BSE BANACH MODULES AND BUNDLES OF BANACH SPACES

D. A. ROBBINS

Communicated by Vern I. Paulsen

ABSTRACT. In a recent paper, S.-E. Takahasi defined the notion of a BSEBanach module over a commutative Banach algebra A with bounded approximate identity. We show that the multiplier space M(X) of X can be represented as a space of sections in a bundle of Banach spaces, and we use bundle techniques to obtain shorter proofs of various of Takahasi's results on C^* -algebra modules and to answer several questions which he raised.

1. INTRODUCTION

In this paper, A will denote a commutative Banach algebra with bounded approximate identity $\{u_j\}$. Denote by $\Delta = \Delta_A$ the space of multiplicative functionals on A, and, for $h \in \Delta$, let $K_h = \ker h \subset A$ be the corresponding maximal ideal. We give Δ its weak-* topology. Let X be a Banach A-module, and, for $h \in \Delta$, let $K_h X$ be the closure in X of $span\{ax : a \in K_h, x \in X\}$. As usual, $C_0(\Delta)$ is the space of continuous complex-valued functions on Δ which vanish at infinity, and $\widehat{}: A \to C_0(\Delta)$ is the Gelfand representation of A. If A is a C^* algebra, we will identify A and $C_0(\Delta_A)$. Following the notation of Takahasi [7], if $h \in \Delta$, we choose $e_h \in A$ such that $\widehat{e_h}(h) = h(e_h) = 1$, and we let X^h be the closure in X of $K_h X + (1 - e_h) X$. Then X^h is independent of the choice of e_h . We set $X_h = X/X^h$. If A is a C^* -algebra, for each $h \in \Delta$ we will choose $||e_h|| = 1$.

Let $\mathcal{E} = \bigcup \{X_h : h \in \Delta\}$ be the disjoint union of the X_h . (We can, if we like, identify – confuse! – \mathcal{E} with $\bigcup \{\{h\} \times X_h : h \in \Delta\}$; the h's are useful for book-keeping purposes.) We give an element $x + X^h \in \mathcal{E}$ ($x \in X, h \in \Delta$) its coset

¹⁹⁹¹ Mathematics Subject Classification. 46H25, 46J25.

Key words and phrases. Banach module, bundle of Banach spaces, essential module, $C(\Delta)$ -locally convex module.

D. A. ROBBINS

norm $||x + X^h||$. Let $\pi : \mathcal{E} \to \Delta$ be the obvious projection map. Given this data, let $\mathcal{C}(\mathcal{E})$ denote the linear space of selections (= choice functions) $\sigma : \Delta \to \mathcal{E}$, and let $\mathcal{C}^b(\mathcal{E})$ denote the subspace of bounded selections. Since each X^h is a Banach A-module, so is each X_h . In particular, for each $a \in A$ and $x \in X$ we have $ax - \hat{a}(h)x \in X^h$. (Proof: $ax - \hat{a}(h)x = (ax - ae_hx) + (ae_hx - \hat{a}(h)e_hx) +$ $(\hat{a}(h)e_hx - \hat{a}(h)x)$; the first two terms of the sum are in K_hX , and the last term is in $(1 - e_h)X$.) Hence, $a(x + X^h) = \hat{a}(h)x + X^h$. It follows that $\mathcal{C}(\mathcal{E})$ and $\mathcal{C}^b(\mathcal{E})$ are both A- and \hat{A} -modules under the operation $(a \cdot \sigma)(h) = \hat{a}(h)\sigma(h) = (\hat{a} \cdot \sigma)(h)$.

Consider the space $M(X) = Hom_A(A, X)$ of multipliers of X. Again, following [7], for $T \in M(X)$, we define a selection $\widetilde{T} : \Delta \to \mathcal{E}$ by $\widetilde{T}(h) = T(e_h) + X^h \in X_h$, where $\widehat{e_h}(h) = 1$. We see that this definition is also independent of the choice of e_h . The map $\widetilde{}: M(X) \to \mathcal{C}^b(\mathcal{E})$ is an A-module homomorphism of M(X) into $\mathcal{C}(\mathcal{E})$, as noted in [7]. (In fact, $\widetilde{M(X)}$ is an A- and \widehat{A} -submodule of $\mathcal{C}^b(\mathcal{E})$.) We also note that $T(A) \subset X_e$, the essential part of X. Further, if $x \in X$, then the map $T_x : A \to X, a \mapsto ax$, is an element of M(X). If X is an A-module, then so is X^* , with the multiplication given by $\langle x, f \cdot a \rangle = \langle ax, f \rangle$ $(a \in A, x \in X, f \in X^*)$.

We associate two topologies with the fibered space \mathcal{E} , and study the properties of the spaces of continuous and bounded selections from Δ to \mathcal{E} under these topologies. In [7], Takahasi explores some of the consequences of endowing \mathcal{E} with the quotient topology induced by the product topology on $\Delta \times X$ and the projection map $p: \Delta \times X \to \mathcal{E}, (h, x) \mapsto x + X^h = \widetilde{T}_x(h) = \widetilde{x}(h)$. We denote \mathcal{E} with this topology by \mathcal{E}_1 .

In this paper, we show that \mathcal{E} can be endowed with a topology which makes $\pi: \mathcal{E} \to \Delta$ a bundle of Banach spaces; we denote \mathcal{E} with this topology by \mathcal{E}_2 , and call it the multiplier bundle of X. In particular, we show that if A has a bounded approximate identity, then the bundle and quotient topologies coincide; i.e. $\mathcal{E}_1 = \mathcal{E}_2$. We then show that the multiplier bundles for X and for X_e are homeomorphic, and we use this result and the machinery of section spaces of Banach bundles to subsume several of the examples concerning C^* -algebra modules adduced in [7]. We also answer several questions posed in [7]. The reader may also wish to consult [8] for more recent developments and applications of this construction of a field of quotient modules.

2. The bundle topology

We refer the reader to [1], [2], or [4] for fundamental notions regarding bundles of Banach spaces and Banach modules, and we especially draw upon the following results, which are key to our investigations. **Proposition 2.1.** ([2, Corollary 3.7]) Suppose that U is a topological space, and that $\{Y_p : p \in U\}$ is a collection of Banach spaces. Let \mathcal{E} be the disjoint union of the Y_p , and let $\gamma : \mathcal{E} \to U$ be the obvious projection. Suppose that Y is a vector space of bounded selections $\sigma : U \to \mathcal{E}$ such that 1) $\mathcal{E} = \bigcup \{\sigma(u) : u \in U, \sigma \in Y\}$ ("Y is a full space of selections"); and 2) for each $\sigma \in Y$, the map $u \mapsto ||\sigma(u)||$ is upper semicontinuous. Then there is a unique topology on \mathcal{E} making $\gamma : \mathcal{E} \to U$ into a full bundle of Banach spaces, and such that each $\sigma \in Y$ is continuous.

As a special case of the above, we obtain

Proposition 2.2. ([4, Proposition 1.3]) Let U be a topological space, and let $\{X^p : p \in U\}$ be a collection of closed subspaces of the Banach space X. Let $\mathcal{E} = \bigcup \{X/X^p : p \in U\}$ be the disjoint union of the quotient spaces X/X^p . Then \mathcal{E} can be topologized in such a way that 1) $\pi : \mathcal{E} \to U$ is a bundle of Banach spaces; and 2) for each $x \in X$, the selection $\tilde{x} : U \to \mathcal{E}, \tilde{x}(p) = x + X^p$, is a bounded section of the bundle $\pi : \mathcal{E} \to U$, iff the function $p \mapsto \|\tilde{x}(p)\|$ is upper semicontinuous on U for each $x \in X$.

Lemma 2.3. Let $h \in \Delta$, and let C be the bound on the approximate identity for A. Then $||h|| \ge \frac{1}{C}$. Moreover, we may choose our collection $\{e_h : h \in \Delta\}$ so that $\{||e_h|| : h \in \Delta\}$ is bounded.

PROOF. For a given $\delta > 0$, we may choose $u = u_{j_0}$ in the approximate identity so that $\widehat{u}(h) > 1 - \delta$. Hence, $||h|| \ge \frac{1}{C}\widehat{u}(h) > \frac{1-\delta}{C}$, and since δ was arbitrary, it follows that $||h|| \ge \frac{1}{C}$. Now, for a fixed but arbitrary h, if we choose u in the approximate identity so that $\widehat{u}(h) > 1 - \delta$ and if we set $e_h = \frac{1}{\widehat{u}(h)}u$, we see that $||e_h|| \le \frac{C}{1-\delta}$.

Corollary 2.4. For any $T \in M(X)$, the selection $\tilde{T} : \Delta \to \mathcal{E}$ is bounded.

PROOF. For $h \in \Delta$, we have $\|\tilde{T}(h)\| = \|T(e_h) + X^h\| \le \|T(e_h)\| \le \|T\| \|e_h\|$; and the collection of e_h 's can be chosen to be bounded, by the preceding.

Proposition 2.5. Given the data above, let $T \in M(X)$. Then the map $h \mapsto \|\widetilde{T}(h)\| = \|T(e_h) + X^h\|$ is upper semicontinuous on Δ .

PROOF. Suppose that $\varepsilon > 0$ is given, and that $\left\| \widetilde{T}(h) \right\| < \varepsilon$. Choose $a_i \in K_h, y_i \in X$ $(i = 1, ..., n), z \in X$, such that

$$\left\|\widetilde{T}(h)\right\| \leq \left\|T(e_h) + \sum a_i y_i + (1-e_h)z\right\| < \varepsilon,$$

and set

$$\varepsilon' = \varepsilon - \left\| T(e_h) + \sum a_i y_i + (1 - e_h) z \right\|.$$

From the upper semicontinuity of the map $h' \mapsto ||a + K_{h'}||$ (see [5]) and the continuity of the function $\hat{e_h}$ on Δ , we can choose a neighborhood V of h such that when $h' \in V$ all of the following hold:

$$\sum \|a_i + K_{h'}\| < \frac{\varepsilon'}{3\sum \|y_i\|};$$

$$\left|\frac{1}{\widehat{e_h}(h)} - \frac{1}{\widehat{e_h}(h')}\right| = \left|1 - \frac{1}{\widehat{e_h}(h')}\right| < \frac{\varepsilon'}{3 \left\|T(e_h)\right\|}$$

and

$$|1-\widehat{e_h}(h')| < rac{arepsilon'}{3C\,\|z\|}$$

(where C is the bound on the approximate identity). Since the definition of $X^{h'}$ is independent of the choice of $e_{h'}$, for $h' \in V$ we may just as well take $e_{h'} = \frac{1}{\widehat{e_h}(h')} e_h$. We also make use of the fact that, for $a \in A$ and $h \in \Delta$, we have $||a + K_h|| = \frac{1}{||h||} |\widehat{a}(h)|$; see [5, Lemma 1.3]. Then, for $h' \in V$, we have the following:

$$\begin{split} \left\| \widetilde{T}(h') \right\| &= \left\| T(e_{h'}) + X^{h'} \right\| \\ &\leq \left\| T(e_{h'}) - T(e_{h}) + X^{h'} \right\| + \left\| T(e_{h}) + \sum a_{i}y_{i} + (1 - e_{h})z + X^{h'} \right\| \\ &+ \left\| \sum a_{i}y_{i} + (1 - e_{h})z + X^{h'} \right\| \\ &\leq \left\| T(e_{h'}) - T(e_{h}) \right\| + \left\| T(e_{h}) + \sum a_{i}y_{i} + (1 - e_{h})z \right\| + \left\| \sum a_{i}y_{i} + X^{h'} \right\| \\ &+ \left\| (e_{h'} - e_{h})z + X^{h'} \right\| \\ &\leq \left| 1 - \frac{1}{\hat{e_{h}}(h')} \right\| \|T(e_{h}) \| + \|T(e_{h}) + \sum a_{i}y_{i} + (1 - e_{h})z \| + \| \sum a_{i}y_{i} + K_{h'}X \| \\ &+ \left\| (e_{h'} - e_{h})z + X^{h'} \right\| \\ &< \varepsilon'/3 + \|T(e_{h}) + \sum a_{i}y_{i} + (1 - e_{h})z \| + \| \sum a_{i}y_{i} + K_{h'}X \| \\ &+ \| (e_{h} - e_{h'}) + K_{h'} \| \|z + K_{h'}X \| \\ &\leq \varepsilon'/3 + \|T(e_{h}) + \sum a_{i}y_{i} + (1 - e_{h})z \| + \sum \|a_{i} + K_{h'}\| \|y_{i}\| \\ &+ \frac{|\widehat{e_{h'}}(h') - \widehat{e_{h}}(h')|}{\|h'\|} \|z\| \\ &< \varepsilon'/3 + \|T(e_{h}) + \sum a_{i}y_{i} + (1 - e_{h})z \| + \varepsilon'/3 + C |1 - \widehat{e_{h}}(h')| \|z\| \\ &< \varepsilon. \end{split}$$

The space $\widetilde{X} = \{\widetilde{T_x} : x \in X\}$ is a full space of selections in $\mathcal{C}^b(\mathcal{E})$, since, for each each $x \in X$ and $h \in \Delta$ we have $\widetilde{T_x}(h) = T_x(e_h) + X^h = e_h x + X^h = x + X^h \in X_h$. The space $\widetilde{M(X)} = \{\widetilde{T} : T \in M(X)\} \supset \widetilde{X}$ is therefore also full. It follows by Proposition 1 or Proposition 2, above, that there is a unique topology on \mathcal{E} which turns $\pi : \mathcal{E} \to \Delta$ into a bundle of Banach spaces, such that each \widetilde{T} $(T \in M(X))$ is a member of the Banach $C_0(\Delta)$ -module $\Gamma^b(\pi)$ of all continuous and bounded sections of the bundle $\pi : \mathcal{E} \to \Delta$. Moreover, we may regard $\Gamma^b(\pi)$ as a Banach A-module under the operation $(a \cdot \sigma)(h) = \widehat{a}(h)\sigma(h)$, as described above. In the language of [4], the map $\widetilde{}: M(X) \to \Gamma^b(\pi)$ is a sectional representation of M(X)of Gelfand type. We recall that, in this bundle topology on \mathcal{E} , neighborhoods of a point $x + X^h$ are described by tubes: let $\sigma \in \Gamma^b(\pi)$ be such that $\sigma(h) = x + X^h$, let V be a neighborhood in Δ of h, and let $\varepsilon > 0$. Then $\mathcal{T} = \mathcal{T}(V, \sigma, \varepsilon) = \{z + X^{h'} : h' \in V, \|\sigma(h') - (z + X^{h'})\| < \varepsilon\}$ is a neighborhood of $\sigma(h)$, and in fact sets of this form, as V ranges over all neighborhoods of h and $\varepsilon > 0$ varies, form a fundamental system of neighborhoods of $\sigma(h)$. Denote by \mathcal{E}_2 the set \mathcal{E} with its bundle topology generated by the \widetilde{T} ($T \in M(X)$), and let $p : \Delta \times X \to \mathcal{E}_2$ be the natural map $(h, x) \mapsto \widetilde{x}(h)$.

Proposition 2.6. Let A be a commutative Banach algebra with bounded approximate identity, and let X be a Banach A-module. Then the spaces \mathcal{E}_1 and \mathcal{E}_2 are homeomorphic.

PROOF. Since the topology on \mathcal{E}_1 is the quotient topology on \mathcal{E} induced by the map $p: \Delta \times X \to \mathcal{E}$, it suffices to show that the topology \mathcal{E}_2 is also the quotient topology. We will show that the map $p: \Delta \times X \to \mathcal{E}_2$ is continuous and open, and the desired result then follows from a standard topological argument.

a) p is continuous: Let $\mathcal{T} = \mathcal{T}(V, \tilde{x}, \varepsilon)$ be a bundle neighborhood of $\tilde{x}(h) = x + X^h = p(h, x)$ in \mathcal{E}_2 , as described above. If $B(x, \varepsilon)$ denotes the open ball around $x \in X$ of radius $\varepsilon > 0$, then $V \times B(x, \varepsilon)$ is a neighborhood of (h, x) in the product topology on $\Delta \times X$. If $(h', y) \in V \times B(x, \varepsilon)$, then $h' \in V$, and $\|\tilde{x}(h') - \tilde{y}(h')\| \leq \|x - y\| < \varepsilon$; i.e. $\tilde{y}(h') = p(h', y) \in \mathcal{T}$.

b) p is open: Consider a set of form $V \times B(0, \varepsilon)$, which is nearly a typical open set in the product topology on $\Delta \times X$. We claim that $p(V \times B(0, \varepsilon))$ is open in \mathcal{E}_2 . Let $h \in V$ and $y \in B(0, \varepsilon)$, and set $\varepsilon' = \varepsilon - ||y||$.

Consider the tube $\mathcal{T} = \mathcal{T}(V, \tilde{y}, \varepsilon')$ around $\tilde{y}(h)$, and let $\tilde{x}(h') \in \mathcal{T}$. Then $h' \in V$, and $\|\tilde{x}(h') - \tilde{y}(h')\| < \varepsilon'$. From the definition of the coset norm, we may choose $q = \sum a_i w_i + (1 - e_{h'}) z \in K_{h'} X + (1 - e_{h'}) X \subset X^{h'}$ such that

$$\|\widetilde{x}(h') - \widetilde{y}(h')\| \leq \|(x-y) + q\| < arepsilon'.$$

Then

$$||x+q|| \le ||x-y+q|| + ||y|| < \varepsilon$$

 and

$$(\widetilde{x+q})(h') = \widetilde{x}(h') + \widetilde{q}(h') = \widetilde{x}(h').$$

That is, $\tilde{x}(h') \in p(V \times B(0, \varepsilon))$. Hence, $\mathcal{T} \subset p(V \times B(0, \varepsilon))$, and thus $p(V \times B(0, \varepsilon))$ is an open set. The final result follows by translation.

The space $\widetilde{M(X)} = \{\widetilde{T} : T \in M(X)\}$ is a subspace of $\Gamma^b(\pi)$ for the bundle $\pi : \mathcal{E}_1 = \mathcal{E}_2 \to \Delta$. Given the homeomorphism of \mathcal{E}_1 and \mathcal{E}_2 , for the remainder of the paper we will denote by \mathcal{E} the fibered set with its bundle topology, and we will speak of the section space $\Gamma(\pi)$ ($\Gamma^b(\pi)$) of all continuous (bounded) sections of the bundle $\pi : \mathcal{E} \to \Delta$. We will call this the *multiplier bundle* for X.

We now examine for a moment the module $Y = X_e = \text{closure in } X$ of $span\{ax : a \in A, x \in X\}$. We note that, due to the Hewitt-Cohen factorization theorem, we actually have $X_e = AX$.

As an A-module, Y has a representation (its sectional Gelfand representation, in the language of [4]) as a space $\widehat{Y} \subset \Gamma(\pi')$ of a "canonical bundle" of Banach spaces $\pi' : \mathcal{F} \to \Delta$; the fibers of this bundle are the spaces $Y_h = Y/Y^h$, where $Y^h = \text{closure in } Y$ of $\text{span}\{ay : a \in K_h, y \in Y\}$. It can be easily checked that, because Y is an essential A-module, we actually have $Y^h = K_hY + (1 - e_h)Y$, as defined earlier. We note that we can also write $Y^h = K_hX$, since A has a bounded approximate identity and is therefore factorable. The mapping $\widehat{}: Y \to \Gamma(\pi')$ is given by $\widehat{y}(h) = y + Y^h$.

Consider the space $M(Y) = Hom_A(A, Y)$ of multipliers from A to Y. Let $y \in Y$, and let $T_y \in M(Y)$ be given by $T_y(a) = ay$. Then $\widetilde{T_y}(h) = T_y(e_h) + Y^h = e_h y + Y^h = \hat{y}(h)$. In other words, the representation of T_y as a section in the multiplier bundle for Y can be identified with the representation of y as a section in the canonical bundle for Y. It turns out that the fibers of the multiplier bundle for $Y = X_e$ and the multiplier bundle for X are related in general.

Proposition 2.7. There is a topological linear isomorphism of the fiber $X_h = X/X^h$ of the multiplier bundle for X and of the fiber $Y_h = Y/Y^h = X_e/(X_e)^h$ of the multiplier (canonical) bundle for $Y = X_e$. If $||e_h|| \leq 1$, then these fibers are isometrically isomorphic.

PROOF. Let $i: X_e \to X$ be the inclusion map, and let $\rho_h: X \to X_h = X/X^h$ be the quotient map. Then $\rho_h \circ i: X_e \to X_h$ is norm-decreasing and surjective (because, for each $x \in X$, we have $(\rho_h \circ i)(e_h x) = e_h x + X^h = x + X^h$). If $ay \in K_h X = (X_e)^h = Y^h$, then $ay \in X^h$, and so $(\rho_h \circ i)(ay) = ay + X^h = X^h$; i.e. $K_h X \subset \ker(\rho_h \circ i)$. Thus, there is a norm-decreasing map $\phi_h: X_e/(X_e)^h \to X/X^h$ which carries $ax + K_h X = ax + (X_e)^h$ to $ax + X^h$.

On the other hand, consider the map of $X \to X_e$ given by $x \mapsto e_h x$; this map clearly has norm $\leq ||e_h||$. We compose this with the quotient map $\rho'_h : X_e \to X_e/K_h X = X_e/(X_e)^h = (X_e)_h \rho'_h : X_e \to X_e/K_h X = X_e/(X_e)^h = (X_e)_h$ and obtain a map $\psi'_h : X \to (X_e)_h$ of norm $\leq ||e_h||$. If $w = ay + (1 - e_h)z \in X^h$, then $\psi'_h(w) = e_h w + K_h X = K_h X$, so that we obtain a map $\psi_h : X/X^h \to X_e/K_h X$, with $\|\psi_h\| \leq \|e_h\|$. Note also that ψ_h is surjective, since, for $ax \in X_e, \psi_h(ax + X^h) = e_h ax + K_h X = \hat{e_h}(h)(ax + K_h X) = ax + K_h X$.

It is now easily checked that $\phi_h \circ \psi_h$ and $\psi_h \circ \phi_h$ are the identities on the appropriate spaces. This establishes the desired topological linear isomorphism. That the isomorphism is isometric if $||e_h|| \leq 1$ is evident.

The preceding establishes a bijection between the fiber space \mathcal{E} of $\pi : \mathcal{E} \to \Delta$, the multiplier bundle for X, and the fiber space \mathcal{F} of the multiplier bundle $\pi' : \mathcal{F} \to \Delta$ for X_e . We define the maps $\Phi : \mathcal{F} \to \mathcal{E}$ and $\Psi : \mathcal{E} \to \mathcal{F}$ fiberwise; e.g. $\Phi(x + (X_e)^h) = \phi_h(x + (X_e)^h).$

Proposition 2.8. The spaces \mathcal{E} and \mathcal{F} , with the bundle topologies generated by X and X_e , respectively, are homeomorphic.

PROOF. We will show that $\Psi: \mathcal{E} \to \mathcal{F}$ is continuous; the proof of the continuity of Φ will be similar. Let $D = \sup\{\|e_h\| : h \in \Delta\}$, let $x + X^h \in \mathcal{E}$, and consider the tube $\mathcal{T}_1 = \mathcal{T}_1(V, \widetilde{e_h x}, \varepsilon)$ around $e_h x + (X_e)^h = \Psi(x + X^h) = \psi_h(x + X^h) \in \mathcal{F}$. Then $\mathcal{T}_2 = \mathcal{T}_2(V, \widetilde{x}, \varepsilon/D)$ is a neighborhood of $x + X^h = \widetilde{x}(h)$ in \mathcal{E} . Let $y + X^{h'} \in \mathcal{T}_2$. Then $h' \in V$, and

$$\left\| (y+X^{h'}) - \widetilde{x}(h') \right\| = \left\| (y+X^{h'}) - (x+X^{h'}) \right\| < \varepsilon/D.$$

Then

$$\begin{split} \left\| \Psi(y + X^{h'}) - \Psi(x + X^{h'}) \right\| &= \left\| \psi_{h'}(y + X^{h'}) - \psi_{h'}(x + X^{h'}) \right\| \\ &\leq D \left\| (y + X^{h'}) - (x + X^{h'}) \right\| \\ &< \varepsilon, \end{split}$$

so that $\Psi(y + X^{h'}) \in \mathcal{T}_1$.

We offer the following without proof.

Corollary 2.9. Let $\pi : \mathcal{E} \to \Delta$ and $\pi' : \mathcal{F} \to \Delta$ be the multiplier bundle of X and the multiplier bundle for X_e , respectively. Then there is a topological linear isomorphism $\psi : \Gamma^b(\pi) \to \Gamma^b(\pi')$, which is an isometry if the approximate identity for A is bounded by 1. Moreover, ψ is a $C_0(\Delta)$ -linear map. For $\sigma \in \Gamma^b(\pi)$, we have $\psi(\sigma) = \Psi \circ \sigma$. The inverse map $\phi : \Gamma^b(\pi') \to \Gamma^b(\pi)$ is given by $\phi(\tau) = \Phi \circ \tau$.

The following diagram illustrates the relationship among the maps constructed in this section. Here, ρ_h and ρ'_h will denote the quotient maps, ev_h will denote the evaluation maps, and \sim will denote the section maps.

3. The BSE condition

An element $\sigma \in \mathcal{C}(\mathcal{E})$ is said to be BSE (this refers to Bochner-Schoenberg-Eberlein; see [7] for an etymology of the term) if there exists some $\beta = \beta_{\sigma} > 0$ such that, for any choice of $h_i \in \Delta$, $f_i \in (X_{h_i})^*$ (i = 1, ..., n) we have

$$\left|\sum_{i=1}^{n} \langle \sigma, f_i \circ ev_{h_i} \rangle\right| = \left|\sum_{i=1}^{n} \langle \sigma(h_i), f_i \rangle\right| \le \beta \left\|\sum_{i=1}^{n} f_i \circ \rho_{h_i}\right\|_{X^*},$$

where $\rho_h : X \to X_h$ is the quotient map and $ev_h : \mathcal{C}(\mathcal{E}) \to X_h$, $\sigma \mapsto \sigma(h)$, is the evaluation map. Takahasi [7] shows that if $x \in X$, then $\widetilde{T_x}$ is BSE. If in addition A is a regular Banach algebra, then \widetilde{T} is BSE for each $T \in M(X)$. The fundamental question explored in [7] is, When is $\widetilde{M(X)}$ equal to the space of all continuous \mathcal{E} -valued BSE selections on Δ , with \mathcal{E} given its quotient topology? From the work done in the previous section, this is equivalent to the question of when $\widetilde{M(X)}$ is equal to $\Gamma_{BSE}(\pi)$, the space of BSE sections of the multiplier bundle $\pi : \mathcal{E} \to \Delta$. If $\widetilde{M(X)} = \Gamma_{BSE}(\pi)$, then the A-module X is said to be BSE.

We first make an elementary observation, noted without proof in [7].

Lemma 3.1. Suppose that $\sigma \in C(\mathcal{E})$ is BSE. Then σ is bounded.

PROOF. From the definition of the *BSE* property, there exists $\beta = \beta_{\sigma} > 0$ such that for each $h \in \Delta$ and $f \in (X/X^h)^*$, we have

$$\left|\left\langle \sigma(h), f\right\rangle\right| \leq \beta \left\|f \circ \rho_{h}\right\|_{X^{\star}} \leq \beta \left\|f\right\|,$$

since $\|\rho_h\| \leq 1$. We choose $f \in (X/X^h)^*$, with $\|f\| = 1$, such that $|\langle \sigma(h), f \rangle| = \|\sigma(h)\|$, and we obtain

$$|\sigma(h)|| = |\langle \sigma(h), f \rangle| \le \beta ||f|| = \beta,$$

i.e. $\|\sigma\| = \sup\{\|\sigma(h)\| : h \in \Delta\} \le \beta$.

Thus, the question of when an A-module X is BSE can now be studied by using only elements of $\Gamma^b(\pi)$, the bounded sections of the bundle $\pi : \mathcal{E} \to \Delta$. There is a relationship between $\Gamma_{BSE}(\pi)$ and $\Gamma_{BSE}(\pi')$.

Proposition 3.2. Let $\psi : \Gamma^b(\pi) \to \Gamma^b(\pi')$, $\phi : \Gamma^b(\pi') \to \Gamma^b(\pi)$ be the topological linear isomorphisms described at the end of the previous section. If $\sigma \in \Gamma_{BSE}(\pi')$ (arising from X_e), then $\phi(\sigma) \in \Gamma_{BSE}(\pi)$ (arising from X). Conversely, if $A = C_0(\Delta)$ is a C^* -algebra, and if $\sigma \in \Gamma_{BSE}(\pi)$, then $\psi(\sigma) \in \Gamma_{BSE}(\pi')$.

PROOF. First, let $h \in \Delta$, let $f \in (X_h)^*$, and let $ax \in X_e$. Then

$$\begin{aligned} \langle ax, f \circ \rho_h \rangle &= \langle ax + X^h, f \rangle \\ &= \langle \phi_h(ax + (X_e)^h), f \rangle \\ &= \langle ax + (X_e)^h, \phi_h^*(f) \rangle \\ &= \langle ax, \phi_h^*(f) \circ \rho_h^{'} \rangle. \end{aligned}$$

That is, $\phi_h^*(f) \circ \rho_h^{\prime} \in (X_e)^*$ is the restriction to $X_e \subset X$ of $f \circ \rho_h \in X^*$, where $\rho_h : X \to X_h$ and $\rho_h^{\prime} : X_e \to (X_e)_h$ are the quotient maps.

With this in mind, we now let $h_i \in \Delta$, $f_i \in (X_{h_i})^*, i = 1, ..., n$, and suppose that $\sigma \in \Gamma_{BSE}(\pi')$. Then

$$\begin{split} |\sum \langle [\phi(\sigma)](h_i), f_i \rangle| &= |\sum \langle \phi_{h_i}(\sigma(h_i)), f_i \rangle| \\ &= |\sum \langle \sigma(h_i), \phi^*_{h_i}(f_i) \rangle| \\ &\leq \beta_\sigma \left\| \sum \phi^*_{h_i}(f_i) \circ \rho'_{h_i} \right\|_{(X_e)^*} \\ &\leq \beta_\sigma \left\| \sum f_i \circ \rho_{h_i} \right\|_{X^*}. \end{split}$$

498

Thus, $\phi(\sigma) \in \Gamma_{BSE}(\pi)$.

Now, let A be a C^* -algebra. We first note that, given $h_i \in \Delta$ (i = 1, ..., n) we can choose our e_{h_i} to have disjoint support. We also note that, if $ax \in X_e$ and $f \in (X_e)_h^*$, we have

$$\begin{split} \langle ax, \psi_h^*(f) \circ \rho_h \rangle &= \langle ax + X^h, \psi_h^*(f) \rangle \\ &= \langle \psi_h(ax + X^h), f \rangle \\ &= \langle ax + (X_e)^h, f \rangle \\ &= \langle ax, f \circ \rho_h^{'} \rangle. \end{split}$$

That is, $f \circ \rho'_h \in (X_e)^*$ is the restriction to X_e of $\psi_h^*(f) \circ \rho_h \in X^*$.

Let $h_i \in \Delta, f_i \in (X_e)_{h_i}^*$, (i = 1, ..., n). Let $\sigma \in \Gamma_{BSE}(\pi)$; we claim that $\psi(\sigma) \in \Gamma_{BSE}(\pi')$. We have

$$\begin{split} |\sum \langle [\psi(\sigma)](h_i), f_i \rangle| &= |\sum \langle \psi_{h_i}(\sigma(h_i)), f_i \rangle| \\ &= |\sum \langle \sigma(h_i), \psi_{h_i}^*(f_i) \rangle| \\ &\leq \beta_\sigma \left\| \sum \psi_{h_i}^*(f_i) \circ \rho_{h_i} \right\|_{X^*}. \end{split}$$

If $\varepsilon > 0$ is given, we can choose $x \in X, ||x|| = 1$, such that

$$\beta_{\sigma} \left\| \sum_{i} \psi_{h_{i}}^{*}(f_{i}) \circ \rho_{h_{i}} \right\|_{X^{*}} < \beta_{\sigma} \left| \sum_{i} \langle x, \psi_{h_{i}}^{*}(f_{i}) \circ \rho_{h_{i}} \rangle \right| + \varepsilon.$$

From our choice of e_{h_i} (i = 1, ..., n) to have disjoint support, we see that $\left\|\sum_j e_{h_j}\right\| = 1$ and that $[\psi_{h_i}^*(f_i) \circ \rho_{h_i}] \cdot (e_{h_j}) = \delta_{ij} [\psi_{h_i}^*(f_i) \circ \rho_{h_i}]$, where δ_{ij} is the Kronecker δ . It follows that

$$\begin{aligned} \beta_{\sigma} \left| \sum_{i} \left\langle x, \psi_{h_{i}}^{*}(f_{i}) \circ \rho_{h_{i}} \right\rangle \right| + \varepsilon &= \beta_{\sigma} \left| \sum_{i} \left\langle x, \left[\psi_{h_{i}}^{*}(f_{i}) \circ \rho_{h_{i}} \right] \cdot \left(\sum_{j} e_{h_{j}} \right) \right\rangle \right| + \varepsilon \\ &= \beta_{\sigma} \left| \sum_{i} \left\langle (\sum_{j} e_{h_{j}}) x, \psi_{h_{i}}^{*}(f_{i}) \circ \rho_{h_{i}} \right\rangle \right| + \varepsilon \\ &= \beta_{\sigma} \left| \sum_{i} \left\langle (\sum_{j} e_{h_{j}}) x, f_{i} \circ \rho_{h_{i}}^{'} \right\rangle \right| + \varepsilon \\ &\leq \beta_{\sigma} \left\| \sum_{i} f_{i} \circ \rho_{h_{i}}^{'} \right\|_{(X_{e})^{*}} + \varepsilon, \end{aligned}$$

because $(\sum_{j} e_{h_{j}})x \in X_{e}$, by the restriction argument above and $\left\|\left(\sum_{j} e_{h_{j}}\right)x\right\| \leq 1$. Thus, $\psi(\sigma) \in \Gamma_{BSE}(\pi')$.

Corollary 3.3. If A is a C^* -algebra and if X_e is a BSE A-module, then so is X.

PROOF. Let X_e be BSE, and let $\sigma \in \Gamma_{BSE}(\pi)$. Then $\psi(\sigma) \in \Gamma_{BSE}(\pi')$, and so there exists $T' \in M(X_e)$ such that $\widetilde{T'} = \psi(\sigma)$. If $i : X_e \to X$ is the inclusion, then $T = i \circ T' : A \to X$, and $T \in M(X)$. We have

$$\widetilde{(i \circ T')}(h) = (i \circ T')(e_h) + X^h$$

= $T'(e_h) + X^h$
= $\phi_h(T'(e_h) + (X_e)^h)$
= $(\phi_h \circ \psi_h)(\sigma(h))$
= $\sigma(h),$

that is, $(i \circ T') = \sigma$.

We now turn to some special cases involving commutative C^* -algebras. If $A = C_0(\Delta)$ is a commutative C^* -algebra, an A-module X is said to be $C_0(\Delta)$ locally convex if (among other equivalent formulations) we have $||ay_1 + by_2|| = \max\{||ay_1||, ||by_2||\}$ for all $a, b \in A$ with disjoint support, and for all $y_1, y_2 \in X$. If X is $C_0(\Delta)$ -locally convex, and if X is essential, then there is an isometric $C_0(\Delta)$ isomorphism of X and $\Gamma_0(\pi)$, the space of sections of the multiplier bundle for X which disappear at infinity. (See [2] or [4] for details.)

Proposition 3.4. Suppose that $A = C_0(\Delta)$ is a commutative C^* -algebra, and suppose that X is an A-module such that X_e , the essential part of X, is $C_0(\Delta)$ -locally convex. Then 1) each element of $\Gamma^b(\pi)$ is BSE; and 2) $\widetilde{M(X)} = \Gamma^b(\pi)$.

PROOF. For 1), let $\sigma \in \Gamma^b(\pi)$, and choose arbitrary $h_i \in \Delta, f_i \in (X_{h_i})^* = (X/X^{h_i})^*$ (i = 1, ..., n). Choose $e_{h_i} \in A$ with disjoint support and such that $||e_{h_i}|| = e_{h_i}(h_i) = 1$, and choose $x_i \in X$ such that $\sigma(h_i) = x_i + X^{h_i} = \tilde{x}_i(h_i)$. Given $\varepsilon > 0$, for each i = 1, ..., n choose $z_i \in K_{h_i}X + (1 - e_{h_i})X \subset X^{h_i}$ such that

$$\|\sigma(h_i)\| \le \|x_i + z_i\| < \|\sigma\| + \varepsilon.$$

500

Set $w = \sum e_{h_i}(x_i + z_i)$. Then $w \in X_e$, and so

$$\begin{aligned} \|w\| &= \|\sum e_{h_i}(x_i + z_i)\| \\ &= \max\{\|e_{h_i}\| \|x_i + z_i\|\} \\ &\quad \text{(because } X_e \text{ is } C_0(\Delta)\text{-locally convex and the } e_{h_i} \\ &\quad \text{have disjoint support)} \\ &< \|\sigma\| + \varepsilon. \end{aligned}$$

Hence, it follows that

$$\begin{split} |\sum_{i} \langle \sigma(h_{i}), f_{i} \rangle| &= |\sum_{i} \langle x_{i} + z_{i}, f_{i} \circ \rho_{h_{i}} \rangle| \\ &= |\sum_{i} \langle e_{h_{i}}(x_{i} + z_{i}), f_{i} \circ \rho_{h_{i}} \rangle| \\ &= \left| \sum_{i} \left\langle \sum_{j} e_{h_{j}}(x_{j} + z_{j}), f_{i} \circ \rho_{h_{i}} \right\rangle \right| \\ &\quad (\text{since } e_{h_{i}}(h_{j}) = \delta_{ij} = \text{ Kronecker } \delta) \\ &= |\sum_{i} \langle w, f_{i} \circ \rho_{h_{i}} \rangle| \\ &\leq ||w|| \, ||\sum_{i} f_{i} \circ \rho_{h_{i}}||_{X}. \end{split}$$

$$< (\|\sigma\| + \varepsilon) \|\sum_{i} f_{i} \circ \rho_{h_{i}}\|_{X^{*}}$$

(We note that for $x \in X$ and $a \in A$, we have $(f \circ \rho_h)(ax) = f(\widetilde{ax}(h)) = f(a(h)\widetilde{x}(h)) = a(h)(f \circ \rho_h)(x)$).

For part 2), suppose that $\phi: \Gamma_0(\pi) \to X_e$ is the isometric $C_0(\Delta)$ -isomorphism of the assumption. Among other properties of ϕ , we have $[\phi(\sigma)]^{\sim}(h) = \sigma(h)$ for each $\sigma \in \Gamma_0(\pi)$. Now, let $\sigma \in \Gamma^b(\pi)$. We define $T_{\sigma}: A \to X$ by $T_{\sigma}(a) = \phi(a\sigma)$. Then, for $b \in C_0(\Delta)$, we have

$$bT_{\sigma}(a) = b\phi(a \cdot \sigma) = \phi(ba \cdot \sigma) = T_{\sigma}(ba).$$

Clearly, T_{σ} is bounded, and so $T \in M(X)$. Moreover, for $h \in \Delta$, we have

$$\overline{T_{\sigma}}(h) = [T_{\sigma}(e_h)]^{\sim}(h) = [\phi(e_h \cdot \sigma)]^{\sim}(h) = (e_h \cdot \sigma)(h) = \sigma(h).$$

Two examples, worked out at some length in [7], then follow as corollaries:

Corollary 3.5. Let A be a commutative C^* -algebra, and let $I \subset A$ be a closed ideal. Then I is BSE as an A-module, and A is BSE as an I-module.

PROOF. As an A-module, $I = I_e$ is essential, and since $I \subset C_0(\Delta_A)$ is $C_0(\Delta_A)$ locally convex, the result follows. On the other hand, as an *I*-module, $A_e = I = C_0(\Delta_I)$, which is $C_0(\Delta_I)$ -locally convex.

Corollary 3.6. Let A be a quasi-central C^* -algebra, with center Z. Then A is BSE as a Z-module.

PROOF. From the proof in ([7], Theorem 3.2), A is essential as a Z-module. Note that $Z \simeq C_0(\Delta_Z)$. A variant of a result by Varela ([9], Theorem 3.5) shows that A is isometrically isomorphic to the space $\Gamma_0(\pi)$ of sections of $\pi : \mathcal{E} \to \Delta_Z$ which vanish at infinity, and hence that A is $C_0(\Delta_Z)$ -locally convex.

We now address questions asked by Takahasi in [7], as to whether $\Gamma_{BSE}(\pi) \subset \Gamma^b(\pi)$ is a Banach A-module.

Proposition 3.7. Let A and X be as generally given. Then $\Gamma_{BSE}(\pi)$ is an A-module.

PROOF. Let $\sigma, \tau \in \Gamma_{BSE}(\pi)$. Choose β_{σ} and β_{τ} as in the definition of BSE, and let $h_i \in \Delta, f_i \in (X_{h_i})^*$ (i = 1, ..., n). Then

$$\begin{split} |\sum \langle (\sigma + \tau)(h_i), f_i \rangle| &\leq |\sum \langle \sigma(h_i), f_i \rangle| + |\sum \langle \tau(h_i), f_i \rangle| \\ &\leq (\beta_\sigma + \beta_\tau) \left\| \sum f_i \circ \rho_{h_i} \right\|_{X^{\bullet}}, \end{split}$$

so that $\sigma + \tau \in \Gamma_{BSE}(\pi)$. Similarly, let $a \in A$. Then

$$\begin{split} |\sum \langle (a \cdot \sigma)(h_i), f_i \rangle| &= |\sum \langle \widehat{a}(h_i)\sigma(h_i), f_i \rangle| \\ &= |\sum \langle \sigma(h_i), \widehat{a}(h_i)f_i \rangle| \\ &\leq \beta_{\sigma} \|\sum \widehat{a}(h_i)(f_i \circ \rho_{h_i})\|_{X^*} \\ &= \beta_{\sigma} \|\sum (f_i \circ \rho_{h_i}) \cdot a\|_{X^*} \\ &\leq \beta_{\sigma} \|a\| \|\sum f_i \circ \rho_{h_i}\|_{X^*} , \end{split}$$

since $\sum (f_i \circ \rho_{h_i}) \cdot a = \sum (f_i \circ \rho_{h_i}) \widehat{a}(h_i)$. Thus, $a \cdot \sigma \in \Gamma_{BSE}(\pi)$.

However, as the following example shows, $\Gamma_{BSE}(\pi)$ may not be a Banach space, even when A is about as nice as it can be.

Example 3.1: Let A = C([0, 1]), and let $X = A^*$, the set of bounded Borel measures on [0, 1]. Since A has an identity, we have M(X) = X, and it can be shown (see [10] or [4]) that, for $h \in \Delta = [0, 1]$, we have $X_h \simeq \mathbb{C}$. Under this

identification, for $\mu \in X$ and $h \in [0,1]$ we have $\tilde{\mu}(h) = \mu(\{h\})$, so that ker($\tilde{}$) is the space of continuous measures on [0,1]. Evidently, for any $\mu \in X = M(X)$, $\tilde{\mu}$ has only countable support in [0,1], and we can identify $\Gamma(\pi) = \Gamma^b(\pi)$ with $c_0([0,1])$, the closure under the sup-norm of the space of functions on [0,1] which vanish off finite sets.

Now, A is a regular algebra, and so each element of $\widetilde{X} = M(\widetilde{X})$ is BSE. We will describe an element $\sigma \in \Gamma(\pi)$ such that $\sigma \neq \tilde{\mu}$ for any $\mu \in X$ but such that there is a sequence $\{\mu_n\} \subset X$ such that $\sigma = \lim \tilde{\mu_n}$ in $\Gamma(\pi)$; thus $\Gamma_{BSE}(\pi)$ is not complete.

For each $h \in [0,1]$, we have $X_h \simeq \mathbb{C}$, so that for $f \in (X_h)^*$ the action of f on X_h can be identified with multiplication by some $\alpha = \alpha_f \in \mathbb{C}$. We show that, given $h_i \in [0,1]$ and $f_i \in (X_{h_i})^*$ (i = 1, ..., n), we have $\|\sum f_i \circ \rho_{h_i}\|_{X^*} = \max\{|\alpha_{f_i}|: i = 1, ..., n\}$. First, let $\varepsilon > 0$ be given. We can choose $\mu \in X$, $\|\mu\| = 1$ such that

$$\begin{split} \|\sum f_i \circ \rho_{h_i}\|_{X^*} &< |\sum \langle \mu, f_i \circ \rho_{h_i} \rangle| + \varepsilon \\ &= |\sum \alpha_{f_i} \mu(\{h_i\})| + \varepsilon \\ &< \sum |\alpha_{f_i}| |\mu(\{h_i\})| + \varepsilon \\ &\leq \max\{|\alpha_{f_i}|\} \sum |\mu(\{h_i\})| + \varepsilon \\ &\leq \max\{|\alpha_{f_i}|\} + \varepsilon, \end{split}$$

since $\sum |\mu(\{h_i\})| \le ||\mu|| = 1$. Hence, $||\sum f_i \circ \rho_{h_i}||_{X^*} \le \max\{|\alpha_{f_i}|\}$. On the other hand, for each j = 1, ..., n, we let $\mu_j \in X$ be the unit point mass at h_j . Then $||\mu_j|| = 1$, and

$$\left|\sum_{i} \langle \mu_j, f_i \circ \rho_{h_i} \rangle \right| = \left| \alpha_{f_j} \mu_j(\{h_j\}) \right| = \left| \alpha_{f_j} \right| \le \left\| \sum_{i} f_i \circ \rho_{h_i} \right\|_{X^*},$$

so that $\max\{|\alpha_{f_i}|\} \leq \|\sum f_i \circ \rho_{h_i}\|_{X^*}$.

Now, consider $\sigma \in \Gamma(\pi)$ given by $\sigma(h) = h$, if h = 1/k for some $k = 1, 2, ..., \sigma(h) = 0$ otherwise. Let $h_j = 1/j$ for j = 1, ..., n, and let $f_j \in (X_{h_j})^*$ be determined by $\alpha_{f_j} = 1$. Then

$$\left|\sum_{j=1}^{n} \left\langle \sigma(h_j), f_j \right\rangle \right| = \sum_{j=1}^{n} 1/j,$$

but $\|\sum f_j \circ \rho_{h_j}\|_{X^{\bullet}} = 1$, so that $\sigma \notin \Gamma_{BSE}(\pi)$. However, let $\mu_n \in X$ be the discrete measure on [0,1] such that $\mu_n(\{1/j\}) = 1/j$ for each j = 1, ..., n. Then $\widetilde{\mu_n} \in \Gamma_{BSE}(\pi)$ and $\sigma = \lim \widetilde{\mu_n}$.

Example 3.2: It is also shown in [7] that when G is a compact abelian group, each of the convolution $L^1(G)$ -modules C(G), $L^p(G)$ $(1 \le p \le \infty)$ and M(G) is BSE, and the question is asked whether the same is true for the case of non-compact G. This is true, at least for $L^p(G)$ when 1 , but the reason turns out not to be especially interesting, as the following shows:

We have noted that for algebras A of the sort we are using, and A-modules X, we have $a(x + X^h) = \hat{a}(h)(x + X^h)$. Thus, if $f \in (X_h)^* = (X/X^h)^* \simeq (X^h)^{\perp}$, we may write $(f \cdot a)(x + X^h) = \hat{a}(h)f(x + X^h)$, that is, $f \cdot a = \hat{a}(h)f$ in $(X_h)^*$. Hence f (actually, its isomorphic image in $(X^h)^{\perp}$) generates a onedimensional submodule in X^* . Conversely, each element of X^* which generates a onedimensional submodule in X^* clearly annihilates X^h , and therefore has an isomorphic image in $(X_h)^*$.

It is shown in [3] that for any locally compact abelian group G, the one dimensional submodules in $L^p(G)$ $(1 \le p \le \infty)$ are scalar multiples of characters of G. But when G is non-compact, these characters are not in $L^p(G)$ for $1 \le p < \infty$, and so $L^p(G)$ has no one-dimensional submodules. It follows that if 1 , $<math>X = L^p(G)$, and G is non-compact, then $X_h = 0$ for each character $h \in \Delta_{L^1(G)} = \widehat{G}$. In this case, the only section of the multiplier bundle for $L^p(G)$ as a module over $L^1(G)$ is the zero section, which is trivially BSE.

Acknowledgment: The author wishes to thank the referee for his several helpful suggestions and for calling an additional reference to his attention.

References

- G. Gierz, Bundles of topological vector spaces and their duality, Lect. Notes Math. 955 (Berlin: Springer-Verlag), 1982.
- [2] K. H. Hofmann, Bundles and sheaves are equivalent in the category of vector spaces, Tulane University preprint, 1974.
- [3] J. W. Kitchen, Normed modules and almost periodicity, Monatsh. Math. 70 (1966), 233-243.
- [4] J. W. Kitchen and D. A. Robbins, Gelfand representation of Banach modules, Dissertationes Math. (Rozprawy Mat.) 203 (1982) (1983).
- [5] ——, Sectional representations of Banach modules, Pacific J. Math. 109 (1983), 135-156.
- [6] S.-E. Takahasi, An extension of Helson-Edwards theorem to Banach modules, International J. Math. & Math. Sci. 14 (1991), 227-232.
- [7] —, BSE Banach modules and multipliers, J. Funct. Anal. 125 (1994), 67-89.
- [8] S.-E. Takahasi and M. Nakano, A generalized Fourier transform for $L^p(G)$ -modules, Math. Japon. 44 (1996), 55-59.

[9] J. Varela, Duality of C*-algebras, Mem. Amer. Math. Soc. 148 (1974), 97-107.

[10] ———, Sectional representation of Banach modules, Math. Z. 139 (1974), 55-61.

DEPARTMENT OF MATHEMATICS, TRINITY COLLEGE, HARTFORD, CT 06106 USA *E-mail address:* david.robbins@mail.trincoll.edu