ERRATUM TO "THE ZARISKI TOPOLOGY ON THE PRIME SPECTRUM OF A MODULE" (HOUSTON J. MATH., 25(3), 1999, 417-432)

CHIN-PI LU

1. INTRODUCTION

Proposition 5.2(3) and its result Proposition 6.3 in the published version [1] are incorrect. The original Proposition 5.2(3) in [1] states: For a module M over a ring R, let P be an element of X = Spec(M). Then the set $\{P\}$ is closed in X for the Zariski topology \iff (i) P is a maximal submodule of M, and (ii) $|\text{Spec}_{p}(M)| = 1$ where p = (P:M).

The statement is correct if M is finitely generated. However, in general, it is not so as the example of the Z-module M = Q, P = (0), shows. Since (0) is the unique prime submodule of Q, the Zariski topology on Spec(Q) is the trivial topology by ([1] p.420, Example 1(a)). Accordingly, $\{(0)\}$ is closed in Spec(Q). However (0) is not a maximal submodule of Q, hence (i) is not true.

A topological space is a T_1 -space if and only if every singleton subset is closed. Based on this fact, in [1], Proposition 6.3 was deduced from Proposition 5.2(3) as follows: For an *R*-module *M*, Spec(*M*) is a T_1 -space $\iff Max(M) = \text{Spec}(M)$, where Max(M) is the set of all maximal submodules of *M*. However, the *Z*-module *Q* is also a counterexample to Proposition 6.3 because $\text{Spec}(Q) = \{(0)\}$ is a T_1 -space with $Max(Q) \neq \text{Spec}(Q)$.

Here we give, respectively, a simple correction of [1] Proposition 5.2(3) and that of [1] Proposition 6.3 in Proposition 1 and Proposition 2 of §2 below.

2. Correction

For an *R*-module *M* with Spec(M) = X, let Ψ be a subset of Spec(R) defined by $\Psi = \{(P:M) | P \in X\}$. *p* is a maximal element of Ψ whenever $p \subseteq q$, where $q \in \Psi$, implies that p = q.

Proposition 1. For an R-module M, let P be an element of X. Then

the set $\{P\}$ is closed in X

 $\iff (i) \ p = (P:M) \ is \ a \ maximal \ element \ of \ \Psi, \ and \\ (ii) \ Spec_n(M) = \{P\}, \ that \ is, \ |Spec_n(M)| = 1.$

Proof. From ([1], p.425, Proposition 5.2(1)), we know that $\{P\}$ is closed \iff $\{P\} = V(P)$. Let $q \in \Psi$ such that $p \subseteq q$. We show that q = p. If $Q \in X$ is a q-prime submodule, then $Q \in V(P) = \{P\}$ so that Q = P and q = p, which proves (i). If P' is any member of $\operatorname{Spec}_p(M)$, then $P' \in V(P) = \{P\}$ whence P' = Pand (ii) follows. Conversely we assume (i) and (ii), and show that $V(P) \subseteq \{P\}$. If $Q \in V(P)$, then $q = (Q:M) \supseteq (P:M) = p$. Hence (i) implies q = p and consequently (ii) implies Q = P, so that $V(P) \subseteq \{P\}$. Since the other inclusion is trivially true, we have $\{P\} = V(P)$, namely, $\{P\}$ is closed in X. \Box

Proposition 2. Let M be an R-module. Then

 $\begin{array}{l} Spec(M) \ is \ a \ T_1\text{-}space \\ \iff (i) \ p = (P:M) \ is \ a \ maximal \ element \ of \ \Psi \ for \ every \ P \in X, \ and \\ (ii) \ |Spec_p(M)| \leq 1 \ for \ every \ p \in Spec(R). \end{array}$

Proof. Note that (ii) is equivalent to that $|\operatorname{Spec}_p(M)| = 1$ for every $p \in \Psi$. Thus, in view of Proposition 1 above, (i) and (ii) are equivalent to that the singleton set $\{P\}$ is closed in X for every $P \in X$, that is, X is a T_1 -space.

References

 C. P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math., 25(3) (1999), 417-432.

Received by the editors February 10, 2009

Department of Mathematics, University of Colorado, Denver, Colorado 80217-3364, USA

 $E\text{-}mail\ address:\ {\tt sylvia.lu@ucdenver.edu}$