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COORDINATIZATION FOR FELL BUNDLE ALGEBRAS 

IGOR FULMAN 
COMMUNICATED BY VERN I. PAULSEN 

ABSTRACT. Let C,t (E) be the reduced C*-algebra generated by a Fell bundle 
E over an r-discrete principal groupoid. We show that each element of C: (E) 
is represented by a continuous section of E. Also, the Coordinatization 
Theorem proved in this paper gives necessary and sufficient conditions for 
an abstract C*-algebra A to be isomorphic to C;(E) for some Fell bundle 
E. 

1. INTRODUCTION 

In this paper we study C*-algebras arising from Fell bundles over groupoids, 
as defined in [5, 2, lo]. 

A good example of such bundle is the bundle over the set { 1,. . . , m}2, with 
the fiber above (i, j) consisting of matrices of size Ici x lcj. See the picture for 
m = 3, ICI = 2, IQ = 1, kg = 3: * * * * * * * * * * * * * * * * * * is-1 * * * * * * * * * * * * * * * * * * 
For 1 5 i, j, 1 5 m, one can put: (i, j) . (j, 1) = (i, 1). At the same time, a matrix of 
the size Ici x kj can be multiplied by a matrix of the size kj x kl, and the product 
is a matrix of the size ki x kl. 
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Given such a construction, one can build the C*-algebra generated by the Fell 
bundle. In our example this is the algebra of n x n matrices, where n = x2”=, Ic, 
(on the picture above n = 6). 

The construction of the C*-algebra generated by a Fell bundle has been studied 
on various levels of generality. The best studied (see [8, 4, 3, 61) is the case where 
each fiber is a copy of the complex field, while the groupoid R is an r-discrete 
principal groupoid (see the definitions in the articles cited). This case is referred 
to as the commutative case. In this case, there is an abstract description 
of C*-algebras arising as C*-algebras built by Fell bundles. Such algebras are 
described as C*-algebras containing a so-called Cartan subalgebra (masa with 
some additional properties), or a diagonal in the terminology of Kumjian (see 
[4, 31). Another case studied in [9] (and in the measure-theoretical setting in [l]) 
is the case of so-called crossed products where each fiber is a C*-algebra. The 
most general setting (with no special assumptions about the fibers) was studied 
in [5, 10, 21. The example considered above falls into this setting. 

In Section 2 of this paper we show that, in the most general setting, each 
element of the generated C*-algebra is actually a continuous section of the Fell 
bundle, i. e. each element has “coordinates”. The algebraic operations can be 
naturally expressed in terms of the coordinates. 

In Section 3 we give an abstract description of C*-algebras arising as C*- 
algebras generated by Fell bundles in the most general setting. This description 
involves the existence of a certain subalgebra that could be called a generalized 
Cartan subalgebra or a generalized diagonal. Importance of this generalization 
of Kumjian’s theorem [4, $3, Theorem l”] can be seen from the following two 
facts: (1) not every C*-algebra possesses a diagonal (see the counter example by 
T. Natsume in [3, Appendix]), therefore not all C*-algebras fit into the commu- 
tative setting; (2) even for the algebras that have diagonals and therefore can be 
represented in the commutative setting, this generalized representation can help 
to study their structure and properties. For example: block upper triangular ma- 
trix algebras and their inductive limits (see [7]) appear naturally as subalgebras 
of C*-algebras arising in this setting. 

The author expresses his sincere gratitude to Paul Muhly for his help in prepar- 
ing this paper, and to the referee for several important and helpful remarks. 
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2. COORDINATES OF ELEMENTS OF THE C*-ALGEBRA GENERATED BY A FELL 

BUNDLE 

Throughout, X will be a locally compact topological space, R will be an equiv- 
alence relation on X with countable equivalence classes such that the projections 
from R c X x X onto the first and the second component are local homeomor- 
phisms (in the other terminology, R is called an r-discrete principal groupoid), 
and p : E 3 R will be a Fell bundle over R as in [2] and [5]. The space R is 
assumed to be second countable. All R-sets (i. e. subsets of R which are graphs 
of partial homeomorphisms of X) mentioned below in this paper are assumed to 
be open. 

Let’s consider the set C,(E) of all compactly supported continuous sections of 
E. This set is a *-algebra with the operations defined as follows: 

. (f!?)(x, Y) = c, f(? 2)9(? Y); 

. f*(GY) = f(YGr)‘. 

We let I]. 110 denote the sup-norm on Co(EO). 
We let ]] . 112 denote the Hilbert C*-norm on C,(E) as in [5]. So, for f E C,(E): 

We let ]I . )I denote the operator norm on C,(E) as in [5]. So, for f E C,(E): 

llfll = SUP{ llf~ll2 : 9 E G(E), 11~112 5 1 I 
Finally, we let CG (E) be the C*-algebra which is the completion of C,(E) in the 
operator norm \\ . \\ , let L2 (E) be the completion of C,(E) in the norm \\ \I 2, and 
(., .) be the inner product in L2(E), as in [5]. 

Our main goal in this section is to show that all elements of C,*(E) are (repre- 
sented by) continuous sections of the bundle E, and that the algebraic operations 
are given by the same formulas as for C,(E). More exactly this fact is expressed 
in the following theorem. 

Theorem 2.1. (See [8, Proposition 4.21.) The embedding of C,(E) into Co(E) 
extends to the one-to-one map j : C:(E) + Co(E) so that: 

1. j(.fL7)(? Y) = Cj(.f)(? Z)jk7)(6 Y); 
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The element j(f) will be then identified with f, and the values j(f)(x, y) will 
be denoted by f(z, y) and called the coordinates of f. 

To prove the theorem we need several lemmas. We begin with certain impor- 
tant inequalities for the norms on C,(E) that we have introduced. Let 11 1lo3 
denote the sup-norm on C,(E). 

Lemma 2.2. (See [5, 3.131.) For f E C,.(E): 

llfllm 5 llflln L Ilfll~ 

so that the embedding C,(E) + Co(E) extends to a contructiwe map 
j : c;(E) -+ Cl)(E). 

PROOF. 1. If (x0, yo) E R, then 

Ilf(% YoI12 = Ilf(zo, YO)*f(xo> Yo>ll = Ilf*(Yol xo)f(xo7 YOIII 

I II c f*(Yolo, xc).f(x, Yo)ll I s;P II c f*(Y, x)f(x, Y)II = Ilfll;. 
5 I 

This holds for every (xs,ye) E R, so Ilfllm 5 Ilflla. 
2. Let (SO, yo) E R. Let h E C,(E’) c C,(E) b e such that llhllo = Ilh(yo)ll = 1, 

and ~(Yo)*~*~(Yo, YOMYO) is arbitrarily (up to E > 0) close to f*f(yc, ye). 

E(y, y) is a C*-algebra.) Then llhll2 = 1, and (This is possible because 
furthermore: 

Ilfhll; = sup Il(h*f*fh)(y>~)ll 
YEX 

Il(h*f*fh)(yo,~o)ll 

Il~~Yo>*f*f~Yo~Yo~~~Yo~ll 

Ilf’f(Y0~Y0)ll -E 

II c f’(Y0, z)f(x, Yo)ll - E 
z 

So, llfll L II C, ~*(Yo, x).0x, YO)II for each zo E X and hence llfll 2 

Ilf 1103. 
0 

Lemma 2.3. The map j : C:(E) -+ Co(E) defined above is one-to-one. 

PROOF. Let a E C,*(E) with j(a) = 0, and let a, E C,(E) with a, 11-11\ a. 
Let L be the representation of C,*(E) by left multiplication on the Hilbert module 
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L2 (E) For every ‘p E L2 (E) we have: 

(L(%)P)(? Y) = c Gz(? z)cp(z, Y). 
ZN5 

Suppose supp ‘p is contained in some R-set which is the graph of a partial home- 
omorphism T of X. Then: 

(1) (L(%)cp)(? Y) = %(? T-lYM+Y, Y) = j(%)(& T-lYM’-lY, Y). 

We have: a, + a, so L(u,) -+ L(u). This implies that L(u,)cp + L(a)cp. By 
Lemma 2.2, (L(u,)cp)(z, y) -+ (L(u)cp)(z, y) almost everywhere on R. 
On the other hand, j is continuous, so j(u,) -+ j(u), and so j(un)(z,~-‘y) + 
j(+,+ y). Thus, we can pass to the limit in (1) and get: 

(L(a)P)(? Y) = j(a)(z, T-lY)(P(T-lY, Y) = 0. 

Such cp’s are total in L’(E), therefore L(u) = 0. 0 

So, every element f E C:(E) is uniquely defined by the set of the values f(z, y) . 
Therefore, the name “coordinates” for these values is justified. 

Our next goal is to LLpass to the limit” in the formulas of algebraic operations 
for compactly supported functions. For this, first we need one particular case. 

Lemma 2.4. For f E C:(E); 

f*f(? x) = c f*(z, X).0? z), 
z 

where the series converges in norm in the space E(x,x). 

PROOF. Let {fn} c C,(E), fn 3 f. Then (fn) is a Cauchy sequence in L’(E), 
i. e. for every E > 0 there exists N such that for all n, m > N, 

Let {F,},“=, be an increasing sequence of subsets of R such that R = lJ,“=, Fi and 
for each x, each set Fi n {(ST, y)\y N x} is finite. (For example, Fi = Ui=, Rj, 
where (Rj) is a sequence of (open) R-sets covering R.) 

For x E X one has: 

II C(fn - fmk x)*(fn - fm)(z, x) < E. 

z II 
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For every i E N: 

This sum is finite. One can pass to the limit as m -+ co and obtain: 

II c (fn - f)(Z, ~)*(fn - f)(Z, x) I E. 
(z,z)EF, 

Now one can pass to the limit as i + oo: 

/I 
C(f- - f)(z, r)*(fn - f)(Z, r) i E. 

z /I 

We obtained that fn + f in the “coordinate la-metric”. 
Using standard Zz-techniques one obtains that for every f E C,“(E) the series 

c, f*(z, z)f(z, x) converges, and 

We have now developed all the techniques necessary to prove Theorem 2.1. 

PROOF OF THEOREM 2.1. 

We need to justify passing to the limit in the formulas for C,(E). Let (fn), (gn) c 

C,(E), and fn + f, gn -+ 9. Then fn(z,y) + f(z,y) for every (xiv) E R, so 
passing to the limit in the second formula is justified. Analogously, fngn --t fg, 
so (fnSn)(? Y) + (f9)(? Y), and the passing to the limit at the left hand side of 
the first formula is also justified. 

For the right hand side of the first formula, let r be a partial homeomorphism 
of X, with graph I’( T in R, that takes y to 2. Let h E C,(E) be such that ) 
supp h c I’(r). Then: 

Kh*,94(Y) = (hfnSn)(Y, Y) = c h(Y, r)fn(x:, Z)9,(6 Y). 
z 

Now, fn. -+ f and gn + g in the 1). II- norm. So, fn --t f and gn + g in the 11 . (12- 

norm. Consequently, (flh*,gn) -+ (f*h*,g) in Cc(E). It follows from Lemma 
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2.4 that 

(f*h*>g)(Y) = c h(% x)f(xC, z)g(z, Y). 

So, C, h(y, x)fn(z, z)g,(z, y) 3 C,i(y, x)f(z, z)g(z, y). Because this holds for 
every element h of the above type, one obtains 

c fn(? z)g,(z, Y) + c f(? ~M5 Y/). 
z z 

cl 

3. COORDINATIZATION THEOREM 

In this section, we give necessary and sufficient conditions for a C*-algebra A 
to be isomorphic to the algebra C,‘(E) g enerated by some Fell bundle E over 
a r-discrete principal groupoid. These conditions are analogous to existence of 
so-called Cartan subalgebra in A (see [8, Definition 11.4.131) and the definition of 
a diagonal pair in [4]. 

Before formulating the main result we need some notation. Let A be a C*- 
algebra, and let D be a C*-subalgebra of it. Assume that D is the C*-algebra 
generated by the continuous field {D(z)},~x, where X is a locally compact space. 
Suppose that for every z E X, D(x) is not trivial (i. e. D(x) # (0)). 

We suppose that each D(x) is unital, and that D contains all scalar continuous 
sections vanishing at infinity. We denote the set of all such sections by C. Then 
C is an Abelian subalgebra of D, and C % Co(X). 

Remark. The condition of unitality is imposed only for convenience. We can 
drop it. But then we need the following condition: the algebra A possesses an 
approximative unity {ex} contained in D. Then, we can replace D by D $ C and 
A by A $ C where the multiplication cf for c E C, f E A is given by limx(cex)f. 

Notation 1. For each z E X, 
closed ideal in D. 

let I(z) = {f E D ] f(x) = 0). The set I(x) is a 

Remark. For 2 E X: D/I(x) ” D(x). The isomorphism is given as follows: for 
d E D, the class [d] E D/I(x) corresponds to d(x). 

Definition 2. We say that an element s E A is normalizing for D, or that s 
normalizes D, if SDS* C D and s*Ds c D. 

Suppose s is normalizing for D and (x, y) E X x X. We say that the element 
s defines the pair (z, y) (or that the pair (x, y) is defined by s) if the following 
conditions hold: 
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1. SDS* g I(z); 
2. s*Ds g I(y); 
3. sl(y)s* c I(z); 
4. s’l(z)s c I(y). 

The set of all normalizing elements for D will be denoted by N. 

Note that D c N and that for s, t E N one has: S* E N and st E N. 

Definition 3. The subalgebra D of A will be called a (generalized) Cartan sub- 
algebra if: 

1. A is spanned by N; 
2. There exists a faithful conditional expectation P : A + D. 
3. D is maximal in A in the following sense: if s E N and if for every pair 

(x, y) defined by s we have x = y, then s E D; 
4. Ifs E N and for every pair (x, y) defined by s we have x # y, then P(s) = 0. 

The main result of this section is the following theorem. 

Theorem 3.1. A (Y-algebra A is isomorphic to the (?-algebra C:(d) generated 
by some Fell bundle A over some r-discrete principal groupoid if and only if A 
possesses a Cartan subalgebra. 

Proof. The sufficiency is evident. Indeed, suppose A = C;(d) for some Fell 
bundle A over a r-discrete principal groupoid R as in [2] or [4]. Then, every 
normalizing element s is supported on some (open) R-set. Elements of this R-set 
are exactly the pairs defined by s. 

To prove the necessity, we need some additional notation. The proof is con- 
tained in several lemmas. 
Notation. In what follows, normalizing elements will be denoted by lower case 
letters like s or t, while (open) R-sets will be denoted by capital letters like S or 
T. The set of all (open) R-sets will be denoted by G. For s E N we denote: 

R, = {(x, y) E R 1 s defines the pair (x, y) }, 

and for S E $7 we denote 

Note that each R, is a R-set. Note also that for every R-set S, the set Ns is a 
linear space. Indeed, ifs, t E Ns then for a E D we have sat* E D and s*at E D, 
by maximality of D and so: (s + t)a(s + t)* = sas* + sat* + tas* + tat* E D. 
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Therefore, s + t E N. Furthermore, if s + t 

(x>v) E Rs. 
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defines (x, y) then one shows that 

For s,t E Ns, we consider the map s(.)t* : D -+ D. It actually maps the ideal 
I(y) into the ideal I(x). (This follows from the polarization identity.) So, the 
corresponding quotient map acts from D(y) ” D/l(y) into D(x) g D/I(x). 
Notation. The map from D(y) into D(x) defined above will be denoted by 

(S? t)&&$ Therefore, we have defined a sesquilinear B(D(y), D(x))-valued form 
on Ns. 

For s E Ns, let 

This is a seminorm on Ns, because it is defined by a sesquilinear form. 
Let 

R = { (x, y) E X x X 1 3s E N : s defines the pair (x, y) }. 

We equip R with the topology generated by the collection of subsets { R, ) s E 

Nl. 
The set R is an equivalence relation on X. Indeed, R is reflexive because for 

every x E X and for d E D such that d(x) # 0: the element d belongs to N and 
the pair (x,x) is defined by d. Moreover, R is symmetric because if s defines the 
pair (x, y) then s* defines (y, x). And R is transitive because if s defines the pair 
(x, y) and t defines (y, Z) then st defines (x, z). 

The diagonal n = { (x, x) 1 x E X } is o p en in R in this topology, because 
D c N and n = UsED R,. 

The induced topology on n coincides with the topology on X. Indeed, each 
open set on X is the open support of some element s E D, so it is R, for this s. 
Conversely, if R, c n for some s E N, then s E D and R, is the open support of 
s, so it is open in X. 

The maps r : (x, y) V+ x and s : (x, y) ct y are local homeomorphisms, because 
these maps must be one-to-one on R,, and they take each Rt onto Rtte and Rt-t 
respectively. 

Lemma 3.2. Let S, T E 6, S c T, (x, y) E 5’ and s E Ns. Then 

I141~,y) = II4fi,$/). 
PROOF. The proof is evident. 0 

Lemma 3.3. Let S E 4, (x, y) E S, s E NS and f E C be such that f(x) = lo(,). 

Then f s E Ns and 

lb - .Mf&!) = 0. 
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PROOF. For every t E Ns, the maps s(.)t* and fs(.)t* act the same on D(z). 0 

Lemma 3.4. Let S, T E G, (cc, y) E S fl T and s E Ns n NT, Then 

IIsll;,y) = IIsII~,y). 
PROOF. Let U = S fl T. Let f E Co(X) E C be such that f(z) = 1 and 
suppf C r(U). Then 

ll&/) = Ilf4ly&/) = Ilfsllg,y) = lIfSllg&!) = II4&). 
q  

Notation. Lemma 3.4 says that ]]~](a,~~ is actually independent of S. We will 

write ll~ll(z,y) for I141~,y~~ 
Lemma 3.5. For s E N: 

lbll = (,;fj& II4~W)~ 

PROOF. ]]s]] = ]]s*s]]i and s*s E D. Let ]]s]] = ]](s*s)(Q)]]-, : 50 E X. Then 

ll4l(z,,y,) = ,“:g II( s*as)(zo)l/f = Il(S*S)(Zl# = lIsl/. 

Fix (z,Y) E R. Let 

A(x:, y) = {s E N I s defines the pair (z, Y) }. 

The functional ]I . IJ(e,y) is a seminorm on A(z, y). Let A(s, y), be the kernel of 
this seminorm and let 

A(~,Y) = A(+%Y)~. 

Then the functional ]I . Il(s,y)r defined naturally on A(z, y), becomes a norm. The 
space A(z, y) is complete in this norm. Indeed, let S E 4 be such that (z,Y) E S. 
It’s easy to see that the space Ns is complete with respect to the norm in A and 
that A(z,y) is a quotient of Ns. 

Let A be the union of all A(z, y) for (2, y) running over R. We define the 
topology on d using a collection of sections as follows. For each s E N we define 
the section 2 by the formula 

Z(X,Y) = 
isI E A(%, Y) if s defines the pair (r, y), 

0 otherwise, 

where [s] is the class of s in A(z, y) = A(z, y)/ A(z, Y)~. q  



COORDINATIZATION FOR FELL BUNDLE ALGEBRAS 323 

Proposition 3.6. The set A = U~z,y~ERA(x, y) is a Fell bundle over R, with the 
operations given as follows: for (z, y), (y,z) E R, [s] E A(x, y), [t] E A(y, z) we 
define: 

. [s] . [t] dsf [st] E A(z, z); 

. [s]* d2f b*l E A(Y,x). 

PROOF. All the properties are evident. cl 

Notation. Let C,+(d) be the C*-algebra generated by A. Let cp : N + C;(d) be 
defined by 

$0 : s H 2, s E N. 

It’s easy to see that cp is multiplicative. Let’s extend the map cp by linearity 
to the map denoted again by cp from lin N into C:(d). The extended map is well 
defined. Indeed, let si + s2 + . . . + s, = 0. Let (x, y) E S where 5’ E 6. One can 
suppose that each R,* either is contained in S or doesn’t intersect with S. Then, 
multiplying by appropriate functions from C one can “exclude” those si whose 
supports R,% don’t intersect with S. Finally, one deals with Ns which is a linear 
space. 

Lemma 3.7. (See [4, page 9831.) For a E A: 

Ilull = sup { IIP(b’a’ab)l1”2 : P(b*b) < l} . 

PROOF. The algebra A equipped with the inner product (a,b) = P(a*b) is a 
pre-Hilbert D-module. Let 7r be the representation of the algebra A on this pre- 
Hilbert module by left multiplications: r(a)b = ab. We have: 

I\7r(a)42 = I\42 = (ab, ab)1’2 = \IP(b*a*ab)lli’2 

5 Il~*~l11’2(J~(~*~)l)1’2 = llall . llbll2. 

so the representation 7r is norm-decreasing, and it extends to the representation 
(denoted again by 7r) of A on the completion L2(A) of this pre-Hilbert D-module. 

The representation rr is one-to-one. Indeed, if n(a) = 0 then P(b*a*ab) = 0 for 
every b E A, so b*a*ab = 0, so ab = 0 for every b E A, thus a = 0. 

Therefore, rr is isometric, and (2) follows. 0 

To finish the PROOF OF THEOREM 3.1 we need only show that the map ‘p : 
lin N + C*(d) 1s isometric. Indeed, for every c E lin N one has: P(c) = P’(+$c)), 
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where P' is the canonical conditional expectation on C*(A). Consequently, for 
a E 1inN: 

Ma!ll = SUP{ IIP’(~(~)*ip(~)*~(~)~(~))ll : IP’M~*wII I 11 
= SUP{ IlWfW ~*~b))ll : llwP(~“~))ll 5 11 
= sup{ IIP(b*a*ab)II : IIP(b"b)ll < 1) = I/all. 
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