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ABSTRACT. Let 1M be a compact C’ differentiable manifold such that its 
rational homology is H3 (M; Q) zz Q if j E J U {0}, and Hj (M; Q) z (0) 
otherwise. Here J is a subset of the set of natural numbers N with cardinal 
1, 2 or 3. A C1 map f : A4 + A4 is called transversal if for all m E N the 
graph of f m intersects transversally the diagonal of A4 x M at each point 
(2, z) such that z is a fixed point of f”. We study the set of periods of f 
by using the Lefschetz numbers for periodic points. 

1. INTRODUCTION AND STATEMENT OF THE RESULTS 

In dynamical systems it is often the case that differentiable topological in- 
formation can be used to study qualitative and quantitative properties of the 
system. This paper deals with the problem of determining the periods of the 
periodic points of a class of C1 self-maps given the homology class of the map. 
Similar problems have been studied in [6] f or compact manifolds with homology 
Ho(M; Q) M Q, Hi(M; Q) M Q $ Q, H,(M; Q) z (0) for j # 0,l. From other 
point of view periodic points for transversal maps have been studied by Franks 
in [4], [5] Matsuoka in [9], see also [2] and [8]. 

The preliminary notation and definitions which are necessary to state our main 
results are those of [6]. W e include them here for completeness. 

Let f : X + X be a continuous map. A fixed point of f is a point x of X such 
that f(x) = zr. Denote the totality of fixed points by Fix(f). The point z E X is 
periodic with period m if x E Fix( f”) but x @ Fix(f”) for all k = 1, . . , m - 1. 

Let Per(f) denote the set of all periods of periodic point of f. 
Let M be a compact manifold of dimension n. A continuous map f : M + M 

induces endomorphisms f*j : H,(M; Q) --t Hj(M; Q) (for j = O,l,. . , n) on the 
397 
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rational homology groups of M. The Lefschetz number of 

L(f) = c(-l)“trace(f*k). 
k=O 

By the renowned Lefschetz fixed point theorem: if L(f) # 0 then f has fixed 

f is defined by 

points (see, for instance [l]). Of course, we can consider the Lefschetz number of 
f” but (in general) it is not true that if L(f”) # 0 then f has periodic points 
of period m. It could have periodic points with period some proper division of 
m. Therefore we will use the Lefschetz numbers for periodic points introduced 
in [3] (see also [7]) f or analysing if a given period belongs to the set of periods of 
a self-map. More precisely, for every m E N we define the Lefschetz number of 
period m, Z(f”), as follows 

l(f”) = c CL(r)L(f 9 
Tim 

where c,,, denotes the sum over all positive divisors r of m, and p is the Moebius 
function defined by 

( 

1 ifm= 1, 

cl(m) = 0 if k’\rn for some lc E N, 
(-1)’ if m = pl. . .p, distinct prime factors. 

According to the inversion formula (see for instance [ll]) 

L(frn) = c l(f’) 
Tim 

The Lefschetz number of period m will become interesting after showing that 
for many classes of maps we have: if Z(f”) # 0 then m E Per(f). This is almost 
the case when f is a transversal map. 

A C1 map f : M + A4 defined on a compact Ci differentiable manifold is called 
transversal if f(M) C Int(lM) and if for all m E N at each point z E Fix(f”) we 
have det(l- dfm(x)) # 0; i.e. 1 is not an eigenvalue of df “(xc). We note that if 
f is transversal then for all m E N the graph of f” intersects transversally the 
diagonal {(y, y) : y E M} at each point (5, X) such that 2 E Fix( f “). Since for 
a transversal map f the fixed points of f” are isolated and M is compact, the 
cardinal of Fix(fm) is finite for every m E N. Dold 131 showed that m divides 
I( f “) for any m E N. The following result will play a key role in this paper and 
it was proved in [7] ( see another proof in [6]). 
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Theorem 1.1. Let f be a transversal map. Suppose that 1( f “) # 0 for some 
m E N. 

(a) If m is odd then m E Per(f). 
(b) If m is even then {m/2, m} n Per(f) # 0. 

The results on transversal maps on arbitrary compact manifolds given in The- 
orem 1.1 are in general difficult to apply because of the computation of Z(f”). 
Of course, if the rational homology groups are simple then these computations 
become easier. 

In this paper we deal with transversal maps on a compact manifold M with 
rational homology 

(I) Hj(M; Q) M Q if j E J U {O}, Hj(M; Q) M (0) otherwise. 

Here J is a subset of the set of natural numbers N with cardinality 1, 2, or 
3. Transversal maps on compact manifolds with such homology are among the 
easiest nontrivial maps for which we can compute the numbers l(f”) and apply 
Theorem 1.1 to obtain information about their sets of periods. 

Now we present few examples of manifolds having the homology given by (1). 
For instance, if the cardinal of J is equal to 1, then the p-dimensional sphere SP 
satisfies that Hj(Sp;Q) M Q if j E J u (0) with J = {p), and H,(Sp;Q) M (0) 
otherwise. If the cardinal of J is equal to n there is the complex projective space 
CP” whose rational homology groups are (see, for instance, [lo]) Hj(CP”; Q) z 
Q if j E J U (0) with J = {2,4,. . . , n}, and H,(CP”; Q) M (0) otherwise. If 
the cardinal of J is equal to 3 there is the product of two spheres of different 
dimensions SP x Sq with p # q, p and q positive, then from Kunneth’s formula 
(see again [lo]) we have Hj(SP x Sq; Q) M Q if j E J U (0) with J = {p, q,p + q}, 
and H,(SP x Sq;Q) M (0) th o erwise. The easiest higher dimensional examples 
are the products of these spaces with acyclic manifold, but also there are other 
spaces with these homologies. 

In Section 2 we will give an easy proof of the following result. 

Theorem 1.2. Let f : M + M be a transversal map. Suppose that the rational 
homology of M satisfies (1) with J = {p}. W e d enote by (a) the 1 x 1 integer ma- 
trix defined by the induced homology endomorphism frp : H,(M; Q) -+ H,(M; Q) 
(a is called the degree off). Then the following statements hold. 

(a) Z(f) = L(f) = 1 + (-l)Pa. 
(b) Z(f’) = 0 if and only if a E (0, 1). 
(c) If m > 2 then l(f”) = 0 if and only if a E {-l,O, 1). 
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From Theorem 1.1 and Theorem 1.2 it follows easily the following result of 
Casasayas, Llibre and Nunes [2]. 

Corollary 1.3. In the assumptions of Theorem 1.2 if we assume that a 6 {-l,O, l} 
then the following statements hold. 

(a) Per(f) > {1,3,5,7,. . .}. 
(b) If m is even and m 6 Per(f), then {m/2,2m} c Per(f). 

Our main results on the set of periods of transversal maps follows from the 
next two theorems and Theorem 1.1. 

Theorem 1.4. Let f : M + M be a transversal map. Suppose that the rational 
homology of M satisfies (1) with J = {p,q}. If we denote by (aj) the 1 x 1 
integer matrix defined by the induced homology endomorphism f*j : Hj(M; Q) --t 
Hj(M; Q) for each j E J, then the following statements hold. 

(a) l(f) = L(f) = 1 + (-l)Pap + (-l)qa,. 
(b) l(f2) =0 if and only ifq-p is even and {ap,aq} c {O,l}, orq-p is odd 

anda,=a, ora,+a,=l. 
(c) If {ap,aq} C {-l,O, l}, then l(f”) = 0 for every natural number m > 2. 

(d) If {apr a91 @ 1-&O, 1) and m > 1 is odd, then l(f “) = 0 if and only if 
up + (-l)q-Paq = 0. 

(e) If lap, a41 $ 1-&O, 1) and 41m, then l(f”) = 0 if and only if q - p is odd 
and ap = fa,. 

(f) If {ap,aq) C I-l,O, I), m > 2 is even and 4 /Im, then l(f “) = 0 if and 
onlyifq-pisoddanda,=a,. 

Theorem 1.4 will be proved in Section 2. From Theorem 1.1 and Theorem 1.4 
it follows easily the following corollary. 

Corollary 1.5. In the assumptions of Theorem 1.4 the following statements hold. 

(a) If (-l)pap + (-l)q aq # -1, then 1 E Per(f). 
(b) If neither q - p is even and {up, aq} c (0, l}, nor q - p is odd and up = aq 

or up + aq = 1, then {1,2} n Per(f) # 0. 
(c) If {ap,aq} c {-l,O, l}, then the unique periods m that can be forced from 

the numbers l(f”) are 1 and 2. 

(d) If {ap,aq) rt I-l,O, 1) and a,+(-l)q-Pa, # 0, then {3,5,7,. . .} c Per(f). 
(e) If {ap,aq} $ {-l,O,l}, q-p and m > 2 are even, and m $?’ Per(f), then 

{m/2,2m} C Per(f). 

(f) If {ap,aq} $ {-l,O, l}, q -p is odd, up # fag, 41m and m # Per(f), then 
{m/2,2m} C Per(f). 
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(g) If {upru9} $Z {-l,O, l}, q -p is odd, up # a,, m > 2 is ewen and 4 Am, 
then {m/2, m} f? Per(f) # 0. 

Note that in Theorem 1.2 and Theorem 1.4 we have described completely the 
zero set of Z(f”) f or all m E N. So, in Corollaries C and E we give all the 
information on the set of periods that can be obtained through Theorem 1.1. 

Let S be the set of (zi, 22, zs) E Zi with Zo = 2 \ { -1, 0, 1) satisfying at least 
one of the following conditions: 

(i) All the components have the same sign. 

(ii) Iz,I < m~~{I+l1 ‘f i 1 z is the component that has different sign. 

(iii) lzij > Clz.jl. 

Theorem 1.6. Let f : M + M be a transversal map. Suppose that the rational 
homology of M satisfies (I) with J = {p, q,r}. For each j E J we denote by 
(aj) the 1 x 1 integer matrix defined by the induced homology endomorphism 

f*j : Hj(M; Q) + I$(M;Q). W e assume that p and q are even (respectively 
odd). Then the following statements hold. 

(a) Let m > 1 be odd. If r is even (respectively odd) and (apraq,ar) E S, or r 
is odd (respectively even) and (up, u4, -a,) E S, then I( f”) # 0. 

(b) Let m > 1 be even. If r is even (respectively odd), or r is odd (respectively 
even) and (la,l, la,l, -la,l) E S, then l(f”) # 0. 

Theorem 1.6 will be proved in Section 2. From Theorem 1.1 and Theorem 1.6, 
it follows immediately the following corollary. 

Corollary 1.7. In the assumptions of Theorem 1.6 the following statements hold. 

(a) Let m > 1 be odd. If r is even (respectively odd) and (up, a4, a,) E S, or r is 
odd (respectively even) and (ar, a,, -a,) E S, then {3,5,7,. . .} c Per(f). 

(b) Let m > 1 be even. If r is even (respectively odd), or r is odd (respectively 

even) and (lap/, la,l, -la,l) E S, then {m/2, m} n Per(f) # 0. 

While Theorem 1.2 and 1.4 characterize completely the zeros of l(fm), this is 
not the case of Theorem 1.6. This is due to the fact that for knowing all the 
zeros of Z(fm) in th e assumptions of Theorem 1.6, we must know the solutions of 
some diophantine equations that in general are more difficult to solve than the 
last theorem of Fermat. 

The authors are partially supported by DGICYT grant number PB96-1153, by 
a Xunta de Galicia grant number XUGA20703B97, and by a DGES grant number 
PB95-1054, respectively. 



402 LLIBRE, PARAtiOS, AND RODRiGUEZ 

2. PROOFS OF THE RESULTS 

Let f : A4 + A4 be a transversal map and suppose that the rational homology 
of M satisfies (1). Let (aj) be the 1 x 1 integer matrix defined by the induced 
homology endomorphism f*j : Hj(M; Q) + IIj(M; Q) for each j E J. Since 
Ho(M; Q) M Q, M is connected, and consequently f*,-, is the identity (see [lo] for 
more details). Then L(f”) = 1 + c(-l)jay for all m E N. We note that 

jEJ 

Cp(r) = 1 - ( c 1) + ( c 1) - ... + (-1)” 
rim l<_i<n l<i<j<n 

= 1 - (;) + (Z) - . . . + (-l)n (E) 

= (l-l)n=O, 

where m =pP’...pE n > 1 with pl, . . ,p, distinct primes. Therefore, if m > 1 
the Lefschetz number of period m will be 

Z(f”) = C(-l)j Cp(r)C$ 
jEJ rim 

For each m E N we define the polynomial 

Then, if m > 1 we can write 

(2) l(f”) = CC-l)j&,(q). 

Hence we will study when Z(f”) is zero or not by analysing the polynomials 
Qm( x) and evaluating them at aj . 

Set m = py’ . . p,* n where pl, . . ,p, are distinct primes. The next proposition 
is proved in [6]. 

Proposition 2.1. Let m E N. 

(4 
(b) 
(cl 
(4 
(e) 
( f 1 
k) 

If m is odd, then Q,,, is an odd function. 
If 4)m, then Qm is an even function. 
If 2jm and 4 ,j’m, then Qm(z) = Qs(z?) - Q?(z). 

&m(O) = 0. 
If m > 1, then Qm(l) = 0. 
If m > 2, then Qm(-1) = 0. 

For all i E N we have Q:(1) 2 0, where Q%(x) denotes the i-th derivative 
of Qm(x) with respect to the variable x. 
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(h) Qm( ) P ‘t. x as osz we and increasing in (1, oo). 
(i) Ifm is even, then the function Qm(x) is positive and decreasing in (--00, -1). 

Furthermore, if4 lrn we have that Qm(x) 5 Qnc(-x) for all x E [l,co). 
(j) Ifm > 2, then Qm(1.6) > 2. 

PROOF OF THEOREM 1.2: Clearly L(f) = 1 + (-1)Pa. This proves (a). 
From (2) we get that l(f”) = (-l)pQm(a). F rom Proposition l(c) we get that 

Qz(x) = x2 - x. So Qz(a) = a(a - l), and consequently l”(f) # 0 if and only if 
a E {O,l}. So (b) is proved. 

If m > 2 then from statements (d), (e), and (f) of Proposition 1 we obtain that 
l(f”) = 0 if a E {-l,O, 1). N ow we assume that a $ {-l,O, l}. From statements 

jai,fci) and (i) of P roposition 1, it follows that Z(f”) = (-l)pQm(a) # 0. Hence 
0 ows. 

PROOF OF THEOREM 1.4: From the definitions of L(f) 
0 

and Z(f) it follows im- 
mediately (a). 

From (2) and Proposition l(c) we get that l(f2) = (-l)PQz(az) + (-l)qQz(az) 
and Q~(x) = x2 - x. Therefore l(f2) = (-l)P(ag - up) + (-l)‘J(ai - aq). We 
assume that q-p is odd. Then Z(f”) = 0 if and only if (up-aq)(ap+aq) = up-uq; 
or equivalently either up = aq, or up + a, = 1. Now we assume that q -p is even. 
Then Z(f2) = 0 if and only if a; + ai = up + a,, or equivalently {up, aq} c (0, l}. 
Therefore (b) is proved. 

From (2) and statements (d), (e) and (f) of Proposition 1 it follows (6). 
Let m be odd. From (a) and (h) of Proposition 1, we have that Qm (x) is an 

increasing odd function in (--00, -1) U (1, oo). Assume that {a,, aq} @ {-l,O, 1). 
Then, from (2) Z(f”) = 0 ‘f 1 an only if Qm(ap) + (-l)q-pQm(aq) = 0. or equiv- d 
alently up + (-l)q-p a4 = 0. Hence (d) is proved. 

Assume that 41~2. Prom (b), (h) and (i) of Proposition 1, we have that Qm(x) 
is an even function, increasing in (1, oo), and Qm(x) = QnL(-x) for all x E [l, co). 
Assume that {up, aq} @ {-l,O, 1). Then, from (2) we get that Z(f”) = 0 if and 

only if Qm(ap) + (-l)q-PQm(aq) = 0, or equivalently q - p is odd and up = +a,. 
Hence (e) is proved. 

Now we prove (f). Assume that m > 2 is even and 4 Am. From (2) we 
get that Z(f”) = 0 if and only if Qm(ap) + (-l)q-PQ,(aq) = 0. Assume that 
{ap,aq} < {-l,O, 1). From statements (h) and (i) of Proposition 1 we have that 
Qm(ap) and Qm(aq) are positive. So, if q - p is even then l(f”) # 0. 

In the rest of the proof of statement (f) we suppose that q - p is odd. Then 

I(!“) = 0 if and only if Qm(ap) = Qm(aq). By Proposition l(h), Qm(x) is 
positive and increasing in (1, oo). So, if ap,aq > 0 then I(f”) = 0 if and only 
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if ap = a,. Now we assume that ap,aq < 0. By Proposition l(c) we have that 
Qm(z) = Qs(z’) - Q?(z) with m/2 odd. Then, Z(fm) = 0 if and only if 

QF(a$ - Qy(a,) = Qy(az) - Qy(a,), 
&?(a:) + Q~(I4) 

or equivalently &~(a;) + Qy (lap/) = 

( see Proposition l(a)). In short, if ap,aq < 0 then from 
Proposition l(h) Z(f”) = 0 if and only if ap = a4. So in the rest of the proof of 
(f) we can assume that ap < 0 < a4. 

First we consider 0 < a4 5 -ap. Since Z(f”) = 0 if and only if Qy (a:) + 

Qy(lapl) = QF(ai) - &?(a,), and 0 < a4 5 la,/, by statements (a) and (h) 
of Proposition 1 we obtain that &~(a;) +Q?(lapl) > Qy(ai) - &~(a,), hence 
Z(f”) # 0. So we can assume that 0 < -ap < a4. 

By Proposition l(g) we have that Qm(x) = CT=“=, A~(z - l)k with Al; = 

&$:)(1)/k! > 0. Therefore, since Z(f”) = 0 if and only if Qm(aq) = CT=“=, Ak(a,- 
1)” = Cp=“=, Ak(a, - 1)” = Qm(ap), it follows that if lapI + 1 < a4 - 1, then 
Qm(a4) > Qm(ap), and consequently Z(f”) # 0. Hence, since 0 < -ap < a4 the 
unique cases that remain to consider are lapI + 1 = a4 - 1 and lapI + 1 = a4. 

We assume that lapI + 1 = a4 - 1 = b. So a4 = b+ 1 and ap = 1 - b. Therefore, 
since {ap,aq} c {-l,O, 1) we get that b > 1. Now Z(f’“) = 0 if and only if 

Qm(b + 1) = Qm(-b + 11, 

1)2)-Qy(1-b) ( 

or equivalently Qy((b+ 1)2) -Q?(b+ 1) = Q?((b- 
see Proposition l(c)). Since m/2 is odd, from Proposition l(a) 

Z(f”) = 0 if and only if Q~((b+l)~) = Q?(b+ l)+Qq((b- 1)2) +Qy(b- 1) 

> or equivalently 

5 BI, [(b + 1)2 - llh: = 5 BI, [b” + ((b - 1)2 - 1)‘” + (b - 47 , 
k=l k=l 

m 
because Q?(x) = xi=,‘=, Bk(z - l)“, with BI, = Q$)(l)/k! > 0. Therefore, since 

[(b + 1)2 - 11” = bk(b + 2)” > b” [2 + (b - a)“] > b” [l + (b - 2)“] + (b - 2)” = 

bk+((b-1)2-l)k+(b-2)k if b > 2, and [(b + 1)2 - 1] Ic > bk + ((b - 1)2 - 1)” + 
(b - 2)” if b = 1, it follows that Z(f”) # 0. 

Finally we assume that lapI + 1 = a4 = b + 1. So ap = -b. Therefore, since 
{ap,aq} c {-l,O, 1) we get that b > 1. Now Z(fm) = 0 if and only if Q,(b+ 1) = 
Qm(-b), or equivalently Qy((b + 1)2) - Qy(b + 1) = QF(b2) - Qy(-b) (see 
Proposition l(c)). Since m/2 is odd, from Proposition l(a) Z(f”) = 0 if and only 
if Qy((b+ 1)2) =Qy((b+ 1) +Qy(b2) +&y(b), or equivalently 

5 BI, [(b + 1)2 - l] Ic = 5 B,, [b” + (b2 - 1)” + (b - l)“] 
k=l k=l 
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Therefore, since [(b+ 1)2 - 11” = b’“(b + 2)” > [(b - 1)” + 1] (b + 2)” > (b - 

l)“(b+2)+b” = bk+(b2-l)k+(b-1)k if k > 2 and b > 1, and [(b+ 1)2 - ilk > 
bk + (b2 - 1)” + (b - 1)” if lc = 1 and b > 1, it follows that Z(f”) # 0. Hence (f) 
is proved. 0 
PROOF OF THEOREM 1.6: Without loss of generality we can assume that p and 
q are both even. The case that both are odd follows in a similar way. 

We suppose that m > 1 is odd and r is even. If apr ag and a, have the same sign, 
then from (2) and statements (a) and (h) of Proposition 1 it follows that Z(f”) = 
Qm(ap) + Qm(a,) + &,(a,) # 0. Otherwise, since (ap,aq,ar) E S, without loss 
of generality we can assume that a, < -1 and 1 < an 5 a4. Then, if la,( < a4 it 
follows that Z(f”) = Qm(lapl) +Qm(laql) - Qm(laTl) > Qm(laql) - Qmbl) > 0. 
On the other hand, if Ia,1 > la,1 + la,11 we have that 

‘Qm(14) > Qm(lapl + hl) = ~Ak(l+ + Ia41 - ljk, 
k=l 

because by Proposition l(g) we have that Qm(x) = CT=“=, A~(z - 1)” with & = 
Qg)(l)/k! > 0. S’ mce (Id + lagI - 1)‘” > [(lapI - 1) + hl - 1)l’” L (I4 - lIk + 
(I% - l)“i we obtain that 

cp=“=l Ak(l%l + ]%I - l)k > ck Ak(k%] - 1)” 
+ c~=iAk(k+I - 1)” = Qm(lapl) + Qm(laql). 

Hence 

(3) Qm(laTl) > Qm(bpl + I4 > QmM) + Qm(laql), 
and consequently Z(fm) # 0. 

Now we assume that r is odd. Then Z(f”) = Qm(ap) + Qm(aq) - &,(a,) = 
Qm(ap) + &,(a,) + Qm(-ar), and since (ap,uq, -a,) E S the arguments of the 
above case can be applied again to obtain that Z(fm) # 0. So we have proved (a). 

We assume that m 2 2 is even. By statements (b), (h) and (i) of Proposition 
1, the function Qm(z) is positive in (--co, -1) U (1, co). Therefore, if r is even, 
then Z(f”) = Qm(up) + &,(a,) + Qm(a,) > 0. We assume that r is odd. Then 
Z(f”) = Qm(ap) + Qm(a,) - &,(a,) and we consider two cases. 

Case 1: 4lm. By Proposition l(b) the function Qm(x) is even. Therefore 

Z(Y) = Qm(la,l) + Qm(laql) - Qm(-l~Tl). F rom the assumptions we have that 

(laplr hl, -bl) E S. S o we can repeat the arguments of the proof of statement 
(a), and we obtain Z(f”) # 0. 
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Case 2 4 Am. We have that la,1 < max{lapl, 1~1~1) or /a,.[ > Ia,1 + lagI, 
because (lapI, laPI, -lu,l) E S. We assume that the first inequality holds. Then, 
from statements (h) and (i) of Proposition 1 Z(f”) = Qm(up)+Qm(u~)-Qm(ur) 2 

Qm(hl) + Qm(bq\) - Qm(-\a,\). Since (\a,\, \a4\, -\a,\) E 5’ we can repeat the 
arguments of the proof of statement (a), and we obtain that Z(f”) # 0. NOW 

we assume that the second inequality holds. Then, by statements (c) and (a) 
of Proposition 1, and (3) we get that Qm(-(la,/ + Iu,I)) = QT((~cx~[ + Iu,I)“) + 

Q&l+l4 2 Q~?(~l~,12+l~,12~+Q~~l~,I+I~,I~ > Q~,(l~,12)+Q~b.12)+ 
Qy(lu,l) +Q~([u~[) = Qm(-lap/) +Qm(-[asI). Therefore, from statements (h) 
and (i) of Proposition 1 and (3), we have that Z(f”) = &,(a,) + Q,(ug) - 

&da,) 5 Qm(-14) + Qm(-Ias\) -&m(M) < Qm(-(lapI + b,I)) - Qmbl) I 
Qm(la,l + /up/) - &,(a,) < 0. Hence (b) is proved. 0 
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