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ABSTRACT. The paraholomorphic sectional curvature of almost para-Hermi- 

tian manifolds is investigated. After discussing those manifolds with point- 

wise constant paraholomorphic sectional curvature, main attention is de- 
voted to those being isotropic. Also, some boundedness conditions for the 
paraholomorphic sectional curvature are studied. 

1. INTRODUCTION 

An almost para-Hermitian manifold is a differentiable almost symplectic man- 
ifold (M, R) which tangent bundle splits into a Whitney sum of Lagrangian sub- 
bundles, TM = L $ L’. Induced by this decomposition, there exist an almost 
paracomplex structure, J, and a semi-Riemannian metric, g, such that g(JX, Y) 
+ g(X, JY) = 0 for all X, Y vector fields on M. This fact motivates the study of 
such manifolds attending to their semi-Riemannian structure and, through this 
paper, by an almost para-Hermitian manifold we will mean the triple (M, g, J). 
A special case occurs when the 2-form R is closed and the subbundles L and 
L’ are involutive. Then the manifold is called para-Kiihler and it is equivalently 
described by VJ = 0, V being the Levi Civita connection of g. Para-Klhler 
manifolds present important properties and they are the most well known class 
of almost para-Hermitian manifolds. (See [G-MM] for a classification of almost 
para-Hermitian manifolds and [Cr-F-G] for a survey and further references). 

Since the curvature represents the simplest and most widely studied invariant 
of (semi)-Riemannian manifolds, it is of interest to investigate the curvature 
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properties of almost para-Hermitian manifolds. The sectional curvature of para- 
Kahler manifolds has been recently studied by Gadea and Montesinos in [G-MAl], 
where the notion of paraholomorphic sectional curvature was introduced. Since 
the study of the sectional curvature of indefinite metrics presents some significant 
differences with respect to Riemannian metrics (see [B-C-GR-H], [Gr-N], [Ku], 
[Kupl, [Nl, [Tl and th e references therein), the main aim of this paper is to 
investigate further two basic problems: the restriction of the curvature tensor to 
degenerate sections and some boundedness conditions on the paraholomorphic 
sectional curvature. 

Motivated by the examples at the end of this paper, the study of the prop- 
erties we are interested in, must be considered in full generality, i.e., for general 
almost para-Hermitian manifolds. In section 3 we focus on the study of the 
spaces of pointwise constant paraholomorphic sectional curvature. It is obtained 
the expression of the curvature of those spaces, generalizing that of paracomplex 
space-forms and a criterium for the constancy of the paraholomorphic sectional 
curvature is derived (cf. Theorem 3.1). A detailed examination of the results in 
Theorem 3.1 suggests to study a broader class of almost para-Hermitian man- 
ifolds: those with vanishing curvature on paraholomorphic degenerate planes. 
This class generalizes that of almost para-Hermitian manifolds of pointwise con- 
stant paraholomorphic sectional curvature. In § 4 it is obtained the expression 
of the curvature of such manifolds and, using that formula, a local decomposi- 
tion theorem is stated. Boundedness conditions on the paraholomorphic sectional 
curvature are investigated in $5 showing that it is bounded if and only if is con- 
stant at any point. Several examples motivating this study as well as showing the 
necessity of some assumptions made through the paper are exhibited in the last 
section. 

Acknowledgement. The authors wish to express their thanks to Prof. P. M. 
Gadea for some comments on the subject. 

2. PRELIMINARIES 

In this section we will collect some basic material we will need further on. 

2.1. Sectional curvature of indefinite metrics. Let (M, g) be a semi-Riemannian 
manifold, V the Levi Civita connection and R the curvature tensor. For any non- 
degenerate plane 7r =< {= X, Y} >, the sectional curvature, K, is defined by 

(2.1) 
R(X, Y, X, Y) 

K(K) = g(X, X)g(Y, Y) - g(X, Y)2 ’ 
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where R(X, Y, 2, IV) = g(R(X, Y)Z, IV). It must be noted that, in opposition to 
Riemannian metrics, the sectional curvature is not defined on the whole Grass- 
mannian of two-planes, since (2.1) does not make sense for degenerate planes 

(’ i.e., those with g(X, X)g(Y,Y) - g(X,Y)2 = 0). Therefore, the problem of 
extending the definition of K to degenerate planes is of special interest. Such a 
problem involves the study of the restriction of the curvature tensor R to degener- 
ate planes, and it is clear that R(X, Y, X, Y) = 0 for all degenerate planes {X, Y} 
is a necessary condition for the desired extension. Thorpe, [T], and Dajczer and 
Nomizu, [D-N], showed the equivalence of that condition to constant sectional 
curvature. 

Generalizing the properties of the curvature of a semi-Riemannian manifold, 
a curvaturelike function is defined to be a quatrilinear map, F, on a vector space 
V satisfying 

F(X,Y, 2, W) = -F(Y,X, 2, W) = -F(X,Y, W, Z), 

(2.2) F(X, Y, 2, W) = F(Z, w, X, Y), 

F(X,Y, 2, W) + F(Y, 2,X, W) + F(Z,X, Y, W) = 0, 

for all X, Y, 2, W E V. If <, > is an inner product on V, the associated curva- 
turelike tensor, fi;, is defined by < fl(X, Y)Z, W > = F(X, Y, 2, W). 

We close this subsection with two classical examples showing the usefulness 
of curvaturelike functions in the determination of the curvature of some semi- 
Riemannian manifolds. 

The simplest curvaturelike function on a semi-Riemannian manifold (M,g) is 
Fo defined by Fe(X, Y, 2, W) = g(X, Z)g(Y, W) - g(Y, Z)g(X, W). Moreover, it 
is well-known that a semi-Riemannian manifold is of constant curvature if and 
only if the curvature tensor is a scalar multiple of FO [Gr-N, Lemma.21. More 
generally, if p denotes the Ricci tensor of a semi-Riemannian manifold (M, g) 
and define 

Fi(X,Y,z,W) = s(X,%Q’,W) -g(Y,Q(X,W) 

+p(X, Z)g(Y, W) - P(Y7 %7(X, W), 

it follows that Fl is a curvaturelike function and moreover, a semi-Riemannian 
manifold is locally conformally flat if and only if R - Fl is a multiple of Fo at 
each point of it4 [GR-Kup, Th.3.51. 

2.2. Almost para-Hermitian manifolds. A symplectic manifold is said to be 
para-Kahler if it is locally diffeomorphic to a product of two Lagrangian subman- 
ifolds, [L]. Generalizing that property, an =.ZOalmost para-Hermitian muGfold is 
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an almost symplectic manifold (M, 0) which tangent bundle splits into a Whitney 
sum of Lagrangian subbundles, TM = L @ L’. 

Equivalently to that decomposition, there exists a (1,l))tensor field on M, 
J = r~ - ELI, ~TL (resp., 7r~l) being the projection on L (resp., on L’) such that 
J2 = Id. Moreover, since L and L’ are Lagrangian, the almost paracomplex struc- 
ture J (also called almost product structure) satisfies n( JX, JY) = -0(X, Y). 
Therefore, the (0,2)-tensor field g(X, Y) = R(X, JY) defines a semi-Riemannian 
metric on M of signature (n, n) such that 

g( JX, JY) = -g(X, Y). 

From now on, by an almost para-Hermitian manifold we will mean a triple 
(M, g, J) where g and J are a semi-Riemannian metric and an almost para- 
complex structure as above. Also, note that the para-Kahler condition is now 
expressed by VJ = 0. 

Induced by the almost paracomplex structure J, a plane r is said to be paru- 
holomorphic if it is invariant by J (Jr c r). The paraholomorphic sectional 
curvature, H, is defined to be the restriction of the sectional curvature to nonde- 
generate paraholomorphic planes, i.e., 

(2.3) H(r) = - 
R(X, JX, X, JX) 

g(X, X)2 

We refer to [Cr-F-G], [G-MAl], [GR-H-VL] and the references therein for more 
information about the study of the paraholomorphic sectional curvature of para- 
Kahler manifolds. 

A further observation is needed for the purposes of this paper. Note that the 
paraholomorphic sectional curvature is only defined on nondegenerate paraholo- 
morphic planes. It is immediate to recognize from (2.3) that a necessary condition 
to extend the definition of H to degenerate planes is 

(2.4) R(U, JU, U, JU) = 0, for all null vectors U. 

We will call isotropic to those almost para-Hermitian manifolds satisfying (2.4). 
Note that isotropy is a strictly weaker condition than pointwise constant para- 
holomorphic sectional curvature (see the examples 6.4 and 6.6 in the last section). 
Also note that (2.4) is a conformally invariant property of almost para-Hermitian 

manifolds (cf. Example 6.5). 
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3. ALMOST PARA-HERMITIAN MANIFOLDS OF POINTWISE CONSTANT 

PARAHOLOMORPHIC SECTIONAL CURVATURE 

The purpose of this section is twofold, firstly to derive a criterium for the 
constancy of the paraholomorphic sectional curvature and secondly, to obtain 
the expression of the curvature of a space of pointwise constant paraholomorphic 
sectional curvature. 

Theorem 3.1. Let (M,g,J) b e an almost para-Hermitian manifold. The para- 
holomorphic sectional curvature is pointwise constant on M if and only if one of 
the following equivalent conditions holds 

(i) R(X, JX)JX + JR(X, JX)X N x for all spacelike vectors X, 

(ii) R(Y, JY)JY + JR(Y, JY)Y - Y for all timelike vectors Y, 

(iii) R(U, JU)JU + JR(U, JU)U = 0 for all null vectors U, 

where N means “is proportional to”. 

PROOF. We introduce the following functions G and L defined by 

(3.1) G(X,Y) = 2R(X, JX, X, JY) + 2R(X, JX, Y, JX), 

(3.2) 
L(X,Y) = 2R(X, JX,Y, JY) + 2R(X, JY,Y, JX) 

+R(X, JY,X, JY) + R(Y, JX,Y, JX). 

Using these two functions we have the expression 

R(XX + PY, J(XX + /.iY), XX + /iY, J(XX + ,uY)) = X3pG(X, Y) 

(3.3) +Xp3G(Y, X) + X2p2L(X, Y) 

+X4R(X, JX, X, JX) + /i4R(Y, JY,Y, JY). 

We will firstly show the necessity of (i). Let X be a spacelike vector, take 
Y E< X >I and consider real numbers A, p such that 2 = XX + /.AY is a non 
null vector. If the paraholomorphic sectional curvature is pointwise constant, say 
c, then R(Z, JZ, 2, JZ) = -cg(Z, Z)“, and from (3.3) we obtain 

-c(X2sx + P2EY) 2 = X4R(X, JX, X, JX) + /i4R(Y, JY, Y, JY) 

+X3pG(X, Y) + Xp3G(Y, X) + X2,u2L(X, Y), 

where EX = g(X,X). Hence 

X3~G(X, Y) + X2/_i2(L(X, Y) + ~CEXW) + Xp3G(Y, X) = 0, 
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which implies that G(X, Y) = 0. Thus, from (3.1), it follows that g(R(X, JX)X 
+ JR(X, JX)JX, JY) = 0, in showing that (i) is necessary. 

Conversely, suppose that (i) holds and show that the paraholomorphic sec- 
tional curvature is pointwise constant. Let X and Y be orthonormal vectors with 
g(X, X) = 1 = -g(Y, Y). Take= X and p real numbers with X2 > p2 and consider 
the vectors Z = XX + PY and W = pX + XY. Since Z and W are orthogonal, 
it follows from (i) that g(R(Z, JZ)Z + JR(Z, JZ)JZ, JW) = 0. Equivalently 

R(XX + pu, J(XX + pY), xx + pY, J(pX + XV)) 

-R(XX + pY, J(XX + PLY), J(XX + #uY), px + AU) = 0. 

Linearizing the expression above and considering the coefficients corresponding 
to X3~ and Xp3, it follows that R(X, JX, X, JX) = R(Y, JY, Y, JY). This shows 
that H(X) = H(Y) f or all orthonormal vectors X and Y with g(X,X) = 1 = 
-g(Y, Y). 

To show the pointwise constancy of the paraholomorphic sectional curvature, 
we proceed as follows. Let rrx = < {X, JX} > and ~]TY = < {Y, J = Y} > 
be nondegenerate paraholomorphic planes and assume that X and Y are unit 
spacelike vectors. If < {X,Y} > is nondegenerate, let 2 E < {X,Y} >I be a 
unit timelike vector and consider the nondegenerate paraholomorphic plane rr = 
< {Z,JZ} >. Since X J_ 2 and Y J_ 2, it follows that H(nx) = H(r) and 
H(TY) = H(n), and thus H(rrx) = H(W). Next, suppose that < {X,Y} > 
is degenerate. Take a unit spacelike Z E< Y >I and consider the sequence 
{Xn}nE~ of unit spacelike vectors given by 

x,= [ 1+ 
1 2 1 -l/2 ( x+ 

1 
n2g(X, Z)2 + n %7(X, Z) 

Z , 
> 

ifg(X, Z) # 0, 

x,= [1+$]-1’2 (,+;z>, ifg(X, Z) = 0. 

Now, it follows that < {Xn, Y} > is nondegenerate for all n E N. Therefore, 
H(7ry) = H(nx,) for all n E N, and the result is obtained passing to the limit. 

The equivalence between (ii) and the pointwise constancy of H is obtained 
in a similar way. To finish the proof, we will analyze the condition (iii). If the 
paraholomorphic sectional curvature is pointwise constant, say c, (i) and (ii) are 
satisfied, and then 

R(X, JX)X + JR(X, JX)JX = 2cg(X, X)JX 
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for all nonnull vectors X E T,M. Now, if U is a null vector, considering a se- 
quence of non null vectors approximating U and passing to the limit the necessity 
of (iii) is obtained. 

Conversely, if (iii) holds, take X and Y orthogonal unit vectors such that 
g(X, X) = -g(Y, Y). S’ mce X & Y are null vectors, it follows from (iii) that 

0 = R(X + Y, J(X + Y))(X + Y) + JR(X + Y, J(X + Y))J(X + Y) 

= R(X - Y, J(X - Y))(X - Y) + JR(X - Y, J(X - Y))J(X - Y), 

and then, 
0 = R(X+Y,J(X+Y),X+Y,J(X-Y)) 

+R(X + Y, J(X + Y), X - Y, J(X + Y)) 

= R(X-Y,J(X-Y),X-Y,J(X+Y)) 

+R(X - Y, J(X - Y), x + Y, J(X - Y)). 

After some calculations, it follows that R(X, JX, X, JX) = R(Y, JY, Y, JY), 
and hence H(X) = H(Y) as in the case (i). 0 

Remark. The result of previous theorem remains valid for any curvaturelike func- 
tion on a para-Hermitian vector space. (Note that only properties (2.2) of the 
curvature tensor have been used in the proof above). This fact will be of impor- 
tance in the determination of the curvature of isotropic almost para-Hermitian 
manifolds (cf. Theorem 4.4). 

Note that the result of Theorem 3.1 reduces to [GR-H-VL, Lemma.31 for the 
case of para-Kahler manifolds. Also, a geometric interpretation of conditions (i) 
and (ii) can be stated as follows. We will say that an almost para-Hermitian 
manifold satisfies the axiom of paraholomorphic spheres (resp., paraholomorphic 
planes) at a point m E M if, for any a-dimensional nondegenerate paraholo- 
morphic subspace V of T,M, there exists a totally umbilical paraholomorphic 
submanifold, S, with parallel mean curvature (resp., totally geodesic) passing 
through m with tangent space T,S = V. Now, as a direct application of previ- 
ous theorem, and proceeding as in [Gr-N, Th.3, 41, we have 

Proposition 3.2. Let (M,g, J) be an almost para-Hermitian manifold. If M 
satisfies the axiom of paraholomorphic spheres (resp., paraholomorphic planes) at 
a point m E M, then the paraholomorphic sectional curvature is constant at m. 

The constancy of the paraholomorphic sectional curvature was previously stud- 
ied in [G-MAl] and [GR-H-VL] in the framework of para-Kahler manifolds (see 
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also [Cr-F-G]). The special significance of para-Kahler manifolds comes from the 
fact that the paracomplex structure is parallel, and hence, the curvature tensor 
satisfies 

(3.4) R(X,Y, JZ, JW) = R(JX, JY, 2, W) = -R(X,Y, 2, W). 

Although previous identity is not valid in general for the curvature tensor of 
an almost para-Hermitian manifold, it is possible to construct a curvaturelike 
function, R’, satisfying (3.4) as follows 

R’(X, Y, 2, W) = 3R(X, Y, 2, W) - 3R(X, Y, JZ, JW) - 3R(JX, JY, 2, W) 

+3R(JX, JY, JZ, JW) - R(X, 2, JY, JW) - R(JX, JZ,Y, W) 

+R(X, W, JY,JZ) + R(JX,JW,Y, 2) - R(X, JW,JY,Z) 

-R(JX, W,Y, JZ) + R(X, JZ, JY, W) + R(JX, 2, Y, JW). 

The significance of R’ is pointed out in the following 

Theorem 3.3. Let (M, g, J) b e an almost para-Hermitian manifold. Then, the 
paraholomorphic sectional curvature is constant c at a point m E M if and only 

if 
R’ = 4cRo 

at the point m, where Ro is the curvaturelike function 

Ro(X, Y, 2, W) = g(X, %(Y, W) - g(y, .%7(X, W) + g(X, Jz)g(JY, W) 

-g(Y, J%(JX, W) + 3(X, JY)dJZ, W). 

PROOF. It is a straightforward calculation to show that R’ satisfies (2.2) and 
(3.4). Moreover, since R’(X, JX, X, JX) = 16R(X, JX, X, JX) for all vectors 
X, it follows that the paraholomorphic sectional curvature of R’ is constant at 
the point m and 16 times that of R. Now, the proof follows as in [G-MAl]. (Note 
that only the properties of a curvaturelike function and (3.4) are used in the proof 
of [G-MAl, Cor.3.51). 0 

At this point, two remarks are needed on the result of previous theorem. 
1. The paraholomorphic sectional curvature determines the curvature of para- 

Kahler manifolds. This result is, however, no longer valid for general almost 
para-Hermitian manifolds even if H vanishes (see Example 6.2). 

2. Gadea and Montesinos showed in [G-MAI] the existence of a Schur lemma 
for the constancy of the paraholomorphic sectional curvature of para-Kahler man- 
ifolds. Although that result can be generalized to the broader class of Nearly 
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para-Kahler manifolds, it is not valid in general. In fact, following the ideas 
of [Gra-V, Sect.51, it is not difficult to construct para-Hermitian structures of 
pointwise constant paraholomorphic sectional curvature on ll!282” such that H is 
not globally constant. 

An equivalent condition to the validity of the Schur lemma is obtained as 
follows. First we introduce two (0,2)-tensor fields derived from the curvature. 
One is the usual Ricci tensor, 

(3.5) p(X, Y) = trace (2 e R(X, Z)Y} 

and the second is the *-Ricci tensor, 

(3.6) p*(X, Y) = trace (2 ++ -JR(X, JY)Z}. 

Now, if T and r* denote the scalar curvature and the *-scalar curvature respec- 
tively, the following holds 

Proposition 3.4. Let (M, g, J) be an almost para-Hermitian manifold of point- 
wise constant paraholomorphic sectional curvature. Then H is constant on M if 
and only 2f the scalar curvature r - 37’ is constant on M. 

PROOF. Since at any point R’ = c(m)Ro, it must be r’ = c(m)To, where 7’ and ro 
denote the scalar curvature of the curvaturelike functions R’ and Ro respectively. 
After some calculations it follows that 7’ = 4(7- - 37*) and 70 = 4n(n + 1) from 
where the result follows. 0 

4. ISOTROPIC Amfos~ PARA-HERMITIAN MANIFOLDS 

We recall that an almost para-Hermitian manifold (M, g, J) is said to be 

isotropic if the restriction of the curvature tensor to degenerate paraholomorphic 
planes vanishes identically. 

Now, if (2.4) holds then g(R(U, JU)JU + JR(U, JU)U,U) = 0, which shows 

that R(U, JU)JU + JR(U, JU)U E < U >l. Next, let V be a null vector in 
< U >I and consider the null vectors U + XV, X E Iw. Since M is isotropic, 

R(U + XV, J(U + XV), U + XV, J(U + XV)) = 0. L inearizing this expression, and 

considering the coefficient of X, one gets g(R(U, JU) JU + JR(U, JU)U, V) = 0. 
Hence, it follows that R( U, JU) JU + JR( U, JU)U lies in the direction of < U > 
and thus 

(4.1) R(U, JU) JU + JR(U, JU)U = cu U. 

Therefore, it is immediate to recognize that (4.1) is an equivalent characterization 

of (2.4). 
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Rem&. It is clear from previous argument and (iii) in Theorem 3.1, that isotropy 
is a generalization of the pointwise constancy of the paraholomorphic sectional 
curvature. 

The main purpose of this section is to obtain the expression of the curvature 
of isotropic almost para-Hermitian manifolds, which must generalize the result of 
Theorem 3.3 according to previous remark. A key observation to do that is the 
possibility of constructing “isotropic curvaturelike functions” on the basis of the 
examples exhibited in the Preliminaries. Let ‘p be a symmetric (0,2)-tensor field 
on M such that (p(JX, JY) = -cp(X, Y) and define 

F,(X, Y, Z, W = s(X, ZMY, I,+‘) - g(Y, ZMX, W) + s(X, JZ)cp(JY W 

-g(Y JZMJX, W + 2g(X, JY)cp(JZ, W) 

+ cp(X, Z)g(Y W - cp(Y ZMX, W + cp(X? JZMJY W) 

-cp(u, JZMJX, W) + 2%7(X, JY)g(JZ, q. 

A straightforward calculation shows that F, is a curvaturelike function, it 
satisfies (3.4) and moreover, it is isotropic (i.e., its restriction=20to degenerate 
paraholomorphic planes vanishes identically). Hence, for each null vector U there 
exists c: such that the associated curvaturelike tensor 6’P satisfies pV(U, JU)JU 
+ JF,(U, JU)U = c; u. 

Therefore, if (M, g, J) is an isotropic almost para-Hermitian manifold, to obtain 
the expression of its curvature, it is enough to find a symmetric (0,2)-tensor field, 
cp, as above in such a way that c; coincides with cu for all null vectors U. To 
obtain the desired cp, we compute the values of the Ricci and *-Ricci tensors on 
null vectors. We begin with the following 

Lemma 4.1. Let (M,g, J) b e an isotropic almost para-Hermitian man$old and 
Z a nonnull vector. For each null vector U in < (2, JZ} >‘-, it holds 

(4.2) 
2EZqJ = R(U,Z, U,Z) - R(U, JZ,U, JZ) - R(JU, 2, JU,Z) 

+R(JU, JZ, JU, JZ) - 6R(U, JU, 2, JZ). 

PROOF. Let V be a null vector in < (2, JZ} >I with g(U, V) = -$. Then IV, = 
&(U + tszV) is a nonnull vector for each t > 0 such that g(Wt, Wt) = -g(Z, Z) 

and g(Wt, Z) = 0. S ince Z f IV, is a null vector, it follows that 

R(Z f IV,, J(Z f Wt), Z f W,, J(Z f Wt)) = 0. 
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Linearizing previous expression, after some calculations, it follows that 

R(Z, JZ, 2, JZ) + R(Wt, JW,, W,, JWt) = -2R(Z, JZ, W,, JWt) 

-2R(Z, JW,, W,, JZ) - R(Z, JW,, 2, JWt) - R(Wt, JZ, W,, JZ). 

Linearizing this expression, taking into consideration that the manifold is 
isotropic and multiplying both sides by t, we obtain 

0 = tR(Z, JZ, 2, JZ) + szG(U, V) + t2ezG(V, U) + tL(U, V) 

+2R(Z, JZ, U + t&zV, JU + tezJV) + 2R(Z, JU + tazJV, U + tezV, JZ) 

+R(Z, JU + t&z JV, Z, JU + tezJV) + R(U + teZV, JZ, U + teZV, JZ). 

Now, taking limits when t --+ 0, 

0 = R(U, JZ, U, JZ) + R(JU, Z, JU, Z) 

+2R(U, JU, Z, JZ) + 2R(Z, JU, U, JZ) + ezG(U, V). 

Putting JZ instead of Z in the above expression and subtracting we have 

0 = 2szG(U, V) + 4R(U, JU, Z, JZ) + 2R(Z, JU, U, JZ) 

+2R(U, Z, JU, JZ) + R(U, JZ, U, JZ) + R( JU, Z, JU, Z) 

-R(U, Z, U, Z) - R(JU, JZ, JU, JZ). 

Finally, since G(U, V) = cu, (4.2) is obtained using the first Bianchi identity. 
Cl 

Lemma 4.2. Let (M, g, J) be an almost para-Hermitian manifold and U E T,A4 
a null vector such that U # fJU. Then, one of the following holds, 

(i) There exist orthonormal vectors X, Y E T,,&l with < {X, JX} > I < 
{Y, JY} > such that U = lc(X + Y), for some real Ic, or 

(ii) There exists a sequence {U,},,W of null vectors satisfying (i) such that U 
= lim U,. 

12-+co 

PROOF. Let U be a null vector, take X, Y orthogonal vectors such that U = 
(X + Y) and consider the subspace V = < {X, JX, Y, JY} >. 

If V is nondegenerate, define WI = < {X, JX} > and Wz its orthogonal com- 
plement in V. Then V = WI $ W2 and there exists an orthogonal decomposition 
U = VI + U2, where Vi is the component of U in Wi, i = 1,2. If lJ1 is nonnull, 
then Uz is so and, after normalizing both vectors, the desired decomposition is 
obtained showing (i). 

If VI is a null vector (note that both WI and Ws have induced Lorentzian 
metric) we proceed as follows. If dimV = 2, it must be V = < {X, JX} > = 
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< {Y, JY} >. Then U = (Xf JX) and thus JU = fU, which is a contradiction. 
Also, since V is nondegenerate, dimension of V cannot be 3. Hence, assume that 
dimV = 4, and choose null vectors V, E VV,, i = 1,2, such that g(Ur, VI) = 1 
and g(U2, Vz) = -1. Now, U, = Ur + Us + i (VI + V’s) is a sequence= of null 
vectors approximating U. Furthermore, note that each U, is of the form U, = 
kn(Xn + Y,) with X,, Y, spanning orthogonal paraholomorphic planes for all 
n E N, where 

XT% = (y2(ul + +i), Y, = (;)‘/2(u2 + ;v2,, k, = ($‘/2 

To finish the proof, let consider the case of V being degenerate. Since g(X, X) 
= 1 = g(JY, JY), there exists a sequence {Xn}nE~ of spacelike unit vectors 
approximating X such that the subspace V, = < {X,, JX,, Y, JY} > is nonde- 
generate for all n E N (see the proof of Theorem 3.1 ). Now, it is easy to construct 
a sequence of null vectors U,, approximating the null vector U such that each U, 
lies in V, for all n E N. Since V, is nondegenerate for all n E N, the desired 
sequence of null vectors approximating U is obtained. q  

Now, we state the following result which is a key observation for the study of 
isotropic almost para-Hermitian manifolds. 

Lemma 4.3. Let (M2n,g, J) b e an isotropic almost para-Hermitian man$old. 
Then, 

(4.3) p(U, U) - p(JU, JU) - 6p*(U, U) = (2n + 4)cu 

for each null vector U on M. 

PROOF. We will prove (4.3) in two steps corresponding to cases (i) and (ii) in 
Lemma 4.2. Let firstly consider those null vectors U admitting an expression 
CJ=k(X+Y)f or some k E W, where X and Y are spacelike and timelike unit 

vectors such that < {X, JX} > I < {Y, JY} >. 
Now, if U is as above, take (21,. . . , &-2, JZ1,. . . , JZ,_2} in such a way that 

{X, JX, Y, JY, 21, . . . , 24, JZ1, . . . , JZ,_2} be a local orthonormal frame. 
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Then one has 

(4.4) 

= R(U,X, U,X) - R(U,Y, U,Y) - R(JU,X, JU,X) 

+R(JU, Y, JU, Y) - R(U, JX, U, JX) + R(U, JY, U, JY) 
n-2 

+R( JV JX, JU, JX) - R( JU, JY, JU, JY) + & {R( U, z,, u, zz) = 
i=l 

+R(JK Jzi, JU, J.Z) - R(U, JZ,, U, JZ,) - R(JU, z,, JU, z%)} 

(4.5) 

,o*(U,U) = R(U, JU,X, JX) - R(U, JU,Y, JY) 
n-2 

+x&z,R(U, JU, Z,, JZi). 
i=l 

Now, since U = lc(X + Y), a straightforward calculation shows that 

0 = R(U,X,U,X) - R(U,Y,U,Y) 

= R(JU,X, JU,X) - R(JU,Y, JU, Y), 

2qJ = R( JU, Y, JU, Y) - R( JU, X, JU, X) 

+R(U, JY,U, JY) - R(U, JX, U, JX), 

CU = R(U, JU,Y, JY) - R(U, JU,X, JX). 

Hence, from (4.4) and (4.5), it follows that 

(4.6) 
p(U, U) - p(JU, JU) - 6p*(U, U) = 8cu+ 

n-2 

+ &{R(U, Z,, U, Zi) + R(JU, JZ,, JU, JZi) 
i=l 

-R(U, JZ,, U, JZi) - R( JU, Zi, JU, Zi) - 6R(U, JU, Z,, JZ%)}, 

and the result is obtained from Lemma 4.1. 

For an arbitrary null vector U, if JU = &U the result is obvious. In the 
case of JU # fU, we can choose a suitable sequence of null vectors {Un}nE~ 
approximating the null vector U, with each U, satisfying (i) in Lemma 4.2 and 
the result is obtained after passing to the limit. q  
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Previous lemma suggests the definition of the following symmetric bilinear form 

(4.7) cp(X, Y) := p(X, Y) - p(JX, JY) - 3p”(X, Y) + 3p”(JX, JY). 

Note that cp(JX, JY) = -cp(X, Y) and, moreover, cp(U, U) = (2n + 4)cu for all 
null vectors U, according to (4.3). 

In what follows, RI will denote the curvaturelike function obtained from F, 
for ‘p defined by (4.7). N ow, we state the main result of this section 

Theorem 4.4. Let (M2n,g, J) b e an almost para-Hermitian manifold. Then M 
is isotropic if and only if 

(4.8) R’ = - 
7 - 37* 

(n+l)(n+2)Ro+ n:2’l 

PROOF. It is clear that if (4.8) holds, M is isotropic. Conversely, to show 
the necessity of condition (4.8), let us consider the curvaturelike function F = 
R- -RI. Since cp(V,U) = (2n + 4)cu, it follows that p(V, JU)JU + i&+2) 
Jfi(U, JU)lJ = 0, and thus the associated curvaturelike function F’ must be a 
multiple of Ro at each point. Furthermore, since RI satisfies (3.4), it must be 
16Ri = R:, which shows that R’ - &RI = CRo. What remains to do is to 
determine the function C. 

We proceed in the following way. Since R’ = CR0 + &RI, if r’, ri and 

70 denote the scalar curvatures of R’, RI and Ro respectively, it must be 7’ = 
Cre + &ri. A straightforward calculation shows that 7’ = 4(r - 37*), ri = 

8(n+ l)(r - 37*) and re = 4n(n+ 1). Thus C = - (r - 37*) 

the proof. 

(~ + I)(n + 2), which finishes 

0 

As a consequence of (4.3) and (4.8), a necessary and sufficient condition for an 
isotropic almost para-Hermitian manifold to be of pointwise constant paraholo- 
morphic sectional curvature is obtained in terms of the tensor field cp defined in 
(4.7). 

Corollary 4.5. An isotropic almost para-Hermitian manifold has pointwise con- 
stant paraholomorphic sectional curvature if and only if the symmetric bilinear 
form cp is a multiple of the metric tensor at each point. 

PROOF. If ‘p is a multiple of the metric g, then cu vanishes identically for all 
null vectors as a consequence of (4.3) and hence the result follows from Theorem 
S.l(iii). Conversely, if H is constant at each point, it must be cu = 0 forall null 
U and hence, cp(U, U) = 0 for all null U. Now, that ‘p is a multiple of the metric 
is obtained from [N, Lemma.A]. q  
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Also, the following is obtained as a consequence of previous theorem. 

Theorem 4.6. Let (M,g, J) be a connected isotropic para-KChler manifold. As- 
sume the scalar curvature to be constant and the Ricci operator diagonalizable. 
Then, 

(a) M is a space of constant paraholomorphic sectional curvature, or 
(b) M is locally zsometric to a product Ml x M2 of para-Ktihler manifolds of 

constant paraholomorphic sectional curvature c and -c respectively. 

PROOF. If (M,g, J) is a para-Kahler manifold the Ricci tensors p and p* satisfy 
p = -p* and therefore r = -r*. Then, the symmetric bilinear form ‘p defined in 
(4.7) reduces to (p(X,Y) = 8p(X,Y). Also, since R’ = 16R, (4.8) takes the form 

R=P4(n+l;(n+2)Ro+ 
1 

2(n + 2) R1’ 

First of all, we will show that an isotropic para-Kahler manifold is locally 
symmetric if and only if the scalar curvature is constant. The necessity is clear. 
Therefore, we will show the converse. By the second Bianchi identity, we have: 

0 = qx,Y,z)vZbK WP(Y T) - !7K WP(X, T) + P(X, WSK T) 
-P(Y WdX, T) + s(X, JWP( JY, T) - dy, JWP( JX, T) 
+4X, JWd JY T) - P(K JWd JX, T) 
+%(X, JO4 Jw, T) + +(X, JYM JW T)), 

where a(X,y,z) denotes the cyclic sum over 2, X, Y. 
Let {ei, . , ezn} be an orthonormal local frame. Putting 2 = T = ei, multi- 

plying by si = g(ei, ei), and taking the sum over i = 1,. . . ,2n one obtains: 

0 = (2n + 3) {(Vxp)(Y 2) - (VYP)(~, 41 - (VJXP)(~, J.4 

+(VJYP)(~, JZ) + W~JZP)(~, JY) + g(X, Z)~&~(Veipl(Y, ei) 
i=l 

+g(X, JZ)F@,ip)(JY ei) + g(Y, Z)F&i(Veip)(X, et) 
i=l i=l 

-g(Y JZl~E,(Veip)(JX, ei) + 2g(X, JY)Fei(V,,p)(JZ, ei) : 
i=l i=l 

Since scalar curvature is constant, it follows (see for example [Ne, pag.881) that 
(divp)(X) = 0 f or all vector fields X. Using this fact in the expression above we 



292 BONOME, CASTRO, GARCAA-Rio, HERVELLA, VAZQUEZ-LORENZO 

have: 

(4.9) 
0 = (2n + 3) {(VYP)(X> 2) - PXPIK 41 

\ I 

4VJYP)(X, J-q + (VJXP)(Y, J-q - w7JZP)(X, JY). 
It follows from (3.4) after some calculations that the Ricci tensor of a para-- 

Kahler manifold satisfies (Vxp)(Y, JZ) + (Vyp)(Z, JX) + (Vzp)(X, JY) = 0. 
Then, it follows from (4.9) that (V~zp)(x, JY) = 0, which shows that the Ricci 
tensor is parallel, and therefore that the manifold is locally symmetric by (4.8). 

Since M is locally symmetric and the Ricci tensor is diagonalizable, the eigen- 
values of the Ricci operator are constant and the corresponding eigenspaces define 
parallel distributions on M. Therefore, M is locally a product of Einstein spaces. 
Furthermore, since the integral manifolds of those distributions are totally geo- 
desic, they are para-Kahler manifolds of constant paraholomorphic sectional cur- 
vature. Therefore, M is locally a product Ml(q) x . . x Mk(ck) of para-Kahler 
manifolds with constant paraholomorphic sectional curvature. 

Now, if the number of factors reduces to one, the case (u) is proved. To 
finish the proof, we will show that M is locally flat or the number of factors is 
exactly two, obtaining (b). Let us suppose that M = Ml(cl) x Ms(cs) x Mz(c3). 
There are null vectors X = (Xi,Xs,O), Y = (Yi,O,Ys) and 2 = (Zi,2=2,2s). 
Using the isotropy condition with X and Y it follows that cl = -cp = -cs. 
Hence, M is locally a product Ml(c) x Mz(-c) x Ma(-c). Once again, using the 
isotropy condition with Z it follows that c = 0, which shows that M is locally 
flat. Analogously, it is shown that M is flat if the number of different eigenvalues 
of the Ricci operator is greater than two. In the case of two distinct eigenvalues, 
(b) is obtained proceeding as above. 0 

Remark. The assumption in previous theorem on the diagonalizability of the Ricci 
tensor cannot be removed as shown in Example 6.6. 

Remark. Note that the special significance of being M para-Kahler in the theorem 
above comes from the fact that the curvaturelike function R’ (which coincides 
with the curvature tensor R of M) satisfies the second Bianchi identity. This last 
property cannot be assumed to be satisfied by R’ in general. 

To close this section, we state a similar result to Theorem 4.6 for the general 
case of an isotropic almost para-Hermitian manifold. 

Theorem 4.7. Let (M,g, J) b e a connected isotropic almost para-Hermitian man- 
ifold with parallel bilinear form ‘p. If the operator Qv associated with ‘p (cp(X, Y) = 
g(Q,+,(X), Y)) is diagonalizable, then 
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(a) M has constant paraholomorphic sectional curvature, or 
(b) A4 is locally zsometric to a product M = Ml(c) x kfz(-c) of two almost 

para-Hermitian manifolds of constant paraholomorphic sectional curvature. 

PROOF. As in the previous theorem, the eigenspaces of Qv define parallel distri- 
butions on M and the result is obtained in an analogous way. Furthermore, note 
that the paraholomorphic sectional curvature is globally constant on each factor 
of the decomposition since the parallelizability of Qv ensures the constancy of the 
scalar curvature T - 3~* (see Proposition 3.4). 0 

5. BOUNDEDNESS ON THE PARAHOLOMORPHIC SECTIONAL CURVATURE 

The sectional curvature of a Riemannian manifold is a real function defined 
at each point m E M on the Grassmannian of two-planes, Gz(T,M). Since 
Gp(T,M) is compact, it follows that K is bounded at each point for positive def- 
inite metrics. However, the sectional curvature of a semi-Riemannian metric is 
bounded if and only if it is constant [Ku], [N] ( see also [B-C-GR-H, Th.2.11, [Kup]). 
The aim of this section is to study some boundedness conditions on the paraholo- 
morphic sectional curvature of almost para-Hermitian manifolds. 

Theorem 5.1. Let (M2n, g, J) be an isotropic almost para-Hermitian manifold, 
n > 3. The paraholomorphic sectional curvature is pointwise constant if and only 
if the curvature of nondegenerate paraholomorphic planes in < (2, JZ} >I is 
bounded from below or from above for all nonnull vectors Z. 

PROOF. Let X be a spacelike unit vector, and consider the paraholomorphic plane 
7rI = < {X, JX} >. Let 7r2 = < {Y, JY} > be a nondegenerate paraholomorphic 
plane in T,M such that < {X, JX} > _L < {Y, JY} > and assume that g(X,X) 
= 1 = -g(Y, Y). Then XX + PY and PX + XY are unit spacelike and timelike 
vectors for X2 - p2 = 1. 

Since n 2 3 and the subspace < {X, JX,Y, JY} > is nondegenerate, there 
exists a nondegenerate paraholomorphic plane < {Z, JZ} > in the orthogonal 
complement < {X, JX,Y, JY} >I. Therefore, 7rs = < {XX+pY, J(XX+pY)} > 
and 7r4 = < {pX + XY, J(pX + XV)} > are nondegenerate e paraholomorphic 
planes in < {Z, JZ} > I. Since we assume that the paraholomorphic sectional 
curvature is bounded from below on paraholomorphic planes in < {Z, JZ} >I, 
there exists N such that 

(5.1) N 5 H(‘r3) = -R(AX + PY, J(XX + PY), XX + /JY, J(XX + PY)), 
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and 

(5.2) N i H(7r4) = --R(pX + XY, J(pX + XY), I.Lx + XY, J(I.LX + XY)). 

Since g(X,X) = 1 = -g(Y,Y), U = X f Y is a null vector and= using that 
M is isotropic, 

R(XfY,J(XfY),XfY,J(XrtY))=O. 

Linearizing previous expression, it follows that the functions G and L defined in 
(3.1) and (3.2) respectively satisfy G(X, Y) = -G(Y, X) and L(X, Y) = -R(X, JX, X, JX: 
-R(Y, JY, Y, JY). Hence, since X2 -p2 = 1, (5.1) and (5.2) become 

iv 
(5.3) 

I X2{R(Y, JY,Y, JY) - R(X, JX,X, JX)} - R(Y, JY,Y, JY) 

--XpG(X, Y) 

and 

N 
(5.4) 

< X2{R(X, JX,X, JX) - R(Y, JY,Y, JY)} - R(X, JX,X, JX) 

+XpG(X, Y), 

respectively, for all X, p with X2 -p2 = 1. 
These expressions also hold if we replace p by -p, which easily implies that 

H(X, JX, X, JX) = R(Y, JY, Y, JY). Thus, we conclude that H(X) = H(Y) 
whenever < {X, JX} > I < {Y, JY} >, with g(X, X) = 1 = -g(Y, Y). 

Now the pointwise constancy of the paraholomorphic sectional curvature fol- 
lows in a similar way as in Theorem 3.1. 0 

In the general case, if M is not assumed to be isotropic, we have the following 

Theorem 5.2. Let (M2n,g, J) be an almost para-Hermitian manifold, with n 2 
3. The paraholomorphic sectional curvature is pointwise constant if and only if the 
curvature of nondegenerate paraholomorphic planes in < (2, JZ} >I is bounded 
from below and from above for all nonnull vectors Z. 

PROOF. Let U be a null vector. If JU = HI, it follows trivially that the restric- 
tion of the curvature tensor R(U, JU, U, JU) = 0. Next, assume U to be in the 
case (i) of Lemma 4.2. Since n 2 3, let Z be a spacelike vector in < {U, JU} >l. 
Since U is a null vector in < {Z, JZ} >I, and the restriction of the metric g to 

< {Z, JZ} >I is nondegenerate with signature (n - 1,n - l), we can choose a 
null vector V in < {Z, JZ} >I with g(U, V) = - $. Thus, for all real numbers 

U+tV 
t>O,A, = ~ 

fi 
is a unit timelike vector. 
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If the curvature of nondegenerate paraholomorphic planes in < (2, JZ} >I is 
bounded by N, then for the plane rt = < {At,J(At)} > we have ]H(rrt)] 5 N, 
and therefore 

]R(U + tv, J(U + tv), u + tv, J(U + tv))] 5 PN 

for all t > 0. Taking limits when t -+ 0, we obtain R(U, JU, U, JU) = 0. 
Now, if U is an arbitrary null vector, proceeding as in Lemma 4.2 (ii), it is 

possible to approximate it by a sequence of null vectors satisfying condition (i) 
in the mentioned lemma. Then, it follows that R(U, JU, U, JU) = 0 just passing 
to the limit, and thus, M is isotropic. Therefore, the pointwise constancy of H 
follows from previous theorem. 0 

6. EXAMPLES 

In this section we will show some examples of almost para-Hermitian manifolds. 
Special attention is devoted to the examination of those being isotropic and of 
pointwise constant paraholomorphic sectional curvature. We refer to [Cr-F-G] and 
the references therein for more examples of almost para-Hermitian manifolds. 

Example 6.1. The paracomplex projective models P,(B). 

They were introduced by Gadea and Montesinos in [G-MA11 and they are 
the models of para-Kahler manifolds of nonvanishing constant paraholomorphic 
sectional curvature. (See [Cr-F-G, sect.61 and [G-MA2]). 

Example 6.2. Non-flat almost para-Kahler manifolds with vanishing paraholo- 
morphic sectional curvature. 

The tangent bundle, TM, of any Riemannian manifold (M,g) is naturally 
endowed with an almost para-Kahler structure (J, 5) defined by Cruceanu, [Cr], 
as follows: J(X* + Yv) = XH -Y” and 3(XH + Yv, UH +W”) = g(X,W)’ 
+ g(Y,U)“, where Xv and XH denote the vertical and horizontal lifts of the 
vector field X to the tangent bundle with respect to the metric connection of 
(M, g) [Y-I]. It . 1s immediate to recognize that G coincides with the complete lift, 

SC7 of g and moreover, that the 2-form R defined by (J, 5) is closed. 
The curvature of the semi-Riemannian manifold (TM, gc) was recently studied 

in [CV-GR-VA]. For sake of completeness, we state the following: 

Lemma 6.3. [CV-GR-VA, Lemma.2.11 Let (M,g) be a Riemannian manifold, 
gc the complete lift of g, and let & denote the curvature tensor of gc at a point 
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[ E TM Then 

& (XY + q7 xy + Yz”) (X,” + YsH) 

= {%(E)(Yl? Y2)Y# + W$Wl, y2)Y3]” 

+ @~(E)(~i>~)fi + &(&-hX2)% + %(#l, y2)&}’ 

for all Xi, Yi7 i = 1,2,3, vector fields on M. 

Now, if Z is a tangent vector to TM at a point < E TM, decompose it into 
its vertical and horizontal components 2 = XH + Y”. Then, it follows from pre- 
vious Lemma that fi(Z, JZ, 2, JZ) = -4k(XH, Y”, Y”, XH) = 0, which shows 
that the paraholomorphic sectional curvature of (TM, gc, 5) vanishes identically. 
(Note that, however, (TM,g”) is not flat unless M be so. Moreover, in that case, 
(TM, gc, J) is a locally flat para-Kahler manifold). 

Example 6.4. Isotropic almost para-Hermitian manifolds but not of constant para- 
holomorphic sectional curvature. 

Let (MI, gi , Ji) and (Mz, gs, 52) be two almost para-Hermitian manifolds of 
constant paraholomorphic sectional curvature c and -c respectively. Then, the 
product manifold M = MI x Mz endowed with the metric g((Xi, X2), (Yi, Ys)) 

= 91(Xl,K) + 92(X2rY = 2 and the almost paracomplex structure J(Xi,Xz) ) 
= (JiXi, J2Xs) is an almost para-Hermitian manifold. Now, proceeding as 
in [B-C-GR-H, Example.3.11, it is easy to show that M is an isotropic manifold 
with nonconstant paraholomorphic sectional curvature unless c = 0. Moreover, 
note that M is para-Kahler if and only if both factors are so. 

Example 6.5. Locally conformal manifolds to isotropic almost para-Hermitian 
manifolds. 

Let (Ml, gi, Ji) and (MS, gs, Js) be two locally conformal almost para-Hermi- 
tian manifolds (i.e., there exists a local diffeomorphism 4 from Ml to n/l, such 
that $* 51 = J&* and qFg2 = e2ugi for some real function r~ defined on Ml). 
Then, there exists a correspondence between null vectors on Ml and M2, and 
moreover, it follows after some calculations that &(&U, J&U, q&U, Jz&U) = 
e20 Ri(U, J,U, U, JlU) for all null vectors U on Ml. Therefore, isotropy is a 
conformally invariant property of almost para-Hermitian manifolds. 

Example 6.6. The tangent bundle of a paracomplex space form. 
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Let (M, g, J) be an almost para-Hermitian manifold. The horizontal lifts (with 
respect to the metric connection of g) of the metric, gH, and the almost paracom- 
plex structure, JH, induce an almost para-Hermitian structure on TM. (Note 
that, since Vg = 0, then gH = gc. Al so, if (M,g, J) is a para-Kahler manifold, 
then JH = Jc since VJ = 0 and, moreover, it follows that (M,g, J) is a para-- 
Kahler manifold if and only if (TM, gH, JH) . 1s so). Using the results in Lemma 
6.3, we have the following 

Lemma 6.7. Let (M,g, J) b e an almost para-Hermitian manifold. Then, (TM, 
gH, JH) is isotropic if and only if (M, g, J) is of pointwise constant paraholomor- 
phic sectional curvature and g((VcR)(X, JX)X, JX) = 0 for all vectors X on 
M. 

PROOF. Let U E TE(TM) b e a null vector, and take X, Y E T=cQ(M) orthogonal 
vectors such that U = XH + Yv. Then 

(6.1) 
ii@, JHU, U, JHU) = g((V$)(X, JX)X, JX)v 

+2g(R(X, JX)X + JR(X, JX)JX, JY)v. 

If (TM,gH, JH) is isotropic, since X H is a null vector for each vector field X 
on M, we have @XH, JHXH,XH , JHXH) = 0 , and hence, from (6.1) 

(6.2) g((V$?)(X, JX)X, JX)v = 0. 

Next, take {X,Y} orthogonal vectors on M. Then U = XH + Yv is a null 
vector on TM and thus fi(U, JHU,U, JHU) = 0. Hence, from (6.1) and (6.2) it 
follows that g(R(X, JX)X + JR(X, JX) JX, JY)v = 0, and thus R(X, JX)X + 
JR(X, JX)JX N JX. This shows that the paraholomorphic sectional curvature 
is pointwise constant on M as an application of Theorem 3.1. 

Conversely, let U be a null vector, U E Tt(TM) and decompose it as U = XH 

+ YV, with X,Y E T?r(c) (M). Since the paraholomorphic sectional curvature 
is pointwise constant, it must be g(R(X, JX)X + JR(X, JX)JX, JY)v = 0. 
Hence, R(U, JHU, U, JHU) = 0, since we assume that g((VcR)(X, JX)X, JX)’ 
= 0. This shows that (TM, gH, JH) is isotropic. 0 

Further, note that the paraholomorphic sectional curvature of (TM, gH, JH) 
is not constant unless be flat. 

Remark. In the special case of being M a para-Kahler manifold, it follows that 
(M, g, J) is a para-Kiihler manifold of constant paraholomorphic sectional cur-vu- 

ture c if and only if (TM, gH, JH) is an isotropic para-Kahler manifold. Note 
also that (M, g) is locally symmetric if and only if (TM, gH) is SO, which shows 
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that the tangent bundle of any paracomplex space form is an isotropic locally 
symmetric para-Kahler manifold. However, (TM, gH, JH) does not correspond 
to any of the cases listed in Theorem 4.6. This is due to the nondiagonalizability 
of the Ricci operator corresponding to (TIM, gH) unless be Ricci flat [CV-GR-VA, 
Thm.2.21, which shows the impossibility of removing that condition in Theorem 
4.6. 

Erample 6.8. Locally symmetric isotropic almost para-Hermitian manifolds with 
nonparallel Q,-operator. 

Let (R262n+2 ,fi, J) be the (2n + 2)-real space with the standard para-Kahler 
structure. Let Hz+l (c) be the pseudohyperbolic space of constant sectional 
curvature c < 0, [Ne]. Let N denote the timelike unit normal vector field and 6 
= J(N). 

For each vector X on H$+l (c) decompose JX = 4X + g(X, <)N in tangential 
and normal components, where 4X denotes the tangential component of J(X). 
Now, if q(X) = g(X, [), it follows that $2 = Id + 77 @ < and n(t) = 1. Moreover, 
if g denotes the induced metric on Hinfl (c) it immediately follows that 

g(4X, 4Y) = -s(X, Y) + rl(X)77(Y), 

which shows that Hz+’ (c) has an induced almost paracontact structure [K]. 

Next, let (Mi, &, Ei, qi,si), i = 1,2 denote the pseudohyperbolic spaces of 
dimension 2p + 1 and 2q + 1 with the structures (&, Ez, vz, gi) constructed as 
above. Let M be the product manifold, M = H?+‘(c) x Hi”+‘(c) and consider 
the para-Hermitian structure 

J(Xl,XZ) = (41X1 + 712(X2)&r 42x2 + rll(Xl)J2), 

g[(X1,X2), (X,y2)1 = 91(Xl,yl) - g2(X2,y2). 

Now, it is a straightforward calculation to show that the product manifold 
(M, g, J) is an isotropic para-Hermitian manifold. Further note that M is a locally 
symmetric space, and hence, that the Ricci operator is parallel. However, the QPP 
operator (g(QqX,Y) = cp(X,Y), cp defined by (4.7)) is not parallel although it 
has constant eigenvalues, 4(p + 3)c, 2(p - q)c and 4(q + 3)c with multiplicities 2p, 
2 and 2q respectively. 
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