∈ N, with
vertices uj = (u(1)

j , u
(2)
j ), vj = (v(1)

j , v
(2)
j ) and wj = (w(1)

j , w
(2)
j ), let the matrix aj

be determined by

aT
j =

(
v
(1)
j − u

(1)
j w

(1)
j − u

(1)
j

v
(2)
j − u

(2)
j w

(2)
j − u

(2)
j .

)

It is clear that, for each j ∈ N, τj = aT
j τ1 +uj , and this shows that, by choosing an

appropriate ordering of the vertices, to each triangle τj there is a uniquely associated
dilation aj ∈ GL2(R) and translation uj ∈ R2 mapping τ1 into τj .

Consider the wave packet systems

(3.41) W(ψ) =
{
Daj Mνj Tk ψ : k ∈ Z2, j ∈ N}

,

with νj = (aT
j )−1uj = aI

j uj and ψ̂(ξ) = χτ1(ξ), ξ ∈ R2. We will now apply
Theorem 3.5 to show that W(ψ) is a Parseval frame for L2(R2).

Since |ψ̂(aI
jξ − νj)| = |ψ̂(aI

j (ξ − uj))| = χτj (ξ), the left hand side of the L.I.C.,
given by (3.21), takes the form:

L(f) =
∑

j∈N

∑

m∈Z

∫

supp f̂

|f̂(ξ + aT
j m)|2 |ψ̂((aT

j )−1ξ − νj))|2 dξ

=
∑

j∈N

∑

m∈Z

∫

supp f̂∩τj

|f̂(ξ + aT
j m)|2 dξ.(3.42)

We need to show that L(f) < ∞ for all f ∈ D, where D is a dense subspace
of L2(R2). Take D = {f ∈ L2(R2) : ‖f̂‖∞ < ∞, supp f̂ compact and supp f̂ ⊆
finite union of interiors of τj}. This clearly implies that the intersection supp f̂

⋂
τj

is nonzero only for finitely many j. Furthermore, since aj ∈ GL2(R), for each j ≥ 1
the norm ‖aT

j m‖ tends to infinity as ‖m‖ goes to infinity and, as a consequence,
there are only finitely many m ∈ Z such that the integral in (3.42) is nonzero.
Combining these two observations, it follows that L(f) < ∞ for all f ∈ D.

By Theorem 3.5, in order to show that the wave packet system W(ψ) is a
Parseval frame it only remains to show that ψ satisfies the characterizing equations
(3.22) which, in this case, are the two equations:

∑

j∈N
|ψ̂(aI

jξ − νj)|2 = 1 for a.e. ξ ∈ R2,(3.43)

∑

j∈Pα

ψ̂(aI
jξ − νj) ψ̂(aI

j (ξ + α)− νj) = 0, for a.e. ξ ∈ R2, if α 6= 0,(3.44)

where Pα = {j ∈ P : aI
j α ∈ Z2} and α ∈ ⋃

j≥1 aT
j Z2. As we observed before,

we have that ψ̂(aI
jξ − νj) = χτj (ξ), and so (3.40) implies equation (3.43). Next,

consider equation (3.44) with α 6= 0. Fix j ∈ Pα and let η = aI
jξ− νj . Under these
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assumptions, we have

(3.45) ψ̂(aI
jξ − νj) ψ̂(aI

j (ξ + α)− νj) = χτ1(η) χτ1(η + (aT
j )−1α).

Since j ∈ Pα, α 6= 0, then aI
j α ∈ Z2 \{0} and, because the interiors of the triangles

are pairwise disjoint, the expression (3.45) vanishes almost everywhere. This implies
that equation (3.44) is also satisfied and, thus, our system is a Parseval frame for
L2(R2).

Observe that we can also show directly, without using Theorem 3.5, that the
system W(ψ) is a Parseval frame for L2(R2). In order to do this, observe first that
the collection {Mk χτ1 : k ∈ Z2} is a Parseval frame for L2(τ1). As we observed
before, we have the following tiling of R2:

⋃

j∈N
DaI

j
Tνj

τ1 = R2,

where the union is disjoint. This implies that the collection

{DaI
j
Tνj M−k χτ1 : k ∈ Z2, j ∈ N} = {(Daj Mνj Tk (χτ1)

∨)∧ : k ∈ Z2, j ∈ N}
is a Parseval frame for L2(R2).

Also observe that the choice of the triangle τ1 plays no special role in this
example; in fact, the construction can easily be modified by choosing a different
initial triangle. Finally, observe that this construction generalizes to higher dimen-
sions. Indeed, if the triangles are replaced by n-dimensional simplices, then all the
computations carry over in a similar way.

3.4. Discrete wave packet frames. By applying Theorem 3.4 to the wave
packet systems WP(Ψ), given in (3.23), one obtains results very much in the spirit
of those found in [D, Ch. 3] for Gabor and affine systems, or in [HL], where one
can find examples of wave packet systems that are a frame for L2(R). In particular,
we are able to recover the results in [D] and [HL]. For the sake of brevity, we will
not examine this situation further in this paper.
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