THE $B M O^{-1}$ SPACE AND ITS APPLICATION TO SCHECHTER' S INEQUALITY

SADEK GALA

Communicated by Stephen W. Semmes

Abstract

In this work, we study quadratic form inequalities of Schechter type; i.e., we characterize f for which there exists a positive constant C such that, for every $\epsilon \in(0, \infty)$, $\left.\left|\int\right| u\right|^{2} f d x \mid \leq \epsilon\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+C \epsilon^{-\beta}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), 0<\beta<1$ Such quadratic form inequalities can be understood entirely in the framework of $B M O^{-1}$, using mean oscillations of $\nabla \Delta^{-1} f$ on balls. We show that this inequality holds if and only if $f \in B M O^{-1}\left(\mathbb{R}^{d}\right)$ if $\beta=1$ or respectively if f lies in the homogeneous Besov space $\dot{B}_{\infty}^{-\frac{2 \beta}{1+\beta}, \infty}$ if $0<\beta<1$.

1. Introduction

In this paper, we characterize the class of potentials $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that the quadratic form $\langle f .,$.$\rangle has zero relative bound with respect to H_{0}=-\Delta$ on $L^{2}\left(\mathbb{R}^{d}\right)$ (see [8], X.17). In other words, for $f(x) \geq 0$ in $L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$, this property can be expressed in the form of the integral inequality :

$$
\begin{equation*}
\left.\left|\int\right| u\right|^{2} f d x \mid \leq \epsilon\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+C_{\epsilon}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, \forall u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \tag{1.1}
\end{equation*}
$$

for all arbitrarily small $\epsilon>0$ and some $C_{\epsilon}>0$. This provides a complete solution to the problem of the infinitesimal form boundedness of the potential energy operator f with respect to the Laplacian $-\Delta$, which is fundamental to quantum mechanics. Its abstract version appears in the so-called KLMN Theorem ([8], Theorem X.17), which is discussed in detail, together with applications to quantum-mechanical Hamiltonian operators and has become an indispensable tool in PDE theory ([7], chap. 5).

Previously, the case of nonnegative f in (1.1) has been studied in a comprehensive way (see e.g. [4], [6], [9], [10]) where different analytic conditions for the so-called trace inequalities of this type can be found.

It is worthwhile to observe that the usual approach is to decompose f into its positive and negative parts : $f=f_{+}-f_{-}$, and to apply the just mentioned results to both f_{+}and $f_{-}[6]$. However, this procedure drastically diminishes the class of admissible weights f by ignoring a possible cancellation between f_{+} and f_{-}. This cancellation phenomenon is evident for strongly oscillating weights considered below. See for example [11].

One of the main results, we prove that inequality (1.1) is equivalent to the existence of $C>0$ such that

$$
\begin{equation*}
|<f u, u>| \leq C R^{\frac{2}{1+\beta}}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, \quad \forall u \in C_{0}^{\infty}\left(B\left(x_{0}, R\right)\right) \tag{1.2}
\end{equation*}
$$

for all ball $B\left(x_{0}, R\right)$. $B\left(x_{0}, R\right)$ is a Euclidean ball of radius R and centered at x_{0}.
Here the "indefinite weight" f may change sign, or even be a complex-valued distribution on $\mathbb{R}^{d}, d \geq 3$. (In the latter case, the left-hand side (1.1) is understood as $|<f u, u>|$, where $<f ., .>$ is the quadratic form associated with the corresponding multiplication operator f).

We set

$$
m_{B}(g)=\frac{1}{\left|B\left(x_{0}, R\right)\right|} \int_{B\left(x_{0}, R\right)} g(y) d y
$$

for a ball $B\left(x_{0}, R\right) \subset \mathbb{R}^{d}$, and denote by $B M O\left(\mathbb{R}^{d}\right)$ the class of $f \in L_{l o c}^{q}\left(\mathbb{R}^{d}\right)$ for which

$$
\sup _{R>0} \sup _{x_{0} \in \mathbb{R}^{d}} \frac{1}{\left|B\left(x_{0}, R\right)\right|} \int_{B\left(x_{0}, R\right)}\left|g(y)-m_{B\left(x_{0}, R\right)}(g)\right|^{q} d y<+\infty
$$

for any $1 \leq q<\infty$.
Now, we characterize the class of potentials $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ which are there exists $C>0$ such that (1.2) holds for every ball $B\left(x_{0}, R\right)$.

Theorem 1. Let $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right), d \geq 2$ and $0<\beta \leq 1$. Then the following statements are equivalent.
(1) There exists a positive constant C such that, for every $\epsilon>0$,

$$
\begin{equation*}
|<f u, u>| \leq \epsilon\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+C \epsilon^{-\beta}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, \quad \text { for all } u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \tag{1.3}
\end{equation*}
$$

(2) There exists a positive constant C such that, for every $R>0$,

$$
\begin{equation*}
|<f u, u>| \leq C R^{\frac{2}{1+\beta}}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, \quad \text { for all } u \in C_{0}^{\infty}\left(B\left(x_{0}, R\right)\right) \tag{1.4}
\end{equation*}
$$

where C does not depend on x_{0} and R.

Define the vector-field $\vec{F} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)^{d}$ by

$$
\begin{equation*}
\langle\vec{F}, \vec{\phi}\rangle=-\left\langle f, \Delta^{-1} \operatorname{div} \vec{\phi}\right\rangle \tag{1.5}
\end{equation*}
$$

for every $\vec{\phi}=\left(\phi_{1}, \ldots, \phi_{d}\right)$ be an arbitrary vector-field in $\mathcal{D} \otimes \mathbb{C}^{d}$. In particular,

$$
\begin{equation*}
\langle\vec{F}, \nabla \psi\rangle=-\langle f, \psi\rangle, \quad \psi \in \mathcal{D}\left(\mathbb{R}^{d}\right) \tag{1.6}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
f=\operatorname{div} \vec{F} \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right) \tag{1.7}
\end{equation*}
$$

We have to check that the right-hand side of (1.5) is well-defined, which a priori is not obvious. For $\vec{\phi} \in \mathcal{D} \otimes \mathbb{C}^{d}$, let

$$
w=\Delta^{-1} \operatorname{div} \vec{\phi}
$$

where $-\Delta^{-1} g=I_{2} g$ is the Newtonian potential of $g \in \mathcal{D}$. Clearly,

$$
w(x)=O\left(|x|^{1-d}\right) \quad \text { and } \quad|\nabla w(x)|=O\left(|x|^{-d}\right) \quad \text { as } \quad|x| \rightarrow \infty
$$

and hence

$$
w=\Delta^{-1} \operatorname{div} \vec{\phi}=-I_{2} \operatorname{div} \vec{\phi} \in \dot{H}^{1}\left(\mathbb{R}^{d}\right) \cap C^{\infty}\left(\mathbb{R}^{d}\right)
$$

Remark 1. When $f(x) \geq 0$ is locally integrable nonnegative function, Theorem 1 makes it possible to reduce the problem of boundedness for general "indefinite" f to the case of nonnegative weights $|\vec{F}|^{2}$, which is by now well understood. In particular, combining Theorem 1 and the known criteria in the case $f \geq 0$ (see [4], [6], [9]) we arrive at the following corollary.
Corollary 1. Under the assumptions of Theorem 1, the following statements are equivalent.
(i): Inequality (1.3) holds.
(ii): Suppose that f is represented in the form

$$
\begin{equation*}
f=\operatorname{div} \vec{F} \tag{1.8}
\end{equation*}
$$

where $\vec{F}=\nabla \Delta^{-1} f \in L_{\text {loc }}^{2}\left(\mathbb{R}^{d}\right)^{d}$ and the measure $\mu \in \mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$ defined by

$$
\begin{equation*}
d \mu=|\vec{F}(x)|^{2} d x \tag{1.9}
\end{equation*}
$$

has the property that, there exists $C>0$ such that

$$
\begin{equation*}
\left.\left|\int\right| u(x)\right|^{2} d \mu \mid \leq \epsilon\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+C \epsilon^{-\beta}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, \quad \forall u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \tag{1.10}
\end{equation*}
$$

for every $\epsilon>0$.
(iii): For μ defined by (1.9),

$$
\lim _{R \rightarrow 0+} \sup _{x_{0} \in \mathbb{R}^{d}}\left\{\frac{\left\|\mu_{B\left(x_{0}, R\right)}\right\|_{\dot{H}^{-1}\left(\mathbb{R}^{d}\right)}^{2}}{\mu\left(B\left(x_{0}, R\right)\right)}\right\}=0
$$

where $\mu_{B\left(x_{0}, R\right)}$ is the restriction of μ to the ball $B\left(x_{0}, R\right)$.
Before proceeding to our main result, it is instructive to demonstrate the cancellation phenomenon mentioned above by considering an example of a strongly oscillating weight.

Example 1. Let us set

$$
f(x)=|x|^{d-2} \sin \left(|x|^{d}\right)
$$

where $d \geq 3$ is an integer, which may be arbitrary large. Obviously, both f_{+}and f_{-}fail to satisfy (1.3) due to the growth of the amplitude at infinity. However,

$$
\begin{equation*}
f(x)=\operatorname{div} \vec{F}(x)+O\left(|x|^{-2}\right), \text { where } \vec{F}(x)=-\frac{1}{d} \frac{\vec{x}}{|x|^{2}} \cos \left(|x|^{d}\right) . \tag{1.11}
\end{equation*}
$$

By Hardy's inequality in $\mathbb{R}^{d}, d \geq 3$,

$$
\int_{\mathbb{R}^{d}} \frac{|u(x)|^{2}}{|x|^{2}} d x \leq \frac{4}{(d-2)^{2}}\|\nabla u\|_{L^{2}}^{2}, \quad u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)
$$

and hence the term $O\left(|x|^{-2}\right)$ in (1.11) is harmless, whereas \vec{F} clearly satisfies (1.10) since $|\vec{F}(x)|^{2} \leq|x|^{-2}$. This shows that f is admissible for (1.2), while $|f|$ is obviously not (see [6]).

Theorem 2. Let f be a complex-valued distribution on $\mathbb{R}^{d}, d \geq 3$ and let $0<\beta \leq$ 1. Then (1.4) holds if and only if f is the divergence of a vector-field $\vec{F}: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$ such that

$$
\begin{equation*}
\int_{B\left(x_{0}, R\right)}\left|\vec{F}(x)-m_{B\left(x_{0}, R\right)}(\vec{F})\right|^{2} d x \leq \text { const } R^{d-2+\frac{4}{1+\beta}}, \quad \text { for all } R>0 \tag{1.12}
\end{equation*}
$$

where the constant is independent of x_{0} and R. The vector-field $\vec{F} \in L_{l o c}^{2}\left(\mathbb{R}^{d}\right)^{d}$ can be chosen as $\vec{F}=\nabla \Delta^{-1} f$ (see [6]).

Remark 2.

1.: In case, $\beta=1$, it follows that (1.12) holds if and only if $\vec{F} \in B M O\left(\mathbb{R}^{d}\right)^{d}$. In order, $f \in B M O^{-1}\left(\mathbb{R}^{d}\right)=\dot{F}_{\infty}^{-1,2}\left(\mathbb{R}^{d}\right)$, where $\dot{F}_{q}^{r, p}$ stands for the scale of homogeneous Triebel-Lizorkin spaces (see [13]). Similarly, in the case $0<\beta<1$, (1.12) holds if and only if \vec{F} is Hölder-continuous:

$$
|\vec{F}(x)-\vec{F}(y)| \leq c|x-y|^{\frac{1-\beta}{1+\beta}}, \quad|x-y|<R .
$$

2.: In the case $\beta=1$, statement (i) of Theorem 2 (sufficiency of the condition $\left.\vec{F} \in B M O\left(\mathbb{R}^{d}\right)^{d}\right)$ is equivalent via the $\mathcal{H}^{1}-B M O$ duality to the inequality

$$
\|u \nabla u\|_{\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}, \quad \forall u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)
$$

Here $\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)$ is the real Hardy space on $\mathbb{R}^{d}[12]$. The preceding estimate yields the following vector-valued inequality which is used in studies of the Navier-Stokes equation, and is related to the compensated compactness phenomenon (see [1]) :

$$
\begin{aligned}
\|(\vec{u} . \nabla) \vec{u}\|_{\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)} & \leq C\|\vec{u}\|_{L^{2}\left(\mathbb{R}^{d}\right)^{d}}\|\nabla \vec{u}\|_{L^{2}\left(\mathbb{R}^{d}\right)^{d}} \\
\operatorname{div} \vec{u} & =\overrightarrow{0}, \quad \forall \vec{u} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)^{d} .
\end{aligned}
$$

Before proving the theorem, let us established certain localized versions of the necessary condition for (1.4). Set

$$
\omega_{R, x_{0}}(x)=\omega\left(\frac{x-x_{0}}{R}\right)
$$

where $\omega \in C_{0}^{\infty}(B(0,1))$ is a smooth cut-off function with the following properties

$$
|\omega(x)| \leq 1 \text { and }|\nabla \omega(x)| \leq 1 \text { for } x \in B(0,1) .
$$

With this definition, we obtain the following more useful statement.
Proposition 1. Suppose $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ and $0<\beta \leq 1$. Suppose that (1.4) holds for every $R \in(0,+\infty)$. Let \vec{F} be defined by $\vec{F}=\nabla \Delta^{-1} f$.
(a): For $d \geq 3$,

$$
\int_{\mathbb{R}^{d}}\left|\nabla \Delta^{-1}\left(\omega_{R, x_{0}} f\right)\right|^{2} d x \leq C R^{d-2+\frac{4}{1+\beta}}, 0<R<+\infty
$$

(b): For $d \geq 2$,

$$
\int_{B\left(x_{0}, R\right)}\left|\nabla \Delta^{-1}\left(\omega_{R, x_{0}} f\right)\right|^{2} d x \leq C R^{d-2+\frac{4}{1+\beta}} \quad, \quad 0<R<+\infty
$$

Now we can state the following
Lemma 1. Suppose $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right), d \geq 2$ and $0<\beta \leq 1$. Suppose that (1.4) holds for every $R \in(0,+\infty)$. Then we have

$$
\int_{B\left(x_{0}, R\right)}\left|\nabla \Delta^{-1} f-m_{B\left(x_{0}, R\right)}\left(\nabla \Delta^{-1} f\right)\right|^{2} d x \leq C R^{d-2+\frac{4}{1+\beta}}
$$

We are now in a position to give the proof of theorem 2 . We need only to prove the statement (i) since (ii) follow from Proposition 1 and Lemma 1.

Proof. Suppose that f is represented in the form (1.7) so that (1.12) is satisfied for all $R>0$. Applying the multiplicative inequality nonnegative measures ([5], th.1.4.7) to $|\vec{F}|^{2} d x$, we get :

$$
\int_{B\left(x_{0}, R\right)}|\vec{F}(x)|^{2}|u(x)|^{2} d x \leq C\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2\left(\frac{\beta-1}{\beta+1}\right)}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\frac{4}{\beta+1}} .
$$

Hence,

$$
\begin{aligned}
|<f u, u>| & =|<\vec{F} u, \nabla u>| \leq\|\vec{F} u\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)} \\
& \leq C_{1}^{\frac{1}{2}}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{1+\frac{\beta-1}{\beta+1}}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\frac{2}{\beta+1}}
\end{aligned}
$$

Combining the preceding estimates with the following inequality ([7], th 3.2.1) :

$$
\|u\|_{L^{2}} \leq C(d) R\|\nabla u\|_{L^{2}}, \quad u \in C_{0}^{\infty}\left(B\left(x_{0}, R\right)\right)
$$

we get

$$
|<f u, u>| \leq C R^{\frac{2}{1+\beta}}\|\nabla u\|_{L^{2}}^{2}, \quad u \in C_{0}^{\infty}\left(B\left(x_{0}, R\right)\right)
$$

The proof of theorem 2 is complete.
We use know characterizations of the Morrey-Campanato spaces. In particular,
Proposition 2. For $0<\beta<1$, condition (1.12) is equivalent to the condition $\vec{F} \in \Lambda_{\gamma}\left(\mathbb{R}^{d}\right)$ where $\gamma=\frac{1-\beta}{1+\beta}$. In the case $\beta=1$, we have $\vec{F} \in B M O\left(\mathbb{R}^{d}\right)^{d}$.

It is easy to see that in the case $\beta=1$, the sufficiently part of Theorem 2 is equivalent to inequality :

$$
|<\vec{F} u, \nabla u>| \leq C\|\vec{F}\|_{B M O\left(\mathbb{R}^{d}\right)^{d}}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}, \forall u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)
$$

By duality, the preceding inequality yields :

$$
\|u \nabla u\|_{\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}, \quad \forall u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)
$$

where $\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)$ is a real Hardy space [12]. Such inequalities are useful in hydrodynamics [1]. As an immediate consequence, we obtain the vector-valued quadratic form :

$$
\begin{aligned}
\|(\vec{u} \cdot \nabla) \vec{u}\|_{\mathcal{H}^{1}\left(\mathbb{R}^{d}\right)} & \leq C\|\vec{u}\|_{L^{2}\left(\mathbb{R}^{d}\right)^{d}}\|\nabla \vec{u}\|_{L^{2}\left(\mathbb{R}^{d}\right)^{d}} \\
\operatorname{div} \vec{u} & =\overrightarrow{0}, \forall \vec{u} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)^{d}
\end{aligned}
$$

Both of the preceding inequalities are corollaries of the homogeneous version of the "div - curl" Lemma [1]. The following corollary which is an immediate consequence of Theorem 2 and the characterizations of Morrey-Campanato spaces [3], gives a necessary and sufficient condition for (1.12) in terms of homogeneous Besov spaces of negative order.

Corollary 2. Under the assumptions of Theorem 2, in the case $\beta=1$, condition (1.12) is equivalent to $f \in B M O^{-1}\left(\mathbb{R}^{d}\right)$. Similarly, in the case $0<\beta<1$, $\cdot-\frac{2 \beta}{1+\beta}, \infty$ condition (1.12) is equivalent to $f \in \dot{B}_{\infty}^{1+\beta}\left(\mathbb{R}^{d}\right)$.

References

[1] Coifman, R., Lions, P. L., Meyer ,Y. and Semmes, S., Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286.
[2] Gala, S., Opérateurs de multiplication ponctuelle entre espaces de Sobolev, PhD thesis, University of Evry, 2005.
[3] Giaquinta, M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Verlag, Basel. Boston. Berlin, 1993.
[4] Kerman, R. and Sawyer, E. T., The trace inequality and eigenvalue estimates for Schrödinger operators, Annales de l'Institut Fourier, $36 n^{\circ} 4$ (1986), 207-228.
[5] Maz' ya,V.G., Sobolev spaces, Springer-Verlag, Berlin-Heidelberg-New york, 1985.
[6] Maz' ya, V. G. and Verbitsky, I. E., The Schrödinger operator on the energy space: Boundness and compactness criteria, Acta Mathematica, 188 (2002), 263-302.
[7] Morrey, C.B., Multiple Integrals in the Calculus of Variations, Springer, Berlin - Heidelberg, New York, 1966.
[8] Reed M. and Simon, B., Methods of Modern Mathematical Physics, II. Analysis of Operators, Academic Press, New York, 1978.
[9] Sawyer, E. T., A Weighted Inequality and Eigenvalue Estimates for SchröHJMdinger Operators, Indiana Univ. Math. J. 35 No. 1 (1986)
[10] Schechter, M., The spectrum of the Schrödinger operator, Trans. Amer. Math. Soc, 312:1(1989), 115-128.
[11] Sturm, K. T., Schrödinger operators with highly singular, oscillating potentials. Manuscripta Math., 76 (1992), 367-395.
[12] Stein, E. M., Harmonic Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.
[13] Triebel, H., Theory of functions spaces, Monographs in Mathematics 78, Birkhäuser Verlag, Basel, 1983.

Received September 1, 2005
University of Evry, Department ofe mathematics, Bd F. Mitterrand. 91025 Evry Cedex. France

E-mail address: Sadek.Gala@maths.univ-evry.fr
Current address: University of Mostaganem, Department of Mathematics, Box. 227, Mostaganem (27000). Algeria

