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ABSTRACT. We prove that for a function f(zl,zs) defined on R2, the graph 
of Of is a minimal surface if and only if f is harmonic or a quadratic poly- 
nomial. Using this result we prove the following classical result of Jogens: 
if f satisfies the Monge-Ampere equation fzIz, fzzzz - f&._ = 1, then f 
must be a quadratic polynomial. 

1. MAIN RESULTS 

The classical Bernstein theorem says that if f(xi, x2) is a function defined on 
R2 satisfying the minimal surface equation, then f is a linear function. In this 
paper we prove the following analogue of Bernstein’s theorem: 

Theorem 1.1. Let f(xl,xa) be a function defined on R’. Then the graph of 
Of is a minimal surface in R2 x R2 if and only if f is harmonic or a quadratic 
polynomial. 

Recall the following result of Harvey and Lawson ([l]): 

Proposition 1.2. Let f(xl,. . . , x,) be a real valued function defined in a con- 
nected open subset in R”. The graph of Of is a minimal submanifold of R” x R” 
if and only if there exists a constant 0 such that f satisfies 

Im det(eis(I + iHess(f = 0, 

where Im denotes the imaginary part, I is the identity matrix, and Hess(f) is the 
hessian matrix of f. In particular if f (xi, x2) is a function defined on R2, then 
the graph of Of is a minimal surface in R2 x R2 Zf and only if 

sine(l - fz121fz222 + f,“,,,) + cosQ(fz,,, + fzzzz) = 0. 
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This proposition follows from Lemma III 2.2, Theorem III 2.3 and Proposition 
III 2.17 in [l]. 

By Proposition 1.2, Theorem 1.1 is equivalent to the following theorem: 

Theorem 1.3. Let f(zl, ~2) be a function defined on R2. Assume f satisfies 

sine(l - fz121fz252 + f,“,,,) + COSW~,~, + fz252) = 0 

for some constant 8. If sin0 # 0, then f must be a quadratic polynomial; if 
sin0 = 0, then f is harmonic. 

As a corollary we obtain the following result of Jorgens ([2]): 

Corollary 1.4. Let f ( xl, x2) be a function defined on R2 satisfying the Monge- 
Amp&e equation 

fz121fz*zz - fZ,z:, = 1. 
Then f must be a quadratic polynomial. 

I don’t know whether we have a similar classification theorem in higher dimen- 
sional cases. Let’s ask the following: 
Question. Let f (xl,. ,x,) be a convex function defined on R”. Assume the 
graph of Of is a minimal submanifold in R” x R”, that is, there exists a constant 
9 such that 

Im det(eis(l + iHess(f = 0. 

Is it true that f must be a quadratic polynomial. 
We have the following results of Calabi and Flanders: 
Let f(xl,... , x,) be a function defined on R”. Assume its hessian matrix 

Hess(f) is positive definite. Then f is a quadratic polynomial if one of the fol- 
lowing conditions holds: 

(1) det Hess(f) = 1 and 1 I n 2 5 ([3]). 
(2) tr (I + Hess(f))-’ =constant ([4]). 
(3) tr (Hess(f))-’ =constant ([4]). 
Using these results we can solve some very special cases of our question. 

2. PROOF OF THEOREM 1.1 

We start with some lemmas: 

Lemma 2.1. Let f(xl,x2) = (f3(21,x2), . . . , fn(xl, x2) be a function defined on 
R2. If the graph of f is a minimal surface in R”, then there exists a linear 
transformation 

x1 = u1,22 = au1 + buz, (b # 0) 
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such that (~1, ~2) are global isothermal parameters for the graph of f. 

This lemma is Theorem 5.1 of [5]. 
We also need the following obvious fact: 

Lemma 2.2. Two different tonics in the x1x2-plane have at most four common 
points. 

NOW let’s prove Theorem 1.3, which is equivalent to Theorem 1.1. The second 
part of Theorem 1.3 is obvious. So let’s assume sin0 # 0 and prove that f is 
a quadratic polynomial. It is enough to show that fz,z,, fzlz2 and fzzz2 are 
constants. 

By assumption the graph of Of is minimal. By Lemma 2.1, there exists con- 
stants a and b # 0 such that 

(74,~) t-+ (ui,aUi +bu2,f3Jl,fz2) 

is an isothermal parametrization. 
We have 

&( ui,aui +buz,fzl,fza) = (La,fz,,, +afzlzarfz122 +afz2z2), 

&( ul, au1 + bu2, fzl, fz2) = (0, b, bfzlz2, bfzZZ2). 

That (~1, ~2) are isothermal parameters is equivalent to that we have 

1 + a2 + (fzlzl + afz1z2)2 + (fzlz, + afz2z2)2 = b2 + b2fzlzz + b2fz2Z21 

ab + (fzlzl + afzlZ2)bfZlz2 + (fzlz2 + afz252)bfz222 = 0. 

For convenience we let X = fzlzl, Y = fzlz, and Z = fzzz2. The above equations 
can be rewritten as 

1 + a2 + (X + aY)2 + (Y + aZ)2 = b2 + b2Y2 + b2Z2, 

ab + (X + aY)bY + (Y + aZ)bZ = 0. 

Simplifying these equations we get 

(1+a2-b2)+(1+a2-b2)Y2+(1+ a2 - b2)Z2 + (X2 - 2”) + 2aY(X + 2) = 0, 

ab(l+ Y2 + Z2) + bY(X + 2) = 0. 

So we have 

(1) (1 + a2 -b2)(1+Y2+Z2)+(X-2+2aY)(X+Z) = 0 

(2) a(l+Y2+Z2)+Y(X+Z) = 0 
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where in the second equation we omit the factor b since b # 0. From these 
equations and the fact that 1 + Y2 + Z2 # 0, we get 

det 
1+a2-b2 X-Z+2aY 

a 

that is 

(3) +X+(1-a2-b2)Y+aZ=0 

By assumption there exists a constant 8 such that 

(4) (l-XZ+Y2)sin~+(X+Z)cosB=0 

Note that X + 2 is everywhere nonzero. Indeed, if X + 2 = 0 at some point, 
then 2 = -X at that point. Substituting this into (4) we get 

(1 + X2 + Y2) sin B = 0. 

But this cannot happen since 1 + X2 + Y2 # 0 and sine # 0. 
We have the following two cases: 

Case A. a = 0. 

From equations (1) and (2), we get 

(5) (1 - b2)(1 + Y2 + .Z2) + (X - 2)(X + Z) = 0 

(6) Y(x+z) = 0 

Since X + Z is everywhere nonzero, we get Y = 0 from (6). Substituting this into 

(5), we get 

(7) X2 - b2Z2 + (1 - b2) = 0 

Substituting Y = 0 into (4) we get 

(8) (1-XZ)sin~+(X+Z)c0s~=O 

Equations (7) and (8) define two different tonics. By Lemma 2.2 they have only 
finitely many common solutions. So there are only finitely many possible values 
for X, Y and Z. 

Case B. a # 0. 

From (3) we get 
x= 1-a2-b2 

Y + z. 
a 
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Substituting this into (2) and (4) we get 

1 - b2 
-Y2+a.Z2+2YZ+a = 0 

a 

(10)(1+Y2 -Z2 - 1-a~Pb2YZ)sinB+(1-a~-bZY +2Z)cos0 = 0 

Equation (9) and (10) define two different tonics. By Lemma 2.2 they have only 
finitely many common solutions. So there are only finitely many possible values 
for X, Y and Z. 

In any case, there are only finitely many possible values for X, Y and 2, that 
is, there are only finitely many possible values for fzlzl, fzlzz and fzzz2. Since 
the domain of f is connected, fzlz,, fzlz2 and fzz2. must be constants. Therefore 
f is a quadratic polynomial. 
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