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Abstract

A spread option is a contingent claim whose underlying is the price difference between two
assets. For a call, the holder of the option receives the difference, if positive, between the price
difference and the strike price. Otherwise, the holder receives nothing. Spread options trade in large
volume in financial, fixed-income, commodity, and energy industries. It is well known that pricing of
spread options does not admit closed-form solutions even under a geometric Brownian motion
paradigm. When price dynamics experience stochastic volatilities and/or jumps, the valuation
process becomes more challenging. Following the seminal work of Jarrow and Judd, we propose the
use of Edgeworth expansion to approximate the call price. In the spirit of Pearson, we reduce the
cumbersome computation inherent in Edgeworth expansion to single numerical integrations. For an
arbitrary bivariate price process, we show that once its product cumulants are available, either by
virtue of the structural properties of the underlying processes or by empirical estimation using market
data, the approach enables analysts to approximate the call price easily. Specifically, the call prices so
estimated capture the correlation, skewness, and kurtosis of the two underlying price processes. As
such, the approach is useful for approximate valuations based on Lévy-based models.
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1. Introduction

A spread option is a financial contract between two parties. For the energy/power
and commodity markets, spread options are in the bread-and-butter tool kit for risk
management. In this paper, we consider a spread option of European type. For a
call option, at maturity the holder has the right to exercise the option and collect
the payoff. The payoff is the difference in price between the two underlying assets
and the strike price. If the payoff is negative, the holder forgoes the right. Spread
options trade extensively in organized exchanges and between counter parties. Its
popularity many times stems from the need to hedge the price difference between
the two underlying assets and/or speculative motives between two parties with
differing beliefs about future price movements. It is well known that pricing of
spread options does not have closed-form solutions even under a geometric
Brownian motion (GBM) paradigm. Various approaches on pricing spread options
center around two age-old thrusts ��� bounds and approximations. Earlier work on
the subject include those of Shimko (1994), Kirk (1995), Pearson (1995), Mbanefo
(1997), among others. In the recent past, Carmona and Durrleman (2003) provided
a procedure requiring the solution of nonlinear equations for estimating price
bounds. Dempster and Hong (2000) and Hong (2001) employed the Fast Fourier
Transform for valuation of spread options. Deng et al. (2001), Hikspoors and
Jaimungal (2007) and Benth et al. (2008) studied the pricing issues in energy
markets. Li et al. (2008) and Bjerksund and Stensland (2008) gave two different
closed-form approximations under a GBM paradigm. A very efficient numerical
procedure using Fourier space time-stepping approach was suggested by Jackson
et al. (2008/09). In addition, another Fourier transform-based approach for nu-
merical solution of spread option appeared in this paper was proposed by Hurd and
Zhou (2010). Kouam (2007) explored the use of Monte Carlo simulation to study
scenarios where the bivariate price process contains stochastic volatility and
jumps. The extension of the underlying paradigm to one that includes Levy pro-
cesses has been considered by Benth and Kettler (2011) in the context of spark
spread.

For a European option, the prices at maturity are all what is needed for pricing.
Hence the stochastic process governing the price dynamics is relevant only to the
extent it produces the price distributions of underlying assets at maturity. For an
option with a single underlying asset, under the classical Black–Scholes–Merton
paradigm (1973, 1990), the price at maturity follows a lognormal distribution. It is
widely acknowledged that market data deviate from such a paradigm and with a
consequence of frequent and serious mispricings. To circumvent this difficulty,
Jarrow and Rudd (1982) pioneered the use of Edgeworth expansion to approxi-
mate arbitrary price distributions at maturity using the lognormal as the
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approximating distribution. As a result, the skewness and kurtosis of the price
process are reflected in the option price so computed. The term Edgeworth ex-
pansion was coined after Edgeworth (1904) in his study of law of error. Its use for
approximating probability distributions spans more than one hundred years in the
statistical literature (e.g., see Cram�er (1946), Kendall (1949), McCullagh (1987),
and Stuart and Ord (1994)). Following the lead of Jarrow and Rudd, others have
used the approach for applications in option pricing ��� particularly options with a
single underlying asset. These include the work of Duan et al. (1999) under a
GARCH framework and Turnbull and Wakeman (1991) for pricing average
options, among others. In the past 15 years, the use of Edgeworth expansion in
financial mathematics has dwindled to a trickle. Notable exceptions are the papers
by Zhang et al. (2011), and a thesis done at Imperial College, London, by Ehrlich
(2012) for pricing basket options with smile.

In this paper, we present an approach for approximating the price of a spread
option by bivariate Edgeworth expansion. In Sec. 2, we introduce a few needed
notations and results pertaining to product cumulants. In Sec. 3, we present the
bivariate Edgeworth expansion and state its implications in computation. In Sec. 4,
we address the issues concerning pricing spread options. The derivations of the
results extend the idea of Pearson (1995) (also see Ravindran (1995)). Simply
stated, it exploits the law of total probability in computing expectation. We will see
that after elaborate manipulations, the potentially cumbersome computation boils
down to single numerical integrations. Moreover, numerical differentiation em-
bedded in the expansion is completely avoided. In Sec. 5, we demonstrate the
application of the procedure for correlated price processes that include jumps of
the type considered by Merton (1976). In Sec. 6, we present another example
based on the double exponential jump diffusion model of Kou (2002). There, the
model enables us to capture the asymmetric heavy tails of returns resulting
\volatility smile". For an arbitrary bivariate price process, we emphasize that once
its product cumulants are known, either by virtue of the structural properties of the
underlying processes (as illustrated in Secs. 5 and 6) or by empirical estimation
using market data, the approach enables analysts to approximate the call price
easily. Specifically, the call prices so estimated capture the correlation, skewness,
and kurtosis of the two underlying price processes. In our implementation, we
match the first two moments of the actual and approximating distributions. Our
approach is similar in spirit to that of the Tankov and M�enass�e (2015). There, they
stated that \Our closed formula represents the indifference price as a linear
combination of the Black–Scholes price and correction terms which depend on the
variance, skewness and kurtosis of the underlying L�evy process, and the deriva-
tives of the Black–Scholes price."
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2. Preliminaries

Let Y1 and Y2 be two random variables and FY1,Y2 be the joint distribution function.
We use AY1,Y2 to denote an approximating distribution of FY1, Y2 . We consider the
cases when the respective density functions fY1, Y2 and aY1, Y2 exist.

Define the ðr, sÞth moment of ðY1,Y2Þ about the origin ð0, 0Þ under FY1,Y2 by

� 0
r, sðFÞ ¼

Z 1

�1

Z 1

�1
yr1y

s
2dFY1,Y2ðy1, y2Þ:

It follows that � 0
r, 0 is the rth moment of Y1 and � 0

0, s is the sth moment of Y2.
Also, �r, s is known as the ðr, sÞth product moment of ðY1, Y2Þ. The moments of
ðY1, Y2Þ are defined by the moment generating function (m.g.f)

MðF, t1, t2Þ ¼
X1
r¼0

X1
s¼0

E[et1y1þt2 y2] ¼
X1
r¼0

X1
s¼0

� 0
r, sðFÞt r1t s2
r!s!

: ð1Þ

Similarly, we define the ðr, sÞth product moment of ðY1,Y2Þ about the mean
ð� 0

10,�
0
02Þ under FY1, Y2 by

�r, sðFÞ ¼
Z 1

�1

Z 1

�1
ðy1 � � 0

10Þrðy2 � � 0
0, 2ÞsdFY1Y2ðy1, y2Þ:

In this paper, we consider the cases when these moments exist for all non-
negative integers r and s such that 0 < r þ s � 4.

Let �ðF, t1, t2Þ denote the characteristic function (c.f.) of FY1,Y2 , i.e.,

�ðF, t1, t2Þ ¼
Z 1

�1

Z 1

�1
eit1 y1þit2 y2dFY1,Y2ðy1, y2Þ,

where i2 ¼ �1. The c.f. is the Fourier transform of the density. The joint c.f. and
joint m.g.f. of the two random variables are related by

�ðF, t1, t2Þ ¼ MðF, it1, it2Þ:
The bivariate cumulants �r, s, also known as the product cumulants, of the two

random variables are defined by

lnMðF, t1, t2Þ ¼
X1
r¼0

X1
s¼0

�rsðFÞt r1t s2
r!s!

,

where �00 � 0 (the term cumulant was coined by Thiele (1903)). Hence

exp
X1
r¼0

X1
s¼0

�rsðFÞt r1t s2
r!s!

 !
¼
X1
r¼0

X1
s¼0

� 0
r, sðFÞt r1t s2
r!s!

, ð2Þ
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where the right side of (2) is due to (1) (the above equation is given as (3.72) in
Stuart and Ord (1994)). Since ex ¼P1

n¼0 xn=n!, the left side of (2) can be ex-
panded as powers of t1 and t2. The product moments � 0

r, sðFÞ can be found by
matching the coefficients of associated with the term t r1t

s
2 on the right side of (2).

From these relations, the product cumulants can also be expressed in terms of
product moments. These relations are listed in detail in Stuart and Ord (while the
latest edition was published in 2005, the original version published under the
authorship of Kendall and Stuart appeared in 1943). For the cases where
0 < r þ s � 4, we cite those results needed in subsequent development (e.g., see
p. 90 and p. 107 in Stuart and Ord (1994)):

�10ðFÞ ¼ � 0
10ðFÞ, �20ðFÞ ¼ �20ðFÞ, �30ðFÞ ¼ �30ðFÞ,

�40ðFÞ ¼ �40ðFÞ � 3�2
20ðFÞ, �11ðFÞ ¼ �11ðFÞ, �21ðFÞ ¼ �21ðFÞ,

�31ðFÞ ¼ �31ðFÞ � 3�20ðFÞ�11ðFÞ, �22ðFÞ ¼ �22ðFÞ ��20ðFÞ�02ðFÞ � 2�2
11ðFÞ:

The results for �01ðFÞ,�02ðFÞ,�03ðFÞ,�04ðFÞ,�12ðFÞ, and �13ðFÞ can be found
by symmetry. We also note that all the terms defined in this section are defined
similarly when the approximating distribution AY1Y2 is in effect.

3. Bivariate Edgeworth Expansion

In this section, we approximate the true density fY1,Y2 in terms of the approximating
density aY1, Y2 and their product cumulants �rs. The key result is given in Theo-
rem 1. Our derivation of the theorem is informal but it is intuitive. It is different
than that of Shiganov (1986). The assumptions about the existence of all orders of
product moments and partial derivatives of density functions substantially simplify
the proof. A formal and rigorous proof of the theorem for the multidimensional
case can be found in Shiganov (1986). There the expansion was stated as Edge-
worth–Cram�er expansion.

Theorem 1. Assume that

d ðrþsÞ

dyr1dy
s
2

aY1, Y2ðy1, y2Þ

exist for nonnegative integers r and s such that r þ s � 0. The series expansion for
fY1,Y2 in terms of aY1,Y2 and their product cumulants �rs is given by

fY1,Y2ðy1, y2Þ ¼ aY1,Y2ðy1, y2Þ þ
X
rþs>0

Ers
ð�1Þrþs

r!s!

d ðrþsÞ

dyr1dy
s
2
aY1,Y2ðy1, y2Þ: ð3Þ

Proof. See Appendix A.
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In our application of Edgeworth expansion for pricing spread options, we are
only interested in including product moments of order 0 < r þ s � 4. This choice
captures correlation, skewness, and kurtosis of the two price dynamics. The fol-
lowing lemma prescribes the approximation formula and expresses the correction
factors Ers in terms of product cumulants.

Lemma 1. In pricing a spread option we only include product cumulants �rs such
that 0 < r þ s � 4. In such a case, we approximate the actual price distribution
fY1,Y2 using the approximating price distribution aY1, Y2 with

fY1,Y2ðy1, y2Þ � aY1,Y2ðy1, y2Þ

þ
X

0<rþs�4

Ers
ð�1Þrþs

r!s!

d ðrþsÞ

dyr1dy
s
2

aY1,Y2ðy1, y2Þ: ð4Þ

Moreover, the correction factors Ers are related to product cumulants. Their
relations are specified in Appendix B.

Proof. See Appendix B.

In the spirit of Jarrow and Rudd (1982), we use a bivariate lognormal as the
approximating price distribution at maturity. As Yi ¼ logðSiÞ, i ¼ 1, 2, ðY1,Y2Þ �
BVNðð�1,�2Þ, ð�,�1, �2ÞÞ. Since BVN is completely characterized by the last five
parameters and the product cumulants beyond order two of BVN vanish (e.g.,
Holmquist (1988) simplifies the approximation formula (4) further).

Lemma 2. If we set �0iðFÞ ¼ �0iðAÞ and �i0ðFÞ ¼ �i0ðAÞ for i ¼ 1 and 2, and
�ðFÞ ¼ �ðAÞ, then (4) reduces to

fY1,Y2ðy1, y2Þ � aY1,Y2ðy1, y2Þ �
�12ðFÞ
2!

d ð3Þ

dy1dy
2
2

aY1, Y2ðy1, y2Þ

� �21ðFÞ
2!

d ð3Þ

dy21dy2
aY1, Y2ðy1, y2Þ �

k30ðFÞ
3!

d ð3Þ

dy31
aY1,Y2ðy1, y2Þ

� �03ðFÞ
3!

d ð3Þ

dy32
aY1,Y2ðy1, y2Þ þ

�13ðFÞ
3!

d ð4Þ

dy1dy
3
2

aY1,Y2ðy1, y2Þ

þ �31ðFÞ
3!

d ð4Þ

dy31dy2
aY1, Y2ðy1, y2Þ þ

�40ðFÞ
4!

d ð4Þ

dy41
aY1,Y2ðy1, y2Þ

þ �04ðFÞ
4!

d ð4Þ

dy42
aY1,Y2ðy1, y2Þ þ

�22ðFÞ
2!2!

d ð4Þ

dy21dy
2
2

aY1,Y2ðy1, y2Þ: ð5Þ

Proof. Using Eij ¼ �ijðFÞ for iþ j ¼ 3 and 4, and 0 otherwise, and the
assumptions of the lemma, (5) follows.
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Lemma 2 shows that if we match the means, variances, and correlations of the
true distribution F and approximating distribution A, then the difference between
the two distributions can be approximated by a series expansion on the right side
of (5) involving higher order cumulants of the two distributions and the derivatives
of the approximating density aY1,Y2.

4. Pricing Spread Options

We now demonstrate the application of bivariate Edgeworth expansion to the
pricing of spread option. Let S1 and S2 denote the price processes of the two
underlying assets. Under the risk-neutral measure Q, the price of the call is given
by

cðFÞ ¼ e�rTEQ[ðS2ðTÞ � S1ðTÞ � KÞþ]
¼ e�rT

Z 1

�1

Z 1

�1
ðs2 � s1 � KÞþfS1, S2ðs1, s2Þds1ds2, ð6Þ

where fS1, S2 denote the joint density of S1 and S2 under Q. In the context of
Edgeworth expansion, fS1, S2 denotes the true density. As before, we let aS1, S2
denote the approximating bivariate density.

Substituting the Edgeworth expansion (4) into (6), we obtain

cðFÞ � cðAÞ þ e�rT
X

0<rþs�4

Ers
ð�1Þrþs

r!s!

Z 1

�1

Z 1

�1
ðs2 � s1 � KÞþ

� d ðrþsÞ

dsr1ds
s
2

aS1, S2ðs1, s2Þds1ds2, ð7Þ

where

cðAÞ ¼ e�rT

Z 1

�1

Z 1

�1
ðs2 � s1 � KÞþaS1, S2ðs1, s2Þds1ds2: ð8Þ

When the conditions of Theorem 1 are met, the price of a spread option whose
underlying price processes follow arbitrary distributions can be approximated by
the Edgeworth expansion (7) with any arbitrary chosen approximating price dis-
tributions. As many option valuation results pertaining to lognormal price dis-
tributions are known, in what follows we choose the geometric Brownian motion
paradigm for evaluating cðAÞ. Lemma 2 implies that the right side of (7) can be
decomposed into three parts, the price of the spread option under GBM, an ad-
justment term involving skewness (terms with r þ s ¼ 3), and an adjustment term
involving skewness (terms with r þ s ¼ 4). We refer them as Terms 1, 2, and 3,
respectively.

Pricing spread options by generalized bivariate edgeworth expansion
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4.1. Pricing spread options under GBM

Let Yi ¼ log SiðTÞ, i ¼ 1, 2. We assume ðY1,Y2Þ � BVNðð�1,�2Þ, ð�,�1, �2ÞÞ. We
use (8) to write

cðAÞ ¼ e�rT

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþaY1,Y2ðy1, y2Þdy1dy2, ð9Þ

where aY1,Y2 follows the bivariate normal density. We now follow Pearson’s (1995)
approach to reduce the double integration to a single integration. Our derivation
differs from that used by Pearson but after some algebraic manipulations it would
produce the identical result.

For simplicity, we state the double integral in (9) as

IntA �
Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþaY1, Y2ðy1, y2Þdy1dy2

¼
Z 1

�1
GY1ðy1ÞaY1ðy1Þdy1,

where we define

GY1ðy1Þ ¼
Z 1

�1
ðey2 � ey1 � KÞþaY2jY1ðy2jy1Þdy2:

The marginal density for Y1 is Nð�1,�1Þ and the conditional density is given by

aY2jY1ðy2jy1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2��̂ 2

2

p exp � 1

2�̂ 2
2

[y2 �M2ðy1Þ]2
� �

, ð10Þ

where

b�2
2 � �2

2ð1� �2Þ, ��
2ðy1Þ ¼

�2�ðy1 � �1Þ
�1

, M2ðy1Þ � �2 þ ��
2ðy1Þ:

The following theorem gives a closed form expression of GY1 and hence
eliminates the need to perform a numerical integration.

Theorem 2. We have

GY1ðy1Þ ¼ eA2ðy1ÞNðx1ðy1ÞÞ � ðey1 þ KÞNðx2ðy1ÞÞ, ð11Þ
where

A2ðy1Þ ¼ M2ðy1Þ þ
b�2
2

2
,

x1ðy1Þ ¼ x2ðy1Þ þ b�2,
x2ðy1Þ ¼

M2ðy1Þ � lnðey1 þ KÞb�2
,

where Nð	Þ is the distribution function of Nð0, 1Þ.
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1750017-8



Proof. See Appendix C.

We see that Term 1 for approximating the time-0 call price of the spread option
cðFÞ, which appears on the right side of (7), can be found from

cðAÞ ¼ e�rT

Z 1

�1
GY1ðy1ÞaY1ðy1Þdy1:

As a matter of fact, Term 1 can also be computed in closed form using the
formulas derived in Li (2008) and Li et al. (2008).

4.2. Adjustment for skewness

To adjust for the discrepancy caused by the difference in skewness between the
uses of actual and approximating distributions in evaluating a call price, we
include the following (terms relating to Ers, where r þ s ¼ 3)

e�rT
X
rþs¼3

Ers
ð�1Þrþs

r!s!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d ðrþsÞ

dyr1dy
s
2

aY1, Y2ðy1, y2Þdy1dy2

¼ �e�rT �03ðFÞ
3!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 3

dy32
aY1, Y2ðy1, y2Þdy1dy2

�
þ �12ðFÞ

2!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 3

dy1dy
2
2

aY1,Y2ðy1, y2Þdy1dy2

þ �21ðFÞ
2!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 3

dy21dy2
aY1,Y2ðy1, y2Þdy1dy2

þ �30ðFÞ
3!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 3

dy31
aY1, Y2ðy1, y2Þdy1dy2

�
:

After multiple differentiations of the approximating bivariate normal density
and performing the conditioning similar to those shown earlier, Term 2 can be
found by single integration using

�e�rT q1

Z 1

�1
ðy1 ��1ÞfY1ðy1ÞGY1ðy1Þdy1 þ q2

Z 1

�1
ðy2 ��2ÞfY2ðy2ÞGY2ðy2Þdy2

�
þ q3

Z 1

�1
ðy1 � �1Þ3fY1ðy1ÞGY1ðy1Þdy1 þ q4

Z 1

�1
ðy2 ��2Þ3fY2ðy2ÞGY2ðy2Þdy2

þ q5

Z 1

�1
ðy1 � �1Þ2fY1ðy1ÞHY1ðy1Þdy1 þ q6

Z 1

�1
ðy2 ��2Þ2fY2ðy2ÞHY2ðy2Þdy2,

where GY1ðy1Þ is given by (11) and GY2ðy2Þ is similarly defined, and qi, i ¼
1, . . . , 6, and HYi , i ¼ 1, 2 are given in Appendix D.

Pricing spread options by generalized bivariate edgeworth expansion
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4.3. Adjustment for kurtosis

To adjust for the discrepancy caused by the difference in kurtosis between the uses
of actual and approximating distributions in evaluating a call price, we add the
following (terms relating to Ers, where r þ s ¼ 4)

e�rT
X
rþs¼4

Ers
ð�1Þrþs

r!s!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d ðrþsÞ

dyr1dy
s
2

aY1,Y2ðy1, y2Þdy1dy2

¼ e�rT �04ðFÞ
4!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 4

dy42
aY1,Y2ðy1, y2Þdy1dy2

�
þ �13ðFÞ

3!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 4

dy1dy
3
2

aY1,Y2ðy1, y2Þdy1dy2

þ �22ðFÞ
2!2!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 4

dy21dy
2
2

aY1, Y2ðy1, y2Þdy1dy2

þ �31ðFÞ
3!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 4

dy31dy2
aY1,Y2ðy1, y2Þdy1dy2

þ �40ðFÞ
4!

Z 1

�1

Z 1

�1
ðey2 � ey1 � KÞþ d 4

dy41
aY1,Y2ðy1, y2Þdy1dy2

�
:

After multiple differentiations of the approximating bivariate normal density
and performing the conditioning similar to those shown earlier, Term 3 can be
found by single integration using

e�rT u1

Z 1

�1
G1ðy1ÞaY1ðy1Þdy1 þ u2

Z 1

�1
ðy1 � �1Þ2G1ðy1ÞaY1ðy1Þdy1

�
þ u3

Z 1

�1
ðy1 � �1ÞHY1ðy1ÞaY1ðy1Þdy1 þ u4

Z 1

�1
ðy2 � �2Þ2G2ðy2ÞaY2ðy2Þdy2

þ u5

Z 1

�1
ðy1 � �1Þ2JY2ðy1ÞaY1ðy1Þdy1 þ u6

Z 1

�1
ðy1 � �1Þ3HY1ðy1ÞaY1ðy1Þdy1

þ u7

Z 1

�1
ðy2 � �2Þ3HY2ðy2ÞaY2ðy2Þdy2 þ u8

Z 1

�1
ðy2 � �2Þ4G2ðy2ÞaY2ðy2Þdy2

þ u9

Z 1

�1
ðy1 � �1Þ4G1ðy1ÞaY1ðy1Þdy1

�
,

where, as before, GYi and HYi , i ¼ 1, 2 are defined earlier, and ui, i ¼ 1, . . . , 9, and
JY2ðy1Þ are given in Appendix E.

5. Spread Options Under Merton’s Jump Diffusion

Consider a spread option involving two underlying assets whose price processes
follow Merton’s jump diffusion paradigm (Merton, 1990). Under risk neutral
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measure, the two price processes are governed by the following two stochastic
differential equations

dSiðtÞ ¼ ðr � qi � �iE[e
Ji � 1]ÞSiðtÞdt þ �iSiðtÞdWiðtÞ þ ðeJi � 1ÞSiðtÞdNiðtÞ,

ð12Þ
where the two jump processes Ni � Poissonð�iÞ, i ¼ 1 and 2, the two jump size
distributions Ji � Nðmi, s

2
i Þ, i ¼ 1 and 2, and q1 and q2 are the instantaneous

dividend yields, and r is the riskfree rate. For each asset, the respective price
process specified by (12) is exactly that considered by Merton (1976) (also, see
Jarrow and Rudd (1982), p. 359). We assume (i) N1 and N2 are independent, (ii) J1
and J2 are independent, (iii) W1 and W2 are correlated with dW1dW2 ¼ �dt, and
(iv) fNjg, fJjg, and fWjg are mutually independent.

Since YiðtÞ ¼ log SiðtÞ, we apply Itô formula for the jump diffusion process and
obtain

dYiðtÞ ¼ r � qi �
1
2
�2
i � �iE[e

Ji � 1]

� �
dt þ �iWiðTÞ þ JiðtÞdNiðtÞ, i ¼ 1, 2:

Integrating the above, we obtain

YiðTÞ ¼ Yið0Þ þ r � qi �
1
2
�2
i � �iE[e

Ji � 1]

� �
T þ �iWiðTÞ þ

XNðTÞ
k¼1

JiðkÞ

¼ Yið0Þ þ r � qi �
1
2
�2
i � �i emiþ

s 2
i
2

� �� �
T þ �iWiðTÞ þ

XNðTÞ
k¼1

JiðkÞ, ð13Þ

where the last equality is due to Ji � Nðmi, s
2
i Þ and an application of the m.g.f of a

normal density. For notational convenience, we write the above as

YiðTÞ ¼ �iðTÞ þ Li,

where

�iðTÞ :¼ log Sið0Þ þ r � qi �
1
2
�2
i � �i emiþ

s 2
i
2

� �� �
T þ �iWiðTÞ

and

Li �
XNiðTÞ

k¼1

JiðkÞ:

To simplify the above further, we write

YiðTÞ ¼ �i þ �iZi þ Li,
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where

�i :¼ log Sið0Þ þ r � qi �
1
2
�2
i � �i emiþ

s 2
i
2

� �� �
T ,

�i :¼ �i
ffiffiffiffi
T

p

and Z � Nð0, 1Þ.
To apply the Edgeworth expansion for pricing the spread option, we assume

that the jump diffusion processes (13) generates the true distribution FY1,Y2 at
maturity. Since the valuation of the spread option is done by (5), what remain to be
determined are the product cumulants �rsðFÞ, where r þ s ¼ 3 and 4.

5.1. Moments of (L1, L2) under F

As Li is a compound Poisson process, its m.g.f. is given by E[etLi] ¼
expf�iTðMJiðtÞ � 1Þg (e.g., see Shreve (2000), p. 471), where MJiðtÞ is the m.g.f.
of jump size Ji. Since Ji � Nðmi, s

2
i Þ, we have

MJiðtÞ ¼ exp mit þ
s2i t

2

� �
:

This gives the m.g.f. of Li

E[etLi] ¼ exp �iT exp mit þ
s2i t

2

� �
� 1

� �� �
:

Expanding the above yields the first four moments of Li

E[Li] ¼ mi�iT ,

E[L2
i ] ¼ ðm2

i þ s2i Þ�iT þ m2
i �

2
i T 2,

E[L3
i ] ¼ ðm3

i þ 3mis
2
i Þ�iT þ ð3m3

i þ 3mis
2
i Þ�2

i T 2 þ m3
i �

3
i T

3,

E[L4
i ] ¼ ðm4

i þ 6m2
i s

2
i þ 3s4i Þ�iT þ ð7m4

i þ 18m2
i s

2
i þ 3s2i Þ�2

i T 2

þð6m4
i þ 6m2

i s
2
i Þ�3

i T
3 þ m4

i �
4
i T 4:

ð14Þ

5.2. Product moments of (Y 1, Y 2) under F

The first two moments of Yi are

E[Yi] � Mi ¼ �i þ �imiT , Var[Y 2
i ] � �2

i ¼ �2
i þ ðm2

i þ s2i Þ�iT

and hence Yi � E[Yi] ¼ �iZi þ Li � �imiT . The ðr, sÞth product moment of ðY1,
Y2Þ is defined by

�rsðFÞ ¼ E[ð�1Z1 þ ðL1 � �1m1TÞÞrð�2Z2 þ ðL2 � �2m2TÞÞs],
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where r and s are nonnegative integers. Recall that for a standard bivariate normal
distribution, for 0 < r þ s � 4, we have

E[Z 2
1Z

0
2 ] ¼ 1, E[Z 4

1Z
0
2 ] ¼ 3,

E[Z1Z2] ¼ �, E[Z 2
1Z

2
2 ] ¼ 1þ 2�2,

E[Z1Z
3
2 ] ¼ 3�,

ð15Þ

E[Z 0
1Z

2
2 ],E[Z

0
1Z

3
2 ], and E[Z 3

1Z
1
2 ] can be stated by symmetry, and 0 otherwise.

Using (14) and (15), and by invoking the independence assumptions made at the
outset of the section, we find the product moments for 3 � r þ s � 4 below:

�21ðFÞ ¼ 0, �30ðFÞ ¼ ðm3
1 þ 3m1s

2
1Þ�1T ,

�40ðFÞ ¼ 3�4
1 þ ðm4

1 þ 6m2
1s

2
1 þ 3s41 þ 6�2

1ðm2
1 þ s21ÞÞ�1T þ 3ðm2

1 þ s21Þ2�2
1T

2,

�22ðFÞ ¼ �2
1�

2
2ð1þ 2�2Þ þ �2

2ðm2
1 þ s21Þ�1T þ �2

1ðm2
2 þ s22Þ�2T

þ ðm2
1 þ s21Þðm2

2 þ s22Þ�1�2T
2,

�31ðFÞ ¼ 3��3
1�2 þ 3��1�2ðs21 þ m2

1Þ�1T ,

where �12ðFÞ,�03ðFÞ,�04ðFÞ, and �31ðFÞ can be found by symmetry.

5.3. Product cumulants of (Y 1, Y 2) under F

Using the results shown in Sec. 2, we find the product cumulants of ðY1,Y2Þ under
F below:

�21ðFÞ ¼ �21ðFÞ ¼ 0,

�30ðFÞ ¼ �30ðFÞ ¼ ðm3
1 þ 3m1s

2
1Þ�1T ,

�31ðFÞ ¼ �31ðFÞ � 3�20ðFÞ�11ðFÞ ¼ 0,

�22ðFÞ ¼ �22ðFÞ � �20ðFÞ�02ðFÞ � 2�2
11ðFÞ ¼ 0,

�40ðFÞ ¼ �40ðFÞ � 3�2
20ðFÞ ¼ ðm4

1 þ 6m2
1s

2
1 þ 3s41Þ�1T ,

where �03ðFÞ,�13ðFÞ, and �04ðFÞ can be found by symmetry.

5.4. A numerical example

Consider a numerical example with the following parameters:

i ¼ 1 i ¼ 2

Sið0Þ 96 100
qi 0:05 0:05
�i 0:1 0:2
�i 0:25 0:5

Pricing spread options by generalized bivariate edgeworth expansion
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(Continued )

i ¼ 1 i ¼ 2

mi �0:13 0:11
si 0:37 0:41

r ¼ 0:1,T ¼ 1, � ¼ 0:5, and K ¼ 2.
For the above example, we use Matlab to compute the call price of the spread

option. The results are summarized below:

Values

Term 1 (the GBM solution) 15.3437
Term 2 (adjustment for skewness) 0.7450
Term 3 (adjustment for kurtosis) �1.0463
Approximated call value 15.0424

In a recent paper, Jackson et al. (2008/09) proposed a Fourier transform-based
algorithm for solving option pricing problems under the L�evy paradigm. Using
their approach to solve the above problem, we find the call price is 15.0292. The
Edgeworth-based approach presented in this paper enables us to assess the rela-
tively contributions made by the skewness and kutosis of the underlying price
processes. Finally, we remark that a Monte Carlo simulation using 200,000
samples produced a solution of 15.071.

5.5. Computations based on simulated prices at maturity

For applications, one may know the underlying stochastic differentiation equations
governing the price processes and/or their parameters. If the first four moments of
the price process can be assessed empirically, then the approach proposed in the
paper can be useful in coming up with approximating prices. To explore this point
further, we use the parameters specified in the last subsection to generate random
sample of S1ðTÞ and S2ðTÞ of size 100,000. Based on this data set, we computed
the sample estimates of the first four moments as the input to the Edgeworth-based
method. With a model specification of ðK, r,TÞ ¼ ð2, 0:1, 1Þ, we find the calcu-
lated values as follows

Values

Term 1 (the GBM solution) 15.2760
Term 2 (adjustment for skewness) 0.6890
Term 3 (adjustment for kurtosis) �1.0087

E. P. C. Kao & W. Xie
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(Continued )

Values

Approximated call value 14.9563

As expected, the results differ only slightly from those reported in the last
subsection. It is important to note that in this case the model does not \know" that
it is Merton’s jump diffusion that generated the prices at maturity. It only uses the
price data at maturity.

If traders can speculate the magnitudes of the first four moments of the price
processes, we see the approach provides a nice way to the produce the prices and
their components. For quantitative analysts proposing models that are only solv-
able by Monte Carlo simulations or intricate approximating algorithms, they can
obtain empirically estimated first four moments and use the Edgeworth approach
to cross-validate their results. This is a very nice feature of the Edgeworth-based
approach.

6. Spread Options Under Kou’s Double Jump Diffusion

Spread options are commonly used in energy and power industries to hedge
fluctuations of prices of two correlated commodities, e.g., prices of electricity and
coal. It is well known that price volatilities in power and energy markets are
substantially higher than that observed in the equity and fixed-income markets.
Moreover, there the phenomena known as asymmetric leptokurtic feature and
volatility smile are more pronounced. Kou (2002) proposed the use of a double
exponential jump diffusion model to mitigate these problems. Under the paradigm,
we are dealing with a version of L�evy processes (e.g., see p. 112 of Cont and
Tankov (2004)). In this section, we will use this paradigm to model price move-
ments of the two underlying assets of a spread option.

6.1. The Kou’s double jump diffusion

For Asset i, i ¼ 1, 2, the SDEs governing the price processes are identical to that of
(12). Under Kou’s assumption, Ji follows an asymmetric double exponential dis-
tribution, i.e., the density of Ji is given by

fJiðyÞ ¼ pi 	 �i1e��i1y1fy�0g þ qi 	 �i2e��i2y1fy<0g, i ¼ 1, 2,

where �i1 > 1�i2 > 0, pi � 0, qi � 0, and pi þ qi ¼ 1, for i ¼ 1, 2. In this

Pricing spread options by generalized bivariate edgeworth expansion
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construct, we have

Ji ¼d �þi with probability pi,

���i with probability qi,

�
where �þi � expð�i1Þ and �� � expð�i2Þ, with respective means 1=�i1 and 1=�i2.
We see

E[Ji] ¼
pi
�i1

� qi
�i2

, i ¼ 1, 2

and for i ¼ 1, 2, we have

E[eJi] ¼ pi�i1
�i1 � 1

þ qi�i2
�i2 þ 1

, �i1 > 1, �i2 > 0:

Using (22) and applying Itô formula, the risk-neutral log price (i.e., the return)
of Asset i at time T can be found. It is given by

YiðTÞ ¼ Yið0Þ þ r � qi �
1
2
�2
i � �i

pi�i1
�i1 � 1

þ qi�i2
�i2 þ 1

� 1

� �� �
T

þ�iWiðTÞ þ
XNiðTÞ

k¼1

JiðkÞ

(e.g., see Kou (2002)). For notational simplicity, for Asset i, we define

YiðTÞ :¼ �iðTÞ þ Li :¼ �i þ �iZi þ Li,

where

�i :¼ log Sið0Þ þ r � qi �
1
2
�2
i � �i

pi�i1
�i1 � 1

þ qi�i2
�i2 þ 1

� 1

� �� �
T ,

�i :¼ �i

ffiffiffiffi
T

p
,

�iðTÞ :¼ �i þ �iZi,

Li :¼
XNiðTÞ

k¼1

JiðkÞ

and Zi � Nð0, 1Þ.

6.2. Moments of ðY 1, Y 2Þ under F

In order to derive product cumulants and the correction factors under Kou’s model,
we first need to find the m.g.f. of jump size. For Asset i, we see the m.g.f. can be
derived as follows:

E. P. C. Kao & W. Xie

1750017-16



MJiðtÞ ¼ E[etJi] ¼
Z 1

�1
etxðpi�i1e��i1x1fx�0g þ etxqi�i2e

�i2x1fx<0gÞdx

¼
Z 0

�1
etxqi�i2e

�i2xdxþ
Z 1

0
etxpi�i1e

��i1xdx

¼ qi�i2

Z 0

�1
eðtþ�i2Þxdxþ pi�i1

Z 1

0
e�ð�i1�tÞxdx

¼ qi�i2
t þ �i2

� pi�i1
t � �i1

t þ �i2 � 0 and t � �i2 � 0

or ��i2 � t � �i1. Using series expansion on t, the above m.g.f. can be stated as

MJiðtÞ ¼ 1þ
X1
j¼1

pi
�ji1

þ ð�1Þ j qi
�ji2

 !
t j:

By definition of the m.g.f., we have

E[etLi] ¼ 1þ tmi1 þ
t 2

2!
mi2 þ

t 3

3!
mi3 þ

t4

4!
mi4 þ 	 	 	 ,

where mij is the jth moment of Li. Since Li is a compound Poisson process, we
apply (11.3.2) of Shreve (2000, p. 471) and write the m.g.f. of Li as

E[etLi] ¼ expf�iTðMJiðtÞ � 1Þg (16)

¼ exp �iT
X1
j¼1

pi
�ji1

þ ð�1Þ j qi
�ji2

 !
t j

8<:
9=;: ð17Þ

We expand (17) as a polynomial in t and match the respective coefficients with
those in (16). This yields the first four moments of Li. They are

mi1 ¼ �iT
pi
�i1

� qi
�i2

� �
,

mi2 ¼ 2�iT
pi
�2i1

þ qi
�2i2

� �
þð�iTÞ2

pi
�i1

� qi
�i2

� �2

,

mi3 ¼ 6�iT
pi
�3i1

� qi
�3i2

� �
þ6ð�iTÞ2

pi
�i1

� qi
�i2

� �
pi
�2i1

þ qi
�2i2

� �
þ ð�iTÞ3

pi
�i1

� qi
�i2

� �3

,

mi4 ¼ 24�iT
pi
�4i1

þ qi
�4i2

� �
þ12ð�iTÞ2 2

pi
�i1

� qi
�i2

� �
pi
�3i1

� qi
�3i2

� �
þ pi

�2i1
þ qi

�2i2

� �2� �
þ12ð�iTÞ3

pi
�i1

� qi
�i2

� �2 pi
�2i1

þ qi
�2i2

� �
þð�iTÞ4

pi
�i1

� qi
�i2

� �4

:

We are now ready to derive product moments of ðY1,Y2Þ under F. Recall
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YiðTÞ ¼ �i þ �iZi þ Li. We take expectation of the above and find

Ei[YiðTÞ] ¼ �i þ �iE[Zi]þ E[Li] ¼ �i þ �iT
pi
�i1

� qi
�i2

� �
:

Now

YiðTÞ � E[YiðTÞ] ¼ ð�i þ �iZi þ LiÞ � ð�i þ E[Li]Þ ¼ �iZi þ Li � E[Li]

¼ �iZi þ Li � mi1

and therefore

Var[YiðTÞ] ¼ E[ð�iZi þ Li � mi1Þ2]
¼ �2

i þ E[L2
i ]� m2

i1

¼ �2
i þ mi2 � m2

i1

¼ �2
i þ 2�iT

pi
�2i1

þ qi
�2i2

� �
:

Therefore the product moment �11ðFÞ of ðY1,Y2Þ under F is given by

�11ðFÞ ¼ E
Y2
i¼1

ð�iZi þ Li � mi1Þ
" #

¼ ��1�2:

The higher order product moments are

�21ðFÞ ¼ 0,

�30ðFÞ ¼ 6�1T
p1
�311

� q1
�312

� �
,

�40ðFÞ ¼ 3�4
1 þ 12�1T 2

p1
�411

þ q1
�412

� �
þ �2

1
p1
�411

� q1
�412

� �� �
þ 12ð�1TÞ2

p1
�211

þ q1
�212

� �2

� ð�1TÞ4
p1
�11

� q1
�12

� �4

,

�22ðFÞ ¼ ð1þ 2�2Þð�2
1�

2
2Þ þ �2

1 	 ð2�2TÞ
p2
�221

þ q2
�222

� �
þ �2

2 	 ð2�1TÞ
p1
�211

þ q1
�212

� �
þ 4�1�2T

2 p1
�211

þ q1
�212

� �
p2
�221

þ q2
�222

� �
,

�31ðFÞ ¼ 3��3
1�2 þ 3��1�2 	 ð2�1TÞ

p1
�211

þ q1
�212

� �
:
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In Appendix F, we give their derivations. The product cumulants �rs, r þ s ¼ 3
and 4, under the true distribution F are found accordingly. They are

�11ðFÞ ¼ �11ðFÞ ¼ ��1�2,

�21ðFÞ ¼ �21ðFÞ ¼ 0,

�30ðFÞ ¼ �30ðFÞ ¼ 6�1T
p1
�311

� q1
�312

� �
,

�31ðFÞ ¼ �31ðFÞ � 3�20ðFÞ�11ðFÞ,

¼ 3��3
1�2 þ 3��1�2ð2�1TÞ

p1
�211

þ q1
�212

� �
� 3��1�2 �2

1 þ 2�1T
p1
�211

þ q1
�212

� �� �
¼ 0,

�22ðFÞ ¼ �22ðFÞ � �20ðFÞ�02ðFÞ � 2�2
11ðFÞ ¼ 0,

�40ðFÞ ¼ �40ðFÞ � 3�2
20ðFÞ ¼ 24�1T

p1
�411

þ q1
�412

� �
� ð�1TÞ4

p1
�11

� q1
�12

� �4

and finally we obtain the nonzero correction factors

E30 ¼ �30ðFÞ ¼ 6�1T
p1
�311

� q1
�312

� �
,

E40 ¼ �40ðFÞ ¼ 24�1T
p1
�411

þ q1
�412

� �
� ð�1TÞ4

p1
�11

� q1
�12

� �4

:

These results form the input for application of the Edgeworth expansion.

6.3. A numerical example

Consider a numerical example with the following model specifications

i ¼ 1 i ¼ 2

Sið0Þ 100 97
qi 0:02 0:02
�i 0:16 0:10
�i 1:0 1:5
pi 0:4 0:3
�i1 10 8
�i2 5 6

In addition, we assume r ¼ 0:05, � ¼ 0:05,T ¼ 4, and K ¼ 4.
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For the above example, we use Matlab to compute the call price of the spread
option. The results are summarized below:

Values

Term 1 (the GBM solution) 7.4814
Term 2 (adjustment for skewness) �0.9095
Term 3 (adjustment for kurtosis) �1.3511
Approximated call value 5.2207

The above tables show that the effects of skewness and kurtosis are relatively
large. If we had used the two-dimensional GBM to price the call, the call price
would have been 7.4814. The two higher moments bring it down to 5.2207. Here,
we demonstrated that the Edgeworth-based approach presented in this paper
enables us to assess the relatively contributions made by the skewness and kurtosis
of the underlying return processes. We mention in passing, the computation took
1.19 s. A Monte Carlo simulation using 300,000 samples produced a solution of
5.6453. This simulation took 222.49 s.

6.4. Computations based on empirically observed prices at maturity

In applications, one may make assumptions about the underlying stochastic dif-
ferentiation equations governing the price processes and/or their parameters. If the
first four moments of the price process can be assessed empirically, then the
approach proposed in the paper can be useful in coming up with approximating
prices. To explore this point further, we use the parameters specified in the last
subsection to generate random sample of S1ðTÞ and S2ðTÞ of size 300,000. Based
on this data set, we computed the sample estimates of the first four moments as the
input to the Edgeworth-based method. With a model specification of
ðK, r,TÞ ¼ ð4, 0:05, 0:5Þ, we find the calculated values as follows

Values

Term 1 (the GBM solution) 7.4834
Term 2 (adjustment for skewness) �0.9402
Term 3 (adjustment for kurtosis) �1.3509
Approximated call value 5.1923

As expected, the results differ only slightly from those reported earlier. It is
important to note that in this case the model does not \know" that it is Kou’s
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double exponential jump diffusion model that generated the prices at maturity. It
only uses the price data at maturity.

If traders can speculate the magnitudes of the first four moments of the price
processes, we see the approach provides a nice way to produce the prices and their
components. For quantitative analysts proposing models that are only solvable by
Monte Carlo simulations or intricate approximating algorithms, they can obtained
empirically estimated first four moments and use the Edgeworth approach to cross-
validate their results. This is a very nice feature of the Edgeworth-based approach.

7. Conclusion

This paper proposes a bivariate generalized Edgeworth expansion for pricing spread
option. This paper is a generalization of Jarrow and Rudd (1992) who introduced
the idea of using univariate Edgeworth expansion for pricing call options when the
underling price process deviates from the lognormal distribution. As in Jarrow and
Rudd, we see that when the first four product cumulants are known, the expansion
yields adequate approximations for problems that do not have closed-form solu-
tions. In theory, the higher orders of differentiation and integration can be prob-
lematic for numerical implementation. The paper demonstrates that after proper
manipulations, the computation simplifies to integrations involving single integrals.
Hence it significantly reduces the cost of computation and potentials for compu-
tation errors. More importantly, the option price obtained by Edgeworth expansion
provides a valuable insight about its constituents ��� namely, the relative con-
tributions made by the various moments of the asset prices (e.g., correlation,
skewness, and kurtosis). This advantage is not shared by methods such as numerical
solutions of PDE or Monte Carlo simulation. For financial analysts with real-world
applications in mind, using market data, one can estimate empirical product
cumulants (e.g., see Stuart and Ord (1994)) and proceed with the aforementioned
approximation. In summary, the approach described in this paper would provide a
viable alternative to the solution of the pricing problem.

Appendix A. Proof of Theorem 1

�ðF, t1, t2Þ ¼ MðF, it1, it2Þ,
we use (2) to write

ln�ðF, t1, t2Þ ¼
X
rþs�0

�r, sðFÞ
ðit1Þr
r!

ðit2Þs
s!

ðA:1Þ
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and

ln�ðA, t1, t2Þ ¼
X
rþs�0

�r, sðAÞ
ðit1Þr
r!

ðit2Þs
s!

: ðA:2Þ

Subtracting (A.2) from (A.1), we find

ln�ðF, t1, t2Þ ¼ ln�ðA, t1, t2Þ þ
X
rþs�0

ð�r, sðFÞ � �r, sðAÞÞ
ðit1Þr
r!

ðit2Þs
s!

:

Hence, we have

�ðF, t1, t2Þ ¼ exp
X
rþs�0

ð�r, sðFÞ � �r, sðAÞÞ
ðit1Þr
r!

ðit2Þs
s!

 !
�ðA, t1, t2Þ: ðA:3Þ

The bivariate inverse Fourier transforms are defined as

fY1,Y2ðy1, y2Þ ¼
1

ð2�Þ2
Z 1

�1

Z 1

�1
�ðF, t1, t2Þ expð�it1y1 � it2y2Þdt1dt2 ðA:4Þ

and

aY1,Y2ðy1, y2Þ ¼
1

ð2�Þ2
Z 1

�1

Z 1

�1
�ðA, t1, t2Þ expð�it1y1 � it2y2Þdt1dt2: ðA:5Þ

We take derivatives with respect to y1 and y2 and obtain

ð�1Þrþs d
ðrþsÞaðy1, y2Þ
dyr1dy

s
2

¼ 1
ð2�Þ2

Z 1

�1

Z 1

�1
�ðA, t1, t2Þ expð�it1y1 � it2y2Þðit1Þrðit2Þsdt1dt2: ðA:6Þ

Multiplying (A.3) by expð�it1y1 � it2y2Þ, integrating the resulting expression, and
applying (A.4)–(A.6) yield

fY1,Y2ðy1, y2Þ ¼ aY1,Y2ðy1, y2Þ þ
X
rþs>0

Ers
ð�1Þrþs

r!s!

d ðrþsÞaðy1, y2Þ
dyr1dy

s
2

:

The above amounts to the inversions of the Fourier transforms involved.

Appendix B

The relations between the correction factors and the product cumulants are:

E10 ¼ �10ðFÞ � �10ðAÞ,
E20 ¼ �20ðFÞ � �20ðAÞ½ 
 þ E 2

10,
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E30 ¼ �30ðFÞ � �30ðAÞ½ 
 þ 3E10 �20ðFÞ � �20ðAÞ½ 
 þ E 3
10,

E40 ¼ �40ðFÞ � �40ðAÞ½ 
 þ 4E10 �30ðFÞ � �30ðAÞ½ 
 þ 3 �20ðFÞ � �20ðAÞ½ 
2
þ 6E 2

10[�20ðFÞ � �20ðAÞ]þ E 4
10,

E11 ¼ �11ðFÞ � �11ðAÞ þ E10E01,

E21 ¼ [�21ðFÞ � �21ðAÞ]þ E01[�20ðFÞ � �20ðAÞ]þ 2E10[�11ðFÞ � �11ðAÞ]
þ E01E

2
10,

E31 ¼ [�31ðFÞ � �31ðAÞ]þ E01[�30ðFÞ � �30ðAÞ]þ 3[�11ðFÞ � �11ðAÞ]E 2
10

þ 3[�11ðFÞ � �11ðAÞ][�20ðFÞ � �20ðAÞ]þ 3E10E01[�20ðFÞ � �20ðAÞ]
þ 3E10[�21ðFÞ � �21ðAÞ],

E22 ¼ [�22ðFÞ � �22ðAÞ]þ 2E10[�12ðFÞ � �12ðAÞ]þ 2[�11ðFÞ � �11ðAÞ]2
þ [�20ðFÞ � �20ðAÞ][�02ðFÞ � �02ðAÞ]þ 4E10E01[�11ðFÞ � �11ðAÞ]
þ 2[�21ðFÞ � �21ðAÞ]E01 þ E 2

10[�02ðFÞ � �02ðAÞ]
þ E 2

01[�20ðFÞ � �20ðAÞ]þ E 2
10E

2
01:

The relations for E01,E02,E03,E04,E12, and E13 can be found by symmetry and
hence omitted.

Proof of Lemma 1. Truncating the summation term of (3) at r þ s ¼ 4 yields (4).
To derive the rest of the results, we note that the exponential function in (A.3) is
analytic and hence expandable. Thus we have

exp
Y
rþs�0

ð�r, sðFÞ � �r, sðAÞÞ
ðit1Þr
r!

ðit2Þs
s!

 !

¼
X1
n¼0

Y
rþs�0

ð�r, sðFÞ � �r, sðAÞÞ
ðit1Þr
r!

ðit2Þs
s!

 !n
1
n!

¼
X
rþs�0

Ers
ðit1Þr
r!

ðit2Þs
s!

:

By matching the coefficients for the term t r1t
s
2, we obtain the relations for the case

when 0 < r þ s � 4.
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Appendix C

Proof of Theorem 2. As ey2 � ey1 � K � 0 implies y2 � lnðey1 � KÞ, it follows
that

GY1ðy1Þ ¼
Z 1

lnðey1�KÞ
ðey2 � ey1 � KÞaðy2jy1Þdy2

¼
Z 1

lnðey1�KÞ
ey2aðy2jy1Þdy2 � ðey1þKÞ

Z 1

lnðey1�KÞ
aðy2jy1Þdy2:

Using (10), we do a complete-the-square, and a change of variable. This will
produce the identityZ 1

lnðey1�KÞ
ey2aðy2jy1Þdy2 ¼ eA2ðy1ÞNðx1ðy1ÞÞ:

The identity Z 1

lnðey1�KÞ
aðy2jy1Þdy2 ¼ Nðx2ðy1ÞÞ

follows from a similar change-of-variable.

Appendix D

The following are the results needed for computation of adjustment for skewness
shown in Sec. 4.2. The q 0

is are given in closed form

q1 ¼
1
3!

3E30

ð1� �2Þ2�4
1

� 3�E03

ð1� �2Þ2�3
2�1

� �
þ 1

2!
ð1þ 2�2ÞE12

ð1� �2Þ2�2
1�

2
2

� 3�E21

ð1� �2Þ2�3
1�2

� �
,

q2 ¼
1
3!

3E03

ð1� �2Þ2�4
2

� 3�E30

ð1� �2Þ2�3
1�2

� �
þ 1

2!
ð1þ 2�2ÞE21

ð1� �2Þ2�2
1�

2
2

� 3�E12

ð1� �2Þ2�1�
3
2

� �
,

q3 ¼
1
3!

�3E03

ð1� �2Þ3�3
1�

3
2

� E30

ð1� �2Þ3�6
1

� �
þ 1

2!
�E21

ð1� �2Þ3�5
1�2

� �2E12

ð1� �2Þ3�4
1�

2
2

� �
,

q4 ¼
1
3!

�3E30

ð1� �2Þ3�3
1�

3
2

� E03

ð1� �2Þ3�6
2

� �
þ 1

2!
�E12

ð1� �2Þ3�1�
5
2

� �2E21

ð1� �2Þ3�2
1�

4
2

� �
,

q5 ¼
1
3!

3�E30

ð1� �2Þ3�5
1�2

� 3�2E03

ð1� �2Þ3�4
2�

2
1

� �
þ 1

2!
�ð2þ �2ÞE12

ð1� �2Þ3�3
1�

3
2

� ð1þ 2�2ÞE21

ð1� �2Þ3�4
1�

2
2

� �
,

q6 ¼
1
3!

3�E03

ð1� �2Þ3�5
2�1

� 3�2E30

ð1� �2Þ3�4
1�

2
2

� �
þ 1

2!
�ð2þ �2ÞE21

ð1� �2Þ3�3
1�

3
2

� ð1þ 2�2ÞE12

ð1� �2Þ3�2
1�

4
2

� �
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and HYiðyiÞ, i ¼ 1, 2, are defined by

HY1ðy1Þ ¼
Z 1

�1
ðey2 � ey1 � KÞþðy2 � �2ÞaY2jY1ðy2jy1Þdy2,

HY2ðy2Þ ¼
Z 1

�1
ðey2 � ey1 � KÞþðy1 � �1ÞaY1jY2ðy1jy2Þdy1:

The derivations of the above can be found in Xie (2008).

Appendix E

The following are the results needed for computation of adjustment for kurtosis
shown in Sec. 4.3. The u 0

is are given in closed form

u1 ¼
1

ð1� �2Þ2
E40

8�4
1

þ E04

8�4
2

þ E22ð1þ 2�2Þ
4�2

1�
2
2

� E31�

2�4
1�2

� E13�

2�1�3
2

� �
,

u2 ¼
1

ð1� �2Þ3�2
1

� E40

4�4
1

� E04�2

4�4
2

� E22ð1þ 5�2Þ
4�2

1�
2
2

þ E31�

�3
1�2

þ E13�ð1þ �2Þ
2�1�

3
2

� �
,

u3 ¼
�

ð1� �2Þ3�1�2

E40

2�4
1

þ E04

2�4
2

þ E22ð2þ �2Þ
�2
1�

2
2

� E31ð1þ 3�2Þ
2�3

1�2
� E13ð1þ 3�2Þ

2�1�
3
2

� �
,

u4 ¼
1

ð1� �2Þ3�2
2

� E40�2

4�4
1

� E04

4�4
2

� E22ð1þ 5�2Þ
4�2

1�
2
2

þ E31ð1þ �2Þ
2�3

1�2
þ E13�

�1�
3
2

� �
,

u5 ¼
1

ð1� �2Þ4�2
1�

2
2

E40�2

4�4
1

þ E04�2

4�4
2

þ E22ð1þ 4�2 þ �4Þ
4�2

1�
2
2

� E31�ð1þ �2Þ
2�3

1�2

�
� E13�ð1þ �2Þ

2�1�
3
2

�
,

u6 ¼
�

2ð1� �2Þ4�1�2
� E40

3�6
1

� E04�2

3�2
1�

4
2

� E22ð1þ �2Þ
�4
1�

2
2

þ E31ð1þ 3�2Þ
�5
1�2

�
þ E13�2ð3þ �2Þ

3�3
1�

3
2

�
,

u7 ¼
�

2ð1� �2Þ4�1�2
� E40�2

3�4
1�

2
2

� E04

3�6
2

� E22ð1þ �2Þ
�2
1�

4
2

þ E31�ð3þ �2Þ
�2
1�

4
2

�
þ E13ð3þ �2Þ

3�1�
5
2

�
,

u8 ¼
1

ð1� �2Þ4�4
2

E40�4

24�4
1

þ E04

24�4
2

þ E22�2

4�2
1�

2
2

� E31�3

6�3
1�

5
2

� E13�

6�2
1�

7
2

� �
,

u9 ¼
1

ð1� �2Þ4�4
1

E40

24�4
1

þ E04�4

24�4
2

þ E22�2

4�2
1�

2
2

� E31�2

6�7
1�2

� E13�3

6�5
1�

3
2

� �
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and JY2ðy1Þ is defined by

JY2ðy1Þ ¼
Z 1

�1
ðey2 � ey1 � KÞþðy2 � �2Þ2aY2jY1ðy2jy1Þdy2:

The derivations of the above can be found in Xie (2008).

Appendix F. Derivations for results shown in Sec. 6.2

The following are the derivations of higher moments of ðY1, Y2Þ under F:
�21ðFÞ ¼ E[ð�1Z1 þ L1 � m11Þ2ð�2Z2 þ L2 � m21Þ]

¼ E[�2
1�2Z

2
1Z2 þ �2

1Z
2
1ðL2 � m21Þ þ 2�1�2Z1Z2ðL1 � m11Þ

þ 2�1Z1ðL1 � m11ÞðL2 � m21Þ þ ðL1 � m11Þ2�2Z2
þ ðL1 � m11Þ2ðL2 � m21Þ]

¼ 0,

�30ðFÞ ¼ E[ð�1Z1 þ L1 � m11Þ3]
¼ E[�3

1Z
3
1 ]þ E[ðL1 � m11Þ3]þ E[3ð�1Z1Þ2ðL1 � m11Þ]

þ E[3�1Z1ðL1 � m11Þ2]
¼ E[ðL1 � m11Þ3]
¼ E[L3

1]þ 3m2
11E[L1]� 3m11E[L

2
1]� m3

11

¼ m13 þ 3m3
11 � 3m11m12 � m3

11

¼ m13 þ 2m11 � 3m11m12

¼ 6�1T
p1
�311

� q1
�312

� �
þ 6ð�1TÞ2

p1
�11

� q1
�12

� �
p1
�211

þ q1
�212

� �
þ ð�1TÞ3

p1
�11

� q1
�12

� �3

þ 2ð�1TÞ3
p1
�11

� q1
�12

� �3

�3ð�1TÞ
pi
�i1

� qi
�i2

� �
2�1T

p1
�211

þ q1
�212

� �
þ �1Tð Þ2 p1

�11
� q1

�12

� �2� �
¼ 6�1T

p1
�311

� q1
�312

� �
,

�40ðFÞ ¼ E[ð�1Z1 þ L1 � m11Þ4]
¼ E[�4

1Z
4
1 ]þ E[ðL1 � m11Þ4]þ 4E[ð�1Z1Þ3ðL1 � m11Þ]

þ 4E[�1Z1ðL1 � m11Þ3]þ 6E[�2
1Z

2
1ðL1 � m11Þ2]
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¼ 3�4
1 þ E[ðL1 � m11Þ4]þ 6�2

1E[ðL1 � m11Þ2]
¼ 3�4

1 þ E[L4
1]þ 6m2

11E[L
2
1]� 4m11E[L

3
1]� 4m3

11E[L1]þ 6�2
1ðE[L2

1]� m2
11Þ

¼ 3�4
1 þ m14 þ 6m2

11m12 � 4m11m13 � 4m4
11 þ 6�2

1ðm12 � m2
11Þ

¼ 3�4
1 þ 24�1T

p1
�411

þ q1
�412

� �
þ 12ð�1TÞ2 2

p1
�11

� q1
�12

� �
p1
�311

� q1
�312

� ��
þ p1

�211
þ q1

�212

� �2�
þ 12ð�1TÞ3

p1
�11

� q1
�12

� �2 p1
�211

þ q1
�212

� �
þ ð�1TÞ4

p1
�11

� q1
�12

� �4

þ 6ð�1TÞ2
p1
�11

� q1
�12

� �2

� 2�1T
p1
�211

þ q1
�212

� �
þ ð�1TÞ2

p1
�11

� q1
�12

� �2� �
� 4�1T

p1
�11

� q1
�12

� �
� 6�1T

p1
�311

� q1
�312

� �
þ 6ð�1TÞ2

p1
�11

� q1
�12

� �
p1
�211

þ q1
�212

� ��

þ ð�1TÞ3
p1
�11

� q1
�12

� �3�
� 4 �1Tð Þ4 p1

�11
� q1

�12

� �4

þ 6�2
1ð2�1TÞ

p1
�211

þ q1
�212

� �
:

After cancellations, we find

�40ðFÞ ¼ 3�4
1 þ 12�1T 2

p1
�411

þ q1
�412

� �
þ �2

1
p1
�211

þ q1
�212

� �� �
þ12ð�1TÞ2

p1
�211

þ q1
�212

� �2

� ð�1TÞ2
p1
�11

� q1
�12

� �4

,

�22ðFÞ ¼ E[ð�1Z1 þ L1 �m11Þ2ð�2Z2 þ L2 �m21Þ2]
¼ �2

1�
2
2E[Z

2
1Z

2
2 ]þ�2

1E[Z
2
1ðL2 �m21Þ2]þ�2

2E[Z
2
2ðL1 �m11Þ2]

þ E[ðL1 �m11Þ2ðL2 �m21Þ2]
¼ ð1þ 2�2Þ�2

1�
2
2 þ�2

1E[ðL2 �m21Þ2]þ�2
2E[ðL1 �m11Þ2]

þ E[ðL1 �m11Þ2ðL2 �m21Þ2]

¼ ð1þ 2�2Þð�1�2Þ2 þ�2
1ð2�2TÞ

p2
�221

þ q2
�222

� �
þ�2

2ð2�1TÞ
p1
�211

þ q1
�212

� �
þ 4�1�2T

2 p1
�211

þ q1
�212

� �
p2
�221

þ q2
�222

� �
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and finally, we have

�31ðFÞ ¼ E[ð�1Z1 þ L1 � m11Þ3ð�2Z2 þ L2 � m21Þ]
¼ �3

1�2E[Z
3
1Z2]þ 3�1�2E[Z1ðL1 � m11Þ2Z2]

¼ 3��3
1�2 þ 3��1�2ð2�1TÞ

p1
�211

þ q1
�212

� �
:
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