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SUPPORTS OF QUASI-MEASURES 
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ABSTRACT. We define and investigate a notion of support for quasi-measures 
that generalizes the usual notion of support for Bore1 measures. Also, for 
certain spaces we prove a decomposition theorem that implies, for exam- 
ple, that a space that carries a simple quasi-measure with full support is 
connected and has no cut points. 

1. INTR~DU~TI~N 

All spaces under consideration are compact Hausdorff. By 3 = 3(X), we will 
denote the collection of closed subsets of a space X. We use A = d(X) to denote 
those subsets of X that are either closed or open. A quasi-measure on X is 
a real-valued, finite, non-negative set-function p defined on 3 that satisfies the 
following three axioms: 

1. Whenever F, F’ E 3 and F C F’, then p(F) 5 p(F’). 
2. If F, F’ E 3 and F n F’ = 0, then p(F U F’) = p(F) + p(F’). 
3. If F E 3 and E > 0, then there is an F’ E 3 such that F’ fl F = 0 and 

P(F) + P(F’) > P(X) - 6. 
Given a p satisfying these axioms, one can extend p to a set-function on d by 
setting p(U) = p(X) - p(X \ U) f or every open U & X. The /I so obtained will 
satisfy the quasi-measure axioms given by Aarnes in [Al], where quasi-measures 
were first introduced: 

1. Whenever A E A, then p(A) + p(X \ A) = p(X). 
2. If Al, Aa E A and Al E AZ, then p(A1) 5 I. 
3. If Al, AZ E A, AI u AZ E A, and Al n A2 = 0, then p(A1 U AZ) = 

P(AI) + p(A2). 
4. If U E A is open, then p(U) = sup{p(F) : F is closed and F G U}. 
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We will use the closed set version (which is due to Wheeler [W]) because it is more 
convenient for our purposes, although we will always consider quasi-measures to 
be defined on both open and closed sets. For ease of notation and to avoid 
trivialities, we will also assume that a quasi-measure satisfies p(X) > 0. Thus, 
for the purposes of this paper, the function that is identically equal to zero on 
d(X) is not a quasi-measure. 

It is important to emphasize that a quasi-measure does not necessarily extend 
to a Bore1 measure. Indeed, as Wheeler shows in [WI, a quasi-measure extends 
to a Bore1 measure if and only if it is subadditive. The first examples of quasi- 
measures that are not subadditive were given by Aarnes in [Al]. 

In this paper, we will define a notion of support for quasi-measures. Recall 
that for a Bore1 measure X, the support of X is the closed set n{K G X : K is 
closed and X(K) = 1) = X\lJ{U c X : U is open and X(U) = 8). This definition 
of support is unsatisfactory when applied to quasi-measures. For example, let X 
be the unit square and 1-1 any proper simple quasi-measure on X. Then for every 
x E X, there is an open U 3 x such that p(U) = 0. So in the usual sense, the 
support of p is empty, even though X is compact and p is two-valued. 

After we give a more useful notion of support for quasi-measures, we will prove 
some basic facts about supports, investigate the relationship between supports 
and connectivity, and prove a theorem on decompositions of quasi-measures. The 
decomposition theorem is a measure-theoretic result that also allows one to deduce 
topological information about the underlying space. For example, if there is a 
fully supported simple quasi-measure on X, then X must be connected and (if 
also locally connected) no closed O-dimensional set disconnects X. Together with 
Example 3, this indicates that, unlike Bore1 measures, proper quasi-measures are 
a global phenomena that interact with the connectivity of X in subtle ways. 

Before continuing, we pause to collect some of the terminology we will use. 
A measure is a subadditive quasi-measure. By results from [WI, such a quasi- 

measure extends uniquely to a Bore1 measure on X, so the abuse of notation is 
minor. 

A proper quasi-measure is a quasi-measure with no measure beneath it. I.e., if 
v is proper, X is a measure, and 0 < X < V, then X = 0. By Grubb’s decomposition 
theorem (see [GL]), every quasi-measure decomposes uniquely into the sum of a 
measure and a proper quasi-measure. 

An extremal quasi-measure is a normalized quasi-measure p such that whenever 
,Q is a convex sum of normalized quasi-measures 1-11 and ~2, then p = ~1 = ~2. 
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A quasi-measure is simple if it takes only the values 0 and 1. Clearly, a simple 
quasi-measure is extremal, but the converse fails in general (see [A2]). 

Let f : X t Y be continuous and let 1-1 be a quasi-measure on X. Then the 
image of p under f is the quasi-measure p* on Y defined by p*(F) = ~(f-l(F)) 
for each F E F(Y). 

Given a space X, let X* denote the collection of all simple quasi-measures on 
X. For U G X open, let U* = {p E X* : p(U) = 1). Give X’ the topology 
generated by using the collection of all U’ for U open in X as a subbasis. With 
this topology, X* is compact Hausdorff and (after identifying points of X with 
point-masses) X is a closed subspace of X*. See [A21 for more details. 

We will also use Aarnes’ notion of solid set function (see [A3]) to define quasi- 
measures on spaces that are connected and locally connected. 

2. THE DEFINITION OF SUPPORT 

Definition 1. Let p be a quasi-measure on a compact Hausdorff X. 

1. A closed set K c X supports p if whenever F E F’, then p(F f~ K) = p(F). 
2. S(p) = {K : K supports p}. 

Clearly X supports p, so that S(p) is never empty. Also, if K supports p, 
then p(K) = p(X). G iven any K E 3, define p 1 K = p 1 3(K); i.e., p 1 K is 
1-1 restricted to the closed subsets of K. Notice that because quasi-measures are 
not generally subadditive, p t K is not always a quasi-measure-set p equal to 
Aarnes measure (see Example 1) and K equal to the boundary of the unit square 
for a counter-example. 

Lemma 2.1. Let p be a quasi-measure on X and K E 3. Then K E S(p) if and 
only if /I t K is a quasi-measure and p(K) = p(X). 

PROOF. [+I Suppose K E S(p). We already have p(K) = p(X). Clearly, p / K 
satisfies axioms 1 and 2, so we need only check 3. Fix a closed F G K and 
an E > 0. Because ~1 is a quasi-measure, there is a closed C C X such that 
p(F) + p(C) > p(X) - E. Set F’ = C fl K. Because K supports p, we have 
p(F’) = p(C), so p(F) + p(F’) > p(X) - E = p(K) - E. 

[+I Suppose p(K) = p(X) and p t K is a quasi-measure. Fix a closed F s X 
and an E > 0 arbitrary. There is a closed F’ C K disjoint from F f~ K such that 
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/J(F n K) > /J(K) - p(F’) - E. Thus, 

p(F) 2 p(F n K) > p(K) - p(F’) - 6 

= /J(X) - p(F’) - E 

= p(X \ F’) - E 

2 CL(F) - 6. 

Because e > 0 was arbitrary, we have p(F) = p(F n K), so K supports p. 0 

Lemma 2.2. If 1-1 is a quasi-measure on X, then S(,LL) is closed under finite 
intersections. 

PROOF. Clearly, it suffices to show that if K and K’ are in S(p), then so is KnK’. 
So fix K, K’ E S(p) an aclosed F. Thenp(Fn(KnK’)) =p((FnK)nK’) = d 

P(F n K’) = P(F), where the second equality follows from K E S(p) and the 
third from K’ E S(p). q  

Definition 2. Let p be a quasi-measure on X. The support ofp is the closed set 

suppt(l.l) = n S(p). If suppt(/J) = X, we say that p is fully supported. 

Notice that because X is compact and S(p) is non-empty and closed under 
finite intersections, suppt(p) is always non-empty. 

Theorem 2.3. Suppt(p) supports /I. 

PROOF. Set S = suppt(p). Suppose F & X is closed and, by way of contradic- 
tion, p(F n S) < p(F). Let U & X be open with F n S g U and p(U) < p(F). 
Notice (F \ U) n 5’ = 0; b ecause S(p) is closed under finite intersections and 
F \ U is compact, there is a K E S(p) such that (F \ U) n K = 0. But then 
p(F) = p(F n K) 5 p(U) < p(F), a contradiction. 0 

Thus, the support of a quasi-measure p is the smallest closed set S such that 
p(S) = p(X) and 1-1 1 S is still a quasi-measure. This is clearly a generalization 
of the usual notion of support for Bore1 measures. 

3. BASIC RESULTS 

We begin this section with an example. 

Example 1. Let X be the unit square, 8X its boundary, and p the point (f , i). 
Aarnes measure on X is the quasi-measure determined by the solid set-function 

p(A) = 
0 ifAndX=0, 

1 if either dX C A or p E A and A n dX # 0. 
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We claim that p is fully supported. Let U be any non-empty open subset of X; we 
will show that X \ U does not support p. If necessary, we can shrink U to an open 
disk with p $Z U and U n dX = 0. Let C be a line segment with one endpoint at p 
and the other on dX that intersects U. Then p(C) = 1, but p(C fl (X \ U)) = 0 
(both components of C n (X \ U) h ave measure 0), so X \ U does not support p. 

Similarly, one can show that on the unit square, any of Knudsen’s generalized 
point-masses (see [K]) are fully supported. Thus, the collection of simple quasi- 
measures with full support form a dense and connected subset of the collection 
of all simple quasi-measures on the square. 

Problem 1. In general, when is the collection of fully supported simple quasi- 
measures on X non-empty, dense, or connected as a subset of X*? 

For locally connected spaces, Theorem 5.3 provides a necessary condition for 
the existence of a simple quasi-measure that is fully supported: if there is a 
simple quasi-measure on X that has full support, then X is connected and no 
O-dimensional closed subset of X disconnects X. 

We now prove some basic results about supports of quasi-measures and how 
they behave under standard operations. We consider subspaces first. 

Lemma 3.1. If /I and u are quasi-measures on X with p extremal and Y I: 1-1, 
then u = c+, with 0 5 LY 5 1. 

PROOF. By way of contraposition, suppose that p and v are as above with u < p. 
Set CY = V(X), then ;Y and &(p - V) are normalized quasi-measures and 

.=qg +(1-a) [&-“I] I 

so that p is not extremal. 0 

Theorem 3.2. Let ,LI be a quasi-measure on X. Suppose C C X is closed and 
that p 1 C is a quasi-measure. Then suppt(p 1 C) 5 suppt(p) n C. Equality holds 
if I_L is extremal. 

PROOF. We show suppt(p) n C supports p 1 C. Let F C C be a closed subset of 
C. Then p r C(F n (suppt(p) n C)) = p(F n suppt(p)) = p(F) = p 1 C(F). 

If p is extremal, then Lemma 3.1 implies I_L 1 C = CL, so that suppt(p) n C = 

suppt(p) = suPPt(p r Cl. cl 

If p is not extremal, then the containment in the previous result may be strict, 
as the following example shows. 
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Example 2. Let X be the unit square [0, l] x [O,l]. Set Y = [0, $1 x [O,l], and 
Z = [i, 11 x [0, I]. Let dY and 82 denote the boundaries of Y and 2, respectively. 
Set py = (4, a) and pz = (i, i). Let py be Aarnes measure on Y with py and 
dY (SO that a closed solid C gets measure 1 if and only if 8Y C C or p E C and 
cnaY#0). S imilarly, let ~2 be Aarnes measure on Z with pz and 82. Let 
fy : Y -+ X and _fz : Z --+ X be the natural embeddings, and set 1-1 = & + CL>. 
Because suppt(&) = Y and suppt(p>) = Z, Theorem 3.3 below implies that 
suppt(p) = Y U Z = X. Let W = [0, i] x [0, 11. Then ~1 1 W is a quasi-measure 
and p r W = p; 1 W, but suppt(p [ W) = Y # sup@(p) n W. 

Theorem 3.3. Let 1-11 and ~2 be quasi-measures on X. Then suppt(pl + ~2) = 

suPPt(M) u suPPt(p2). 

PROOF. Suppose K supports pl +p2. Let F G X be closed. Then (pl +,u2)(Fn 
W = h+~2)(F) = N(J’)+P~(J’). So ~l(F)+112(F)-~l(FnK)-I-Lz(FnK) = 0, 

so K supports both 1-11 and 1-12. 
Conversely, suppose a closed K supports both ,ur and ~2. Let F C X be closed. 

Then (pr+pz)(FnK) = pr(FnK)+ps(FnK) = M(F)+M(F) = (M+M)(F), 
so K supports ~1 + ~2. 0 

D.J. Grubb has informed us of the next two results, and has graciously allowed 
us to include them here. 

Theorem 3.4. Let p be a quasi-measure on X and suppose f :X + Y is contin- 
uous. Then suppt(p*) C f(suppt(p)). 

The proof of this result is straightforward, but again the containment may be 
strict. For example, let p be Aarnes measure on the unit square X. Let Y be 
the quotient space obtained by identifying the closed set {$} x [0, i] to a point p 
and let f :X t Y be the induced quotient map. Then p* is a point-mass at p, so 

suPPt(p*) # f (suppt(p)). 
The next theorem, which we state without proof, uses the notation of [G]. 

Theorem 3.5. If pxlv is a product quasi-measure on XxY, then suppt(pxlv) = 

sllppt(kJ) x suppt(v). 

Since the support of a Bore1 measure is always ccc (i.e., any family of pairwise 
disjoint non-empty open subsets is at most countable), to study Bore1 measures on 
compact spaces, it suffices (roughly speaking) to study compact ccc spaces. The 
next example shows that there may be an uncountable pairwise disjoint family of 
open sets in the support of a quasi-measure. 
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Example 3. Let wi be the first uncountable ordinal. Let Y be the one-point 
compactification of the long line. I.e., Y is wr + 1 with a copy of the unit interval 
inserted between each pair of ordinals cy and a + 1. Set X = Y x [0, l] and 
8X = (Y x (0, 1)) u ((0,~~) x [0, l]), th e oundary of X. Define a quasi-measure b 
on X similar to Aarnes measure via the following solid set function: 

p(A) = 
i 

0 ifAndX=0, 

1 ifeitherdXCAor(;,k)EAandAndX#0. 

As before, suppt(p) = X, even though X is not ccc. 

By replacing wr with any uncountable cardinal in the previous example, one 
can show that there is no bound on the cardinality of a pairwise disjoint family 
of open subsets of the support of a quasi-measure. 

4. CONNECTIVITY AND SUPPORTS 

In this section, we explore some of the connections between connectivity and 
supports of quasi-measures. In the next result, the operator “dim” is Cech- 
Lebesgue covering dimension. 

Theorem 4.1. Let p be a proper quasi-measure on X. Then dim(suppt(p)) 2 2. 

PROOF. If dim(suppt(p)) 5 1, then by the results in [WI, p 1 suppt(p) is a 
measure, whence p is not proper. 0 

Lemma 4.2. Let 1-1 be a quasi-measure on X. Suppose W is a proper clopen 
subset of suppt(p). Then p r W is a quasi-measure and 0 < p(W) < p(X). 

PROOF. Let W be a proper subset of suppt(p) (so that 0 # W # suppt(p)) that 
is both open and closed as a subset of suppt(p). Then W’ = suppt(p) \ W is also 
a proper clopen subset of suppt(p) and p(X) = p(suppt(ti)) = CL(W) + I. 

To show that p 1 W is a quasi-measure, we need only check 3 of Wheeler’s 
axioms. So fix E > 0 and a closed F & W. Because F is closed as a subset of 
X, there is a closed C C X such that F n C = 0 and p(F) + p(C) > p(X) - E. 
Without loss of generality, we may assume that W’ C C. Then 

/i(F) + p(C n W) = p(F) + p(C n W) + ,Q(C n W’) - P(C n W’) 

> P(F) + AC n (wvt(~))) - AW’) 

= P(F) + P(C) - AW’) 

> P(X) - e - P(W’) 

= p(W) -E. 
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Because 1-1 [ W is a quasi-measure and W does not support p (it is a proper 
subset of suppt(p)), by Lemma 2.1 we must have p(W) < p(X). By symmetry, 
we also have p(W) < p(X), so in fact 0 < p(W) < p(X). 0 

Suppose C 2 X is closed and ,LL 1 C is a quasi-measure. We can consider 
p r C to be a quasi-measure on X with support contained in C by defining 
p 1 C(F) = ~(8’ n C) for all F E FT. This is equivalent to embedding C in X in 
the natural way and then taking the image of p 1 C under this embedding. We 
will use this convention freely in the sequel. 

Corollary 4.3. If suppt(p) = Cl U CZ, with Cl and CZ disjoint and closed, then 

PL=P tG+P tc2. 

PROOF. Let F & X be closed. Then p(F) = p(F n (C, U C2)) = p(F II C,) + 

P(F n C2) = p t Cl(F) + P 1 Cz(F). 0 

Corollary 4.4. If p is an extremal quasi-measure, then suppt(p) is connected. 

PROOF. By way of contradiction, suppose suppt(p) = Cl U Cz, with Cr and Cz 
disjoint non-empty closed subsets of suppt(p). By Lemma 4.2, both p(Cr) and 
CL(&) are quasi-measures strictly less than p, which contradicts Lemma 3.1. 0 

Corollary 4.5. Ifp is a simple quasi-measure, then suppt(p) is connected. 

Notice that this corollary generalizes a (trivial) property of O-l measures. The 
support of a proper quasi-measure can be very disconnected, as the following 
example shows. 

Example 4. Let X be the unit square and p Aarnes measure on X. Let Y be the 
Cantor set and let X be Haar probability measure on Y. Set v = p x 1 A; then 
by Theorem 3.5 suppt(v) = X x Y. Notice that for each y E Y, X x {y} is a 
connected component of suppt (v). 

5. DECOMPOSITIONS OF QUASI-MEASURES 

We will need the following corollary of the following lemma, which is of inde- 
pendent interest and generalizes the result (implicit in [W]) that proper quasi- 
measures vanish on O-dimensional sets. 

Lemma 5.1. Suppose p is a quasi-measure on X, W and F are closed subsets 
of X, and that W is O-dimensional. Then p(W U F) < p(W) + p(F). 



SUPPORTS OF QUASI-MEASURES 309 

PROOF. By Grubb’s decomposition theorem, we can write p = X + u, where X 
is a measure and v is a proper quasi-measure. Suppose V c W \ F is clopen-in- 
W. Then W U F = VU [(W U F) \ V], so because V is O-dimensional, we have 
Y(WUF)=~(V)+~((WUF)\V)=O+~((WUF)\V)=~((WUF)\V). 

Let V = {V : V C W \ F is closed and clopen-in-W}. Then 

F = n KW U F) \ VI, 
VEV 

and this intersection is directed. Thus, by results in [A2], we have v(F) = 
&iyv v((W U F) \ V) = Y(W U F). Therefore, 

,~(WuF)=X(wuF)+v(wuF) 

i X(W) + X(F) + v(F) 

= X(W) + v(W) + X(F) + v(F) 

= P(W) + P(F), 

where the second equality follows from the fact that v(W) = 0. 0 

Corollary 5.2. If v is a proper quasi-measure on X, W and F are closed in X, 
and W is @dimensional, then Y(W u F) = v(F) 

Suppose now that X is connected and locally connected and that W G X is 
a closed O-dimensional set that disconnects X. Write X \ W = UaEA U,, where 
the Ucl’s are the (open) connected components of X \ W. For each cy E A, set 

K, = U, U W; notice that each K, is closed and connected. 
Let v be a proper quasi-measure on X, and for each Q E A, let u, = v / K,. 

Theorem 5.3. With notation as above, each u, is a quasi-measure on K, and 
(construing the v, ‘s as quasi-measures on X) u = CaEA u,. 

PROOF. Fix CY E A; we show ua is a quasi-measure on K,. Let F C K, be closed 
and fix E > 0. We seek a closed F’ G K, disjoint from F with u(F) + u(F’) > 
u(K,) - E. 

In X, there is a closed H disjoint from F with u(F) + u(H) > u(X) - e/2. 
Set F’ = H n K, and find an open V with F U F’ U W C V and u(V) < u(F) + 
u(F’)+e/2. (This uses Corollary 5.2.) Then X = (K,\V)UVU(UPfa(Uo\V)), 
where the first and last sets in this pairwise disjoint union are closed. Also notice 
that because (K, \ V) n (F U H) = 0, we have u(K, \ V) < e/2, and that 
because UO+, Uo C X \ K,, we have u(Upza Up \ V) 5 L/(X \ KG). Thus, 
u(X) < e/2 + u(F) + u(F’) + e/2 + u(X \ Ka), so that u(F) + u(F’) > u(Ka) -E. 
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To see that I/ = CaEA v,, fix F C X closed. Then for any cy E A, Y,(F n 
K,) = v(F n K,) = Y(W U (F n K,)) = v(Ka) - v(Ua \ F), because K, = 
(U, \ F) U (W U (F n Kcr)), and this union is disjoint. 

Also notice that X = UaEA U, u W, so V(X) = CaEA v(U~) = CaEA v(U,) + 

0 = C&4 ZGJ,) + v(W) = ILyE,4 v(KC& 
Thus, 

c v@‘) = c @‘nK,) 
CXEA CXEA 

= c 4%) - @a \ F) 

QEA 

= v(X) - c GJa \ F) 

QEA 

= v(X) - c $Ja \ (W u F)) 

CYEA 

= V(X) - Y(X \ (W u F)) 

=v(WUF) 

= v(F), 

where the fifth equality follows from [A21 and the fact that the U, \ (F U W)‘s 
are pairwise disjoint. 0 

Corollary 5.4. With notation as above, if p is any quasi-measure on X that 
vanishes on W, then p = CaEA p r K,. 

PROOF. Use Grubb’s decomposition theorem to write p = X + V. The preceding 
result for measures is trivial, so the result follows immediately. Cl 

Corollary 5.5. With notation as above, if Y is a proper extremal quasi-measure, 
then there is an Q E A such that suppt(v) C K,. Moreover, suppt(v) cannot be 
disconnected by the removal of any closed O-dimensional set. 

Theorem 5.3 and its corollaries are sharp, in the sense that “W is O-dimensional” 
cannot be replaced by “W is l-dimensional”. This can be seen by letting p be 
Aarnes measure on the square and setting W = {$} x [0, 11. 

We now illustrate the above results with a concrete example. 

Example 5. Let Y = {(z, y) : x2 + y2 = l}, 2 = {(x, y) : (x - 2)2 + y2 = l}, and 
X = Y u 2. I.e., X is the union of two tangent circles in the plane. Because the 
point (0,l) disconnects X, any quasi-measure on X is the sum of a quasi-measure 
with support contained in Y and a quasi-measure with support contained in Z. 
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We conclude with a construction that suggests the possibility of a represen- 
tation theory for quasi-measures based on connectivity of supports. Let /1 be 
a quasi-measure on X and {K, : a E A} the set of connected components of 
suppt(p). Let Y be the quotient space obtained from X by identifying each K, 
to a point. Let rr : X -+ Y be the associated quotient map, and for convenience, 
identify 7r(KLY) with (Y, so that 7r(suppt(p)) = A. Then as in [GL], Y is compact 
Hausdorff and A is O-dimensional. Let ,u* be the image of p under r and write 
p* = X + Y, where X is a measure and Y is proper. Then because suppt(p*) s A 
and A is O-dimensional, we have u = 0, so p* = X. In view of Lemma 4.2, X is 
essentially a measure on the Boolean algebra of clopen subsets of suppt(p). 

We illustrate this construction with some examples. Suppose that suppt(p) = 

U C,, with the Cn’s pairwise disjoint, closed, and connected. Then X is a 
nEW 
countable sum of weighted point-masses at the points of A. If p is the product 
quasi-measure described in Example 4, then X is essentially Haar measure on the 
Cantor set. Notice that in both of these examples, we can represent I_L as an 
integral with respect to X of an appropriate function defined on A. 

Problem 2. With the notation described above, when is it possible to find, for 
each Q E A, quasi-measures pUn on K, so that if for each F E 3, gF is defined on 

A by SF(a) = p,(F n K,), then 

6. CODA 

After this paper had been submitted for publication, Bob Wheeler has informed 
the author of the following result which follow easily from the results presented 
in this paper. He has graciously consented to allow us to include it here. 

Theorem 6.1. Suppose Y 2 X is closed and the boundary of Y is O-dimensional. 
Then whenever I_L is a quasi-measure on X, h t Y is a quasi-measure on Y. 

Wheeler has also noticed that the fact that a quasi-measure p on X is a measure 
iff p 1 F is a quasi-measure for all closed F C X can be used to provide an 
alternate proof of the following theorem first proved by Aarnes in [A2]. 

Theorem 6.2. If p is a measure on X and X is a quasi-measure on X that 
satisfies 0 5 X 6 p, then X is a measure on X. 
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