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Abstract

Using equivariant bifurcation theory, and on the basis of symme-
try considerations independent of the model, we classify square and
hexagonally periodic patterns that typically arise when a homeotropic
or planar isotropic nematic state becomes unstable, perhaps as a con-
sequence of an applied magnetic or electric field. We relate this to a
Landau — de Gennes model for the free energy, and derive dispersion
relations in sufficient generality to illustrate the role of up/down sym-
metry in determining which patterns can arise as a stable bifurcation
branch from either initial state.

1 Introduction

In the Landau theory of phase transitions for a liquid crystal the degree of
coherence of alignment of molecules is usually represented by a tensor order
parameter, a field of symmetric 3 x 3 tensors Q(x), x € R3 with tr(Q) =0
[15]. We think of @ as the second moment of a probability distribution for
the directional alignment of a rod-like molecule. In a spatially uniform sys-
tem, @ is independent of x € R3. When @ = 0 the system is isotropic,
with molecules not aligned in any particular direction. If there is a preferred



direction along which the molecules tend to lie (but with no positional con-
straints) the liquid crystal is in nematic phase. There are many other types
of phase involving local and global structures, see [15].

In this paper we consider a thin planar layer of nematic liquid crystal
where the top and bottom boundary conditions on this layer are identical.
In this situation the symmetries of any liquid crystal model will include
planar Euclidean symmetries E(2) as well as up/down reflection symmetry.

A configuration or state of a liquid crystal is just a director field that
at each point x in the planar layer indicates the direction n(x) in R? along
which molecules tend to align. We approximate a planar layer by a plane —
so our states consist of a 3-dimensional direction field n defined on R?. In
the Landau theory the direction n(x) is just the eigendirection corresponding
to the largest eigenvalue of Q(x) — the direction in which a molecule has the
‘maximum probability’ of aligning. We shall also refer to Q(x) as the state
of the system.

In our discussion we assume an initial equilibrium state @y that is E(2)-
invariant. Because of translation symmetry such states are spatially uniform
and because of rotation symmetry they have the form

-1 00
Qo =1 0 -1 0
0 0 2

for some nonzero n € R. For n > 0 the state )y represents a homeotropic
phase (the state has constant alignment in the vertical direction), whereas
for n < 0 it represents a planar isotropic liquid crystal (a molecule is equally
likely to align in any horizontal direction). The state @)y is also invariant
under up/down reflection, that is conjugacy by the matrix

10 0
T=101 0
00 -1

We consider models that are determined internally by a free energy rather
than externally by, say, a magnetic field. Thus, the symmetry group for our
discussion is

I'=E(2) x Zy(7),

since these are the symmetries of both the initial state ()g and the model.



Our aim in this paper is to study local bifurcation from @)y to states that
have spatially varying alignment along the plane. Specifically, we consider
bifurcation to states exhibiting spatial periodicity with respect to some planar
lattice. We use group representation theory (following [11, 10]) to extract
information about nonlinear behavior near bifurcation that is independent
of the model.

There is a common approach to all lattice bifurcation problems, which we
now describe. This discussion, adapted from [2], will be familiar to anyone
who has studied pattern formation in Bénard convection models, although
there are minor differences due to the change in context. See [11, 10].

Let X be a bifurcation parameter and assume that the equations have Q)
as an equilibrium for all A\. Let L denote the equations linearized about Q).
In the models, A is the temperature and bifurcation occurs as A is decreased.

1. A linear analysis about )y leads to a dispersion curve.

Translation symmetry in a given direction implies that (complex) eigen-
functions have a plane wave factor wy(x) = e*™** where k € R2
Rotation symmetry implies that the linearized equations have infinite-
dimensional eigenspaces; instability occurs simultaneously to all func-
tions wy(x) with constant k£ = |k|. The number £ is called the wave
number. Points (k, \) on the dispersion curve are defined by the max-
imum values of A for which an instability of the solution )y to an
eigenfunction with wave number k occurs.

2. Often, the dispersion curve has a unique maximum, that is, there is a
critical wave number k, at which the first instability of the homogeneous
solution occurs as A is decreased.

Bifurcation analyses near such points are difficult since the kernel of the
linearization is infinite-dimensional. This difficulty can be side-stepped
by restricting solutions to the class of possible solutions that are doubly
periodic with respect to a planar lattice L.

3. The symmetries of the bifurcation problem restricted to £ change from
Euclidean symmetry in two ways.

First, translations act on the restricted problem modulo £; that is,
translations act as a torus T2. Second, only a finite number of rota-
tions and reflections remain as symmetries. Let the holohedry H,; be
the group of rotations and reflections that preserve the lattice. The



symmetry group I's of the lattice problem is then generated by H,
T2, as well as (in our case) Zo(7).

. The restricted bifurcation problem must be further specialized. First,
a lattice type needs to be chosen (in this paper square or hexagonal).
Second, the size of the lattice must be chosen so that a plane wave with
critical wave number k, is an eigenfunction in the space F, of matrix
functions periodic with respect to L.

Those k € R? for which the scalar plane wave e*™%* is L-periodic

are called dual wave vectors. The set of dual wave vectors is a lattice,
called the dual lattice, and is denoted by L£*. In this paper we consider
only those lattice sizes where the critical dual wave vectors are vectors
of shortest length in £*. Therefore, generically, we expect ker L = R"
where n is 4 and 6 on the square and hexagonal lattices, respectively.

. Since ker L is finite-dimensional, we can use Liapunov-Schmidt or center
manifold reduction to obtain a system of reduced bifurcation equations
on R"™ whose zeros are in 1:1 correspondence with the steady-states of
the original equation. Moreover, this reduction can be performed so
that the reduced bifurcation equations are I',-equivariant.

. Solving the reduced bifurcation equations is still difficult. A partial
solution can be found as follows. A subgroup ¥ C I'; is azial if
dim Fix(X) = 1 where

Fix(¥) ={z €kerL:ox =2 VoeX}

The Equivariant Branching Lemma [11] states that generically there ex-
ists a branch of solutions corresponding to each axial subgroup. These
solution types are then classified by finding all axial subgroups, up to
conjugacy.

On general grounds, when restricting attention to bifurcations corre-
sponding to shortest wave length vectors, we may assume the representation
(action) of I'z to be irreducible: see [11, 7]. In Section 2 we show that there
are four distinct types of irreducible representation of I'; that can occur in
bifurcations from @)y. These representations are the four combinations of
(i) scalar or pseudoscalar (see [1, 2, 10]) and (ii) preserve or break 7 sym-
metry. In Section 2 we also compute the axial subgroups for each of these
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representations and draw pictures of each of the relevant planforms on the
square and hexagonal lattices. It is an elementary yet curious observation
that in Landau models restricted to a planar layer, bifurcations from the
homeotropic phase (7 > 0) do not lead to clear new patterns unless 7 sym-
metry is broken: the 7 symmetry ‘freezes’ the director field to the vertical.
This point is discussed in more detail in Section 2. Therefore we present
pictures of the four bifurcations from the isotropic case (n < 0) and only the
two bifurcations when 7 acts as —1 in the homeotropic case (n > 0). The
7 = +1 bifurcations in the homeotropic case can lead to patterns in a the-
ory posed on a thickened planar layer. In such a theory, which goes beyond
what we present here, the precise form of boundary conditions on the upper
and lower boundaries of the layer will determine the pattern types. In the
other bifurcations, the contributions to pattern selection of these boundary
conditions should be less important.

In fact, the bifurcation theory for each of these four representations of
I'; has been discussed previously in different contexts. It is only the inter-
pretation of eigenfunctions in the context of Q(x) that needs to be com-
puted, along with the pictures of the resulting planforms. More specifically,
when 7 acts trivially on ker L the scalar representation has been used in the
study of pattern formation in Rayleigh-Bénard convection by Busse [4] and
Buzano and Golubitsky [5], and the pseudoscalar representation has been
studied by Bosch-Vivancos, Chossat, and Melbourne [1] and also in the con-
text of geometric visual hallucinations by Bressloff, Cowan, Golubitsky, and
Thomas [3, 2]. When 7 acts nontrivially the two representations have the
same matrix generators and although the planforms are different for these
two representations the bifurcation theory is identical. Indeed, this theory is
just the one studied for Rayleigh-Bénard convection with a midplane reflec-
tion by Golubitsky, Swift, and Knobloch [12].

Perhaps the most interesting patterns that appear from our analysis are
the stripes or ‘rolls’ (from convection studies) type patterns that bifurcate
from the isotropic state when 7 symmetry is not broken, that is 7 = +1. The
scalar pattern is a ‘martensite’ pattern whereas the pseudoscalar pattern is
a ‘chevron’ pattern. See Figure 1. The fact that such patterns do occur in
liquid crystal layers is well known: see for example [14], from which the pic-
tures in Figure 2 are taken. Note, however, that these patterns are examples
that bifurcate from homeotropy; moreover, they also exhibit finer periodic
structures (a characteristic feature in practice) that we do not discuss in this

paper.
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Figure 1: Rolls from isotropic (n < 0) state with 7 = +1 representations:
scalar ‘martensite’ (left); pseudoscalar ‘chevron’ (right).

In Section 3 we introduce free energies that illustrate that all four rep-
resentations can be encountered as A is decreased, although in our model
only two of them can be the first bifurcation from homeotropy while only the
other two can be the first bifurcation from isotropy. (It is likely that differ-
ent models will allow other variations.) It then follows from the Equivariant
Branching Lemma that each of the axial equilibrium types that we describe
in Section 2 is an equilibrium solution to the nonlinear model equations.

2 Spatially Periodic Equilibrium States

In this section we list the axial subgroups for each of the four representations
of I'z on the square and hexagonal lattices, and then plot the planforms
for the associated bifurcating branches from both the isotropic (n < 0) and
homeotropic (n > 0) states. We emphasize that these results depend only on
symmetry and can be obtained independently of any particular model. First,
we describe the form of the eigenspaces for each of these four representations.
Second, we discuss the group actions and the axial subgroups for each of these
representations. Finally, we plot the associated direction fields.

Linear Theory

Let L denote the linearization of the governing system of differential equations
at Qo (for the free energy model with free energy F we have L = d>F(Qy)).
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Figure 2: Rolls (left) and chevrons (right) bifurcating from homeotropy. (Pic-
tures courtesy of J.-H. Huh.)

Bifurcation occurs at parameter values where L has nonzero kernel. We prove
that generically, at bifurcation to shortest dual wave vectors, ker L has the
form given in Theorem 2.1. Let

[a 0 0 [0 0 i
Qt* = |0 b 0 Q+~ = |00 0
00 —a—b i 00

(2.1)
[0 1 0 [0 0 0]
Q" = |100 Q— = |00 i
0 0 0 0 i 0|

In the double superscript on @, the first + refers to scalar or pseudoscalar
representation and the second =+ refers to the action of 7. In Table 1 we also
fix the generators of the lattice and its dual lattice.

Lattice £, 12 k, ko
Square | (1,0)  (0,1) | (L) (0,1)
Hexagonal (17 \/Lg) (07 \/lg) (170) %(_17\/3)

Table 1: Generators for the planar lattices and their dual lattices.



Theorem 2.1. On the square lattice, let & be rotation counterclockwise by

5. Then, in each irreducible representation, ker L is four-dimensional and

its elements have the form
Z1627r7;k1-x Q:i::l: + 29 627rik2~x§ . Q:i::l: + c.c. (22)

for 21,20 € C, where Q** is the appropriate matriz specified in (2.1), £ - Q
denotes EQEY, and c.c denotes complex conjugate.

On the hexagonal latlice, let & be rotation counterclockwise by 5. Then,
in each irreducible representation, ker L is siz-dimensional and its elements
have the form

Zlegﬂ.ikllx Q:t:t + 2’2 627|—ik2~x 5'2 A Q:t:t + Z3 627Fik3~x 54 . Q:l::t + c.c. (23)
for z1,29,23 € C.

Proof. Let V and V¢ denote the space of (respectively) real and complex 3 x 3
symmetric matrices with zero trace. Planar translation symmetry implies
that eigenfunctions (nullvectors) of L are linear combinations of matrices
that have the plane wave form

"X Q + c.c. (2.4)

where Q € V¢ is a constant matrix and k € R? is a wave vector. For fixed k
let
Wi = {¥™5*Q +c.c. . Q € V) (2.5)

be the ten-dimensional L-invariant real linear subspace consisting of such
functions.
Rotations and reflections v € O(2) x Zy(7) C O(3) act on Wy by

7(627rik~xc2) —_ 627ri('yk)~x 7Q7_1' (26)

When looking for nullvectors we can assume, after rotation, that k = k(1,0).
We can also rescale length so that the dual wave vectors of shortest length
have length 1; that is, we can assume that & = 1.

Bosch Vivancos, Chossat, and Melbourne [1] observed that reflection sym-
metries can further decompose Wy into two L-invariant subspaces. To see
why, consider the reflection

H<x7y72> = (l’, -y, Z)'
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Note that the action (2.6) of k on Wy (dropping the +c.c.) is
i (627rik~xc2) _ 2minl)x 0=l 2mikex =1
Since k% = 1, the subspace Wy itself decomposes as
Wi =W e W, (2.7)

where k acts trivially on W, and as minus the identity on W,_, and each of
W, and W are L invariant. We call functions in W} even and functions
in W odd. Bifurcations based on even eigenfunctions are called scalar and
bifurcations based on odd eigenfunctions are called pseudoscalar.

A further simplification in the form of ) can be made. Consider p €
SO(2) € O(3) given by (z,y,2) — (—z,—y, z). Since (dropping the + c.c.)

p<€2ﬂik'xQ) _ 627m‘pk.prp—1 — 6—27rik~prp—1 — 627rik~prp—1

the associated action of p on Vi is related to the conjugacy action by

p(Q) = pQp~". (2.8)

Since L commutes with p and p? = 1, the subspaces of the kernel of L where
p(Q) = Q and p(Q) = —Q are L-invariant. Therefore, we can assume that Q)
is in one of these two subspaces. Note moreover that translation by }Lk implies
that if e2™%*(Q is an eigenfunction then ie*™**Q is a (symmetry related)
eigenfunction. It follows from (2.8) that if p acts as minus the identity on
@, then p acts as the identity on (). Thus we can assume without loss of
generality that up to translational symmetry @) is p-invariant, that is ) has
the form '

a g ic

Q=19 b ih
tc th —a—0»

where a, b, c, g, h € R. Therefore we have proved

Lemma 2.2. Up to symmetry eigenfunctions in Wy have the form
627rik~XQ +ec.

where ) 1s nonzero, p-invariant, and either even or odd.



Lemma 2.2 implies that typically eigenfunctions in Wy lie in one of the
2-dimensional subspaces V", V,~ of Wi, W~ that have the form

Vi = {ze**QT . 2 € C}

Vi = {ze%ik'xQ_ :z2€C}
where
a 0 ic 0 g O
Qt=10 b 0 and Q =g 0 hi (2.9)
ic 0 —a—20 0 hi O

with the specific values a,b, ¢, g, h € R being chosen by L (cf. [10, §5.7]).
Moreover, since L commutes with 7 we can further split

VE=VH eV and Vo =ViteVo

into subspaces on which 7 acts trivially and by minus the identity, and each
of these subspaces is L-invariant. Since

a g —ic
TQT = g b —ih
—ic —th —a—2»b

we see that V5 = {ze?™k*xQ** . 2 € C}, where the matrices Q** are as
given in (2.1).

Finally, note that ker L is invariant under the action of £. It follows that
on the square lattice

ker L=V @ ¢ (V)
whereas on the hexagonal lattice
ker L=V @& (Vi) @& (Vi)

thus verifying (2.2),(2.3) and completing the proof of Theorem (2.1). O

Axial Subgroups

The scalar and pseudoscalar actions of E(2) on the eigenfunctions on the
square and hexagonal lattices are computed in [2]. The results are given in
Table 2 in terms of the coefficients z; in (2.2) and (2.3).
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D, Action Dg Action
1 (21, 22) 1 (21, 22, 23)
§ (Z2, 21) § (%2, 723, %1)
'S (71, 72) 'S (23, 21, 22)
& (22,71) & (71, %2, 73)
K €(z1,72) 'S (22, 23, 21)
K& €(z2, %) £ (73,71, 22)
’%52 6(217 ZZ) R 6(217 23, 22)
KE3 €(z9,21) K& (%2, 71, 23)
KE? €(z3, 22, 21)
KE? €(z1, 73, 22)
K& €(22, 21, 23)
"155 6(2_37 22, Z_l)

[017 02] (6—2m'01 21, 6—2m'92 2’2) [91, 92] (6727”9121, 6—2m’92 2, 627ri(91+92)23)

Table 2: (Left) Dy+ T? action on square lattice; (right) Dg+ T? action
on hexagonal lattice. Here [0, 6] = 61€; + 02€5 as in Table 1. For scalar
representation e = +1; for pseudoscalar representation e = —1.

The axial subgroups for each of the four irreducible representations of I',
are given in Table 3, together with generators (21, 29) € C? or (21, 29, 23) € C?
(fixed vectors) of the corresponding 1-dimensional fixed-point subspaces (ax-
ial eigenspaces) in ker L, and descriptions of the associated patterns (plan-
forms).

The results in Table 3 summarize known results for scalar actions with
and without the midplane reflection [5, 12] and the less well known results for
pseudoscalar actions [1, 2]. See also [10]. More precisely, on the hexagonal
lattice, the scalar™ action is identical to the action studied in Bénard con-
vection [4, 5] and the scalar™ action is identical to the one studied in Bénard
convection with the midplane reflection [12]. The pseudoscalar™ action is
identical to that studied in [1, 2], whereas the pseudoscalar™ action is again
the same as the one in Bénard convection with the midplane reflection —
but with different isotropy subgroups, as Figures 5 and 6 show.
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Lattice ‘ Planform ‘ Axial Isotropy Subgroup Fixed Vector
Scalar Representation (e = +1); 7 = +1

Square squares Dy(k, &) ® Zo(T) (1,1)
rolls Z3(k&%, 1) ® O(2)[02, K] (1,0)

Hexagonal | hexagons™ | Dg(k, &) @ Zo(T) (1,1, 1)
hexagons™ | Dg(k, &) @ Za(T) (-1,-1,-1)
rolls Z3i(kE,7) ® O(2)[09, K| (1,0, 0)

Pseudoscalar Representation (e = —1); 7 = +1

Square squares D, (r [2,5] §) ® Zs(7) (1,1)
rolls Z2(/{§2[ ] ) b O( )[0% [ 7OH (17 0)

Hexagonal | hexagons | Zg(&) ® Zo(T) (1,1,1)
triangles | D3(k&, £2) @ Zo(T) (i,1,17)
rectangles | Z3(k,&3,7) 0,1,-1)
lls | Z3(r€[4,0L,7) @ O@)lAaf2. 0| (1,0,0)

Scalar Representation (e = +1); 7 = —1

Square squares Dy(k,&) ® Zo(7[35, 3)) (1,1)
rolls Z3(k&%, 7(3,0]) ® O(2)[02, 5] (1,0)

Hexagonal | hexagons | Dg(k, &) (1,1,1)
triangles | Dg(k, 7€) (1,1,1)
rectangles | Z3(7x, &%, 7(0, 1) (0,1,-1)
rolls Z3(r€%, 7[5, 0]) ® O(2)[0, k] (1,0,0)

Pseudoscalar Representation (e = —1); 7 = —1

Square squares Dy(7k, &) @ Zo(7[3, 1)) (1,1)
volls | Z3(e(l, 0], (2, 01) & O(2)[6, #12,0]] | (1,0)

Hexagonal | hexagons | Dg(7k, &) (1,1,1)
triangles | Dg(7k, 7E) (1,1,17)
rectangles | Z3(r, &%, 70, 3]) (0,1,-1)
rolls Z3(k¢%[5, 0], 7[5, 0]) ® O(2)[6>, 5[5, 0]] | (1,0,0)

Table 3: Summary of axial subgroups. On the hexagonal lattice in the scalar

case with 7 = +1 the points (1,1, 1) and (—

1, —1, —1) have the same isotropy

subgroup (Dg(k, &) @ Zo(7)) — but are not conjugate by any element of I'z.
Therefore, the associated eigenfunctions generate different planforms.
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The Planforms

We now consider 2-dimensional patterns by disregarding the z-coordinate
in x (but not in @) and restricting attention to equilibrium states that are
periodic with respect to a square or hexagonal lattice in the xy-plane.

To visualize the patterns of bifurcating solutions we assume a layer of
liquid crystal material in the xy-plane that to first order has the form

Q(x) = Qo + cE(x)

where E is an axial eigenfunction, e is small, and @)y is either isotropic
(n = —1) or homeotropic (n = +1). At each point (z,y) we choose the
eigendirection corresponding to the largest eigenvalue of the symmetric 3 x 3
matrix Q(x) at x = (z,y) and we plot only the x,y components of that line
field. In this picture, a line element that degenerates to a point corresponds
to a vertical eigendirection, so the initial solution looks like at array of points.

Suppose that )y is homeotropic. Then in our simulations no pattern will
appear in bifurcations for which Q(x) is fixed by the action of 7. For, if
E(x) € Vi or V.t then

A0
Q(X) _ [ 0 b:|
where A is a 2 x 2 block and b is a scalar. Since b is close to 2 (the largest
eigenvalue of ()y) it is also the largest eigenvalue for )(x) for e small. Hence,
the leading eigendirection (corresponding to the largest eigenvalue) is always
vertical and no patterns appear that are determined by changes in eigendi-
rection. However, since variation in the vertical eigenvalue of ()(x) represents
variation in the propensity of molecules to align vertically it is plausible that
indistinct patterns could nevertheless be observed in practice.

In Figures 3 and 4 we plot solutions corresponding to scalar and pseu-
doscalar square lattice patterns. In Figures 5-10 we plot those for a hexagonal
lattice. Observe the dislocations that occur where the leading eigendirection
changes discontinuously. The two competing directions are necessarily or-
thogonal in R?.

3 Free Energy Models

These results imply that for a planar liquid crystal there are four types of
steady-state bifurcations, scalar, pseudoscalar and 7 = +1 of each type, that
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Figure 3: Square lattice bifurcations from isotropic (n < 0) liquid crystal

to square patterns: (upper left) scalar 7 = +1; (upper right) pseudoscalar
= +1; (lower left) scalar 7 = —1; (lower right) pseudoscalar 7 = —1.

Corresponding rolls patterns can be found in Figures 1 and 7-10.

can occur from a spatially homogeneous equilibrium to spatially periodic
equilibria. Whichever bifurcation occurs, then generically all of the planforms
that we listed in the relevant section of Table 3 will be solutions. We have
not discussed the difficult issue of stability of these solutions since these are
model dependent results, whereas the classification of equilibria that we have
given is independent of the model.

What remains is to complete a linear calculation to determine when a
steady-state bifurcation occurs and whether it is scalar or pseudoscalar. The
outline of such a calculation goes as follows. We first compute a dispersion
curve for both scalar and pseudoscalar eigenfunctions. That is, for each wave

14
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A where L has a nonzero kernel. The curve (k, \) is called the dispersion

curve. We then find the minimum value A, = A\, on the dispersion curve; the
corresponding wave length k, is the critical wave length. We expect the first

instability of the spatially homogeneous equilibrium to occur at the value
A, of the bifurcation parameter. A bifurcating branch can consist of stable

solutions only if the branch emanates from the first bifurcation (at \).

Figure 4: Square lattice bifurcations from homeotropic (n > 0) to squares
with 7 = —1: (left) scalar; (right) pseudoscalar. Corresponding rolls patterns

can be found in Figures 5-6.
length & = |k| we determine the first value Ay of the bifurcation parameter

As an illustration we now carry out these calculations for a Landau — de
Gennes type model with appropriate planar symmetry. Related calculations
were carried out for bifurcation from the 3-dimensional isotropic phase in

In this model we show that there are bifurcations corresponding to

[13].
each of the four irreducible representations of I', , and which of them occurs

first depends on the action of 7.

]l Landau — de Gennes Model

.

1imensiona

Curves for a 2-D

ispersion

D

The free energy F' is expressed as an integral per unit volume of a free energy
density F which has two principal components F; and F; corresponding to
bulk terms and deformation terms respectively: we write F accordingly as

For a system in 3 dimensions these typically

F = Fy+ Fy.

15
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Figure 5: Hexagonal lattice bifurcations from homeotropic (

upper right) hexagons;

(

)

rolls;

)

(upper left

lower right) rectangles.

—1 representation:

scalar 7

(

) triangles;

(lower left

take the form

<
<
>
S
Q
St
4+ @
n &
Q.
=
_R 8
S5
~ =
—N QO
1]
SIS
Sy

mvariant

)_

3

(

denotes the sum of the squares of the coefficients of
function on V' exhibiting nontrivial interaction of local minima close to () = 0,

|R|”

the tensor R. The expression for Fy represents the simplest SO

where

respectively,

3)-invariant terms of at most order 2 in spatial

(
(the chiral term |@ -V A Q)|
For a 2-dimensional problem this choice of free energy

fully appropriate: the relevant symmetry group is now I’

while F; consists of those SO

first derivatives

invariant).
function is not

is not reflection

E(2) X Zs(7).
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Figure 6: Hexagonal lattice bifurcations from homeotropic (n > 0

upper right) hexagons;

rolls; (

)

—1 representation: (upper left
triangles; (lower right) rectangles.

doscalar 7

)

(lower left

Consequently a wider range of terms can appear in Fy, while the |Q -V A Q|

term will no longer appear in F; .

We are interested in planforms that bifurcate from either the bulk hom-

eotropic state or isotropic state, represented by @)y with n > 0 or n < 0

and a candidate for a deformation term to replace the chiral term
representing longer range interactions of molecules. Accordingly we

)%,

-Q

Qs
is |AQ[?

respectively. An example of a bulk term with E(2) x Zy(7) invariance is

Fo + F4 where now

consider a free energy density F

15D(Qo - Q)

ClQI* +

1
4

BtrQ® +
+ CQ|V . Q|2 + C4’AQ’2.

AQP? -3
Cl‘vQ‘Q

1
2

Q) =
Fa(Q)

Fo
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Figure 7: Hexagonal lattice bifurcations from isotropic (n < 0) with scalar

T = +1 representation: rolls in Figure 1; (left) hexagons™; (right) hexagons

Equilbrium states are critical points of F', and for Fy we have

(Qo- Q)(Qo- R)
for arbitrary 3 x 3 real symmetric matrices @), R; thus restricted to ) with

trace zero we have dFy(Q)

1
6

AQ-R—BQ* R+C|QPQ R+

dFo(Q)R

0 when
QIT) + C|QI*Q +

0

D(Qo - Q)Qo

1
6

1
3

AQ — B(Q*
and we easily verify the following

(3.1)

A — Bn+ (6C + D)n* = 0.

—

dFy(Qp) =0

Observe that dF(Q)R
R with zero mean, as the integral of an expression linear in R or its derivatives

0 automatically for any spatially-periodic state

3.1) is the

(

remains bounded as the volume tends to infinity. Therefore
condition for @)y to be an equilibrium state in our free energy model.

To study stability of the state )y we evaluate the second derivative of the

free energy at Qy. For R € V we find

¢D(Qo - R)

*|RI%) +

>+ Qo

)

AR =2BQo-R*+C(2(Qo- R

& Fy(Qo) R

and (integrating over unit area)

-R)* + c4/ |IAR|?

szd(Qo)RQ = Cl/|VR|2 +CQ/|V
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Figure 9: Hexagonal lattice bifurcations from isotropic (n < 0) with pseu-
doscalar 7 = +1 representation: (upper left) rolls; (upper right) hexagons;
(lower left) triangles; (lower right) rectangles.

then after rescaling k by a factor of 27 the evaluations of d*>Fy(Qo)R? and
d?F;(Qo)R? are given in Table 4.

If we normalize by choosing D so that (3.1) is satisfied by n = 1 (corre-
sponding to homeotropy) then we find the conditions for a zero eigenvalue
in each of the last three (1-dimensional) eigenspaces are respectively

A=B+6C+ (c1 + 2eo)k? + esk* =
A+ 2B+ 6C + (1 + 3e2)k? + ik
A= B+6C+ c1k* + e4k* =

(3.2)

I
oo o

with the analogous expressions for n = —1 (bifurcation from 2-dimensional
isotropy) obtained by merely reversing the sign of B in these equations.
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Figure 10: Hexagonal lattice bifurcations from isotropic (n < 0) with pseu-
doscalar 7 — 1 representation: (upper left) rolls; (upper right) hexagons;
(lower left) triangles; (lower right) rectangles.

Stationary values of A as a function of k occur where
k= —(c1 4 362)/2¢4

for VI~ and V0 T,
k2 = —61/204

for V., giving values

B —6C + (1 + 3¢2)?/4cy for Vi~
A=4q —2B—6C+ (c1 + 1c2)?/4ey for Vio* (3.3)
B —6C + c3/4cy for Vi~
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R [ &Fy(Qo) R PFy(Q0) K2

Vit | AMa® + b — 2ab) 2k*(coa®+
—B(a® + b* 4 10ab)n (@®> + %+ (a+ b)) (c1 + cak?))
+6C (7(a® 4 b*) + 10ab)n*

Vi~ | 4(\ — Bn+6Cn?) (4dey + 2¢9)k? + degk?
= —4Dn? by (3.1)

Vi T | 40N+ 2Bn + 6Cn?) (dey + 2¢9)k? + degkt

Vi~ | 40\ — Bn+6Cn?) 4erk? + degk?
= —4Dn?

Table 4: Computation of d?F(Qy)R>.

Finally, if R € V" then the matrix for d?F,(Qo)R* as a quadratic form in
a,b is

—A—=5B+ 30C A — B+ 42C
and for d>Fy(Qo)R? is

401]{?2 + 202]{52 + 4041{54 201]€2 + 2041{74
2011{?2 + 204]{34 461]{32 + 404]1’}4

{ A — B +42C —)\—58—1—300]

and so d?F(Qo)|Vi,* has a nontrivial kernel when the determinant of the
sum of these two matrices vanishes.

With ¢ = 0 (that is, in physical terms, with no energy cost to the
molecules for ‘splay’) the algebra simplifies to yield the dispersion relation

o

A=—2B-6C+ . (3.4)
From (3.2) and (3.4) we therefore see that with ¢; = 0 the values of A for
VkjEi depend only on the second =+, that is on whether bifurcating solutions
have vertical reflection symmetry (7 = +1) or not (7 = —1) and are the same
for the scalar and the pseudoscalar representations. Moreover, as A decreases,
the first bifurcation from the homeotropic state (n > 0) has 7 = —1 while
the first bifurcation from the isotropic state (n < 0) has 7 = +1. These

statements remain true for sufficiently small |cy] .
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