BSE BANACH MODULES AND BUNDLES OF BANACH SPACES

D. A. ROBBINS
Communicated by Vern I. Paulsen

Abstract

In a recent paper, S.-E. Takahasi defined the notion of a $B S E$ Banach module over a commutative Banach algebra A with bounded approximate identity. We show that the multiplier space $M(X)$ of X can be represented as a space of sections in a bundle of Banach spaces, and we use bundle techniques to obtain shorter proofs of various of Takahasi's results on C^{*}-algebra modules and to answer several questions which he raised.

1. Introduction

In this paper, A will denote a commutative Banach algebra with bounded approximate identity $\left\{u_{j}\right\}$. Denote by $\Delta=\Delta_{A}$ the space of multiplicative functionals on A, and, for $h \in \Delta$, let $K_{h}=\operatorname{ker} h \subset A$ be the corresponding maximal ideal. We give Δ its weak-* topology. Let X be a Banach A-module, and, for $h \in \Delta$, let $K_{h} X$ be the closure in X of $\operatorname{span}\left\{a x: a \in K_{h}, x \in X\right\}$. As usual, $C_{0}(\Delta)$ is the space of continuous complex-valued functions on Δ which vanish at infinity, and ${ }^{\wedge}: A \rightarrow C_{0}(\Delta)$ is the Gelfand representation of A. If A is a C^{*} algebra, we will id. atify A and $C_{0}\left(\Delta_{A}\right)$. Following the notation of Takahasi [7], if $h \in \Delta$, we choose $e_{h} \in A$ such that $\widehat{e_{h}}(h)=h\left(e_{h}\right)=1$, and we let X^{h} be the closure in X of $K_{h} X+\left(1-e_{h}\right) X$. Then X^{h} is independent of the choice of e_{h}. We sct $X_{h}=X / X^{h}$. If A is a C^{*}-algebra, for each $h \in \Delta$ we will choose $\left\|e_{h}\right\|=1$.

Let $\mathcal{E}=\dot{\bigcup}\left\{X_{h}: h \in \Delta\right\}$ be the disjoint union of the X_{h}. (We can, if we like, identify confusc! \mathcal{E} with $\bigcup\left\{\{h\} \times X_{h}: h \in \Delta\right\}$; the h 's are useful for bookkeeping purposes.) We give an element $x+X^{h} \in \mathcal{E}(x \in X, h \in \Delta)$ its coset

[^0]norm $\left\|x+X^{h}\right\|$. Let $\pi: \mathcal{E} \rightarrow \Delta$ be the obvious projection map. Given this data, let $\mathcal{C}(\mathcal{E})$ denote the linear space of selections ($=$ choice functions) $\sigma: \Delta \rightarrow \mathcal{E}$, and let $\mathcal{C}^{b}(\mathcal{E})$ denote the subspace of bounded selections. Since each X^{h} is a Banach Λ-modulc, so is cach X_{h}. In particular, for each $a \in A$ and $x \in X$ we have $a x-\widehat{a}(h) x \in X^{h}$. (Proof: $a x-\widehat{a}(h) x=\left(a x-a e_{h} x\right)+\left(a e_{h} x-\widehat{a}(h) e_{h} x\right)+$ $\left(\widehat{a}(h) e_{h} x-\widehat{a}(h) x\right)$; the first two terms of the sum are in $K_{h} X$, and the last term is in $\left(1-e_{h}\right) X$.) Hence, $a\left(x+X^{h}\right)=\widehat{a}(h) x+X^{h}$. It follows that $\mathcal{C}(\mathcal{E})$ and $\mathcal{C}^{b}(\mathcal{E})$ are both A - and \widehat{A}-modules under the operation $(a \cdot \sigma)(h)=\widehat{a}(h) \sigma(h)=(\widehat{a} \cdot \sigma)(h)$.

Consider the space $M(X)=\operatorname{Hom}_{A}(A, X)$ of multipliers of X. Again, following [7], for $T \in M(X)$, we define a selection $\widetilde{T}: \Delta \rightarrow \mathcal{E}$ by $\widetilde{T}(h)=T\left(e_{h}\right)+X^{h} \in X_{h}$, where $\widehat{e_{h}}(h)-1$. We see that this definition is also independent of the choice of e_{h}. The map ${ }^{\sim}: M(X) \rightarrow \mathcal{C}^{b}(\mathcal{E})$ is an A-module homomorphism of $M(X)$ into $\mathcal{C}(\mathcal{E})$, as noted in [7]. (In fact, $\widehat{M(X)}$ is an A - and \widehat{A}-submodule of $\mathcal{C}^{b}(\mathcal{E})$.) We also note that $T(A) \subset X_{e}$, the essential part of X. Further, if $x \in X$, then the $\operatorname{map} T_{x}: A \rightarrow X, a \mapsto a x$, is an element of $M(X)$. If X is an A-module, then so is X^{*}, with the multiplication given by $\langle x, f \cdot a\rangle=\langle a x, f\rangle\left(a \in A, x \in X, f \in X^{*}\right)$.

We associate two topologies with the fibered space \mathcal{E}, and study the properties of the spaces of continuous and bounded selections from Δ to \mathcal{E} under these topologies. In [7], Takahasi explores some of the consequences of endowing \mathcal{E} with the quotient topology induced by the product topology on $\Delta \times X$ and the projection $\operatorname{map} p: \Delta \times X \rightarrow \mathcal{E},(h, x) \mapsto x+X^{h}=\widetilde{T_{x}}(h)=\widetilde{x}(h)$. We denote \mathcal{E} with this topology by \mathcal{E}_{1}.

In this paper, we show that \mathcal{E} can be endowed with a topology which makes $\pi: \mathcal{E} \rightarrow \Delta$ a bundle of Banach spaces; we denote \mathcal{E} with this topology by \mathcal{E}_{2}, and call it the multiplier bundle of X. In particular, we show that if A has a bounded approximate identity, then the bundle and quotient topologies coincide; i.e. $\mathcal{E}_{1}=$ \mathcal{E}_{2}. We then show that the multiplier bundles for X and for X_{e} are homeomorphic, and we use this result and the machinery of section spaces of Banach bundles to subsume several of the examples concerning C^{*}-algebra modules adduced in [7]. We also answer several questions posed in [7]. The reader may also wish to consult [8] for more recent developments and applications of this construction of a field of quotient modules.

2. Tile bundle torology

We refer the reader to [1], [2], or [4] for fundamental notions regarding bundles of Banach spaces and Banach modules, and we especially draw upon the following results, which are key to our investigations.

Proposition 2.1. ([2, Corollary 3.7]) Suppose that U is a topological space, and that $\left\{Y_{p}: p \in U\right\}$ is a collection of Banach spaces. Let \mathcal{E} be the disjoint union of the Y_{p}, and let $\gamma: \mathcal{E} \rightarrow U$ be the obvious projection. Suppose that Y is a vector space of bounded selections $\sigma: U \rightarrow \mathcal{E}$ such that 1) $\mathcal{E}=\bigcup\{\sigma(u): u \in U, \sigma \in Y\}$ (" Y is a full space of selections"); and 2) for each $\sigma \in Y$, the map $u \mapsto\|\sigma(u)\|$ is upper semicontinuous. Then there is a unique topology on \mathcal{E} making $\gamma: \mathcal{E} \rightarrow U$ into a full bundle of Banach spaces, and such that each $\sigma \in Y$ is continuous.

As a special case of the above, we obtain
Proposition 2.2. ([4, Proposition 1.3]) Let U be a topological space, and let $\left\{X^{p}: p \in U\right\}$ be a collection of closed subspaces of the Banach space X. Let $\mathcal{E}=$ $\dot{\cup}\left\{X / X^{p}: p \in U\right\}$ be the disjoint union of the quotient spaces X / X^{p}. Then \mathcal{E} can be topologized in such a way that 1) $\pi: \mathcal{E} \rightarrow U$ is a bundle of Banach spaces; and 2) for each $x \in X$, the selection $\widetilde{x}: U \rightarrow \mathcal{E}, \widetilde{x}(p)=x+X^{p}$, is a bounded section of the bundle $\pi: \mathcal{E} \rightarrow U$, iff the function $p \mapsto\|\widetilde{x}(p)\|$ is upper semicontinuous on U for each $x \in X$.

Lemma 2.3. Let $h \in \Delta$, and let C be the bound on the approximate identity for A. Then $\|h\| \geq \frac{1}{C}$. Moreover, we may choose our collection $\left\{e_{h}: h \in \Delta\right\}$ so that $\left\{\left\|e_{h}\right\|: h \in \Delta\right\}$ is bounded.

Proof. For a given $\delta>0$, we may choose $u=u_{j_{0}}$ in the approximate identity so that $\widehat{u}(h)>1-\delta$. Hence, $\|h\| \geq \frac{1}{C} \widehat{u}(h)>\frac{1-\delta}{C}$, and since δ was arbitrary, it follows that $\|h\| \geq \frac{1}{C}$. Now, for a fixed but arbitrary h, if we choose u in the approximate identity so that $\widehat{u}(h)>1-\delta$ and if we set $e_{h}=\frac{1}{\widehat{u}(h)} u$, we see that $\left\|e_{h}\right\| \leq \frac{C}{1-\delta}$.

Corollary 2.4. For any $T \in M(X)$, the selection $\widetilde{T}: \Delta \rightarrow \mathcal{E}$ is bounded.
Proof. For $h \in \Delta$, we have $\|\tilde{T}(h)\|=\left\|T\left(e_{h}\right)+X^{h}\right\| \leq\left\|T\left(e_{h}\right)\right\| \leq\|T\|\left\|e_{h}\right\|$; and the collection of e_{h} 's can be chosen to be bounded, by the preceding.

Proposition 2.5. Given the data above, let $T \in M(X)$. Then the map $h \mapsto$ $\|\widetilde{T}(h)\|=\left\|T\left(e_{h}\right)+X^{h}\right\|$ is upper semicontinuous on Δ.

Proof. Suppose that $\varepsilon>0$ is given, and that $\|\tilde{T}(h)\|<\varepsilon$. Choose $a_{i} \in K_{h}, y_{i} \in$ $X(i=1, \ldots, n), z \in X$, such that

$$
\|\widetilde{T}(h)\| \leq\left\|T\left(e_{h}\right)+\sum a_{i} y_{i}+\left(1-e_{h}\right) z\right\|<\varepsilon
$$

and set

$$
\varepsilon^{\prime}=\varepsilon-\left\|T\left(e_{h}\right)+\sum a_{i} y_{i}+\left(1-e_{h}\right) z\right\| .
$$

From the upper semicontinuity of the map $h^{\prime} \mapsto\left\|a+K_{h^{\prime}}\right\|$ (see [5]) and the continuity of the function $\widehat{e_{h}}$ on Δ, we can choose a neighborhood V of h such that when $h^{\prime} \in V$ all of the following hold:

$$
\begin{gathered}
\sum\left\|a_{i}+K_{h^{\prime}}\right\|<\frac{\varepsilon^{\prime}}{3 \sum\left\|y_{i}\right\|} ; \\
\left|\frac{1}{\widehat{e_{h}}(h)}-\frac{1}{\widehat{e_{h}}\left(h^{\prime}\right)}\right|=\left|1-\frac{1}{\widehat{e_{h}}\left(h^{\prime}\right)}\right|<\frac{\varepsilon^{\prime}}{3\left\|T\left(e_{h}\right)\right\|} ;
\end{gathered}
$$

and

$$
\left|1-\widehat{e_{h}}\left(h^{\prime}\right)\right|<\frac{\varepsilon^{\prime}}{3 C\|z\|}
$$

(where C is the bound on the approximate identity). Since the definition of $X^{h^{\prime}}$ is independent of the choice of $e_{h^{\prime}}$, for $h^{\prime} \in V$ we may just as well take $e_{h^{\prime}}=\frac{1}{\widehat{e_{h}}\left(h^{\prime}\right)} e_{h}$. We also make use of the fact that, for $a \in A$ and $h \in \Delta$, we have $\left\|a+K_{h}\right\|=\frac{1}{\|h\|}|\widehat{a}(h)| ;$ see [5, Lemma 1.3].

Then, for $h^{\prime} \in V$, we have the following:

$$
\begin{aligned}
& \left\|\widetilde{T}\left(h^{\prime}\right)\right\|=\left\|T\left(e_{h^{\prime}}\right)+X^{h^{\prime}}\right\| \\
& \leq\left\|T\left(e_{h^{\prime}}\right)-T\left(e_{h}\right)+X^{h^{\prime}}\right\|+\left\|T\left(e_{h}\right)+\sum a_{i} y_{i}+\left(1-e_{h}\right) z+X^{h^{\prime}}\right\| \\
& +\left\|\sum a_{i} y_{i}+\left(1-e_{h}\right) z+X^{h^{\prime}}\right\| \\
& \leq\left\|T\left(e_{h^{\prime}}\right)-T\left(e_{h}\right)\right\|+\left\|T\left(e_{h}\right)+\sum a_{i} y_{i}+\left(1-e_{h}\right) z\right\|+\left\|\sum a_{i} y_{i}+X^{h^{\prime}}\right\| \\
& +\left\|\left(e_{h^{\prime}}-e_{h}\right) z+X^{h^{\prime}}\right\| \\
& \leq\left|1-\frac{1}{\widehat{e_{h}}\left(h^{\prime}\right)}\right|\left\|T\left(e_{h}\right)\right\|+\left\|T\left(e_{h}\right)+\sum a_{i} y_{i}+\left(1-e_{h}\right) z\right\|+\left\|\sum a_{i} y_{i}+K_{h^{\prime}} X\right\| \\
& +\left\|\left(e_{h^{\prime}}-e_{h}\right) z+X^{h^{\prime}}\right\| \\
& <\varepsilon^{\prime} / 3+\left\|T\left(e_{h}\right)+\sum a_{i} y_{i}+\left(1-e_{h}\right) z\right\|+\left\|\sum a_{i} y_{i}+K_{h^{\prime}} X\right\| \\
& +\left\|\left(e_{h}-e_{h^{\prime}}\right)+K_{h^{\prime}}\right\|\left\|z+K_{h^{\prime}} X\right\| \\
& \leq \quad \varepsilon^{\prime} / 3+\left\|T\left(e_{h}\right)+\sum a_{i} y_{i}+\left(1-e_{h}\right) z\right\|+\sum\left\|a_{i}+K_{h^{\prime}}\right\|\left\|y_{i}\right\| \\
& +\frac{\left|\widehat{e_{h^{\prime}}}\left(h^{\prime}\right)-\widehat{e_{h}}\left(h^{\prime}\right)\right|}{\left\|h^{\prime}\right\|}\|z\| \\
& <\varepsilon^{\prime} / 3+\left\|T\left(e_{h}\right)+\sum a_{i} y_{i}+\left(1-e_{h}\right) z\right\|+\varepsilon^{\prime} / 3+C\left|1-\widehat{e_{h}}\left(h^{\prime}\right)\right|\|z\| \\
& <\varepsilon .
\end{aligned}
$$

The space $\widetilde{X}=\left\{\widetilde{T_{x}}: x \in X\right\}$ is a full space of selections in $\mathcal{C}^{b}(\mathcal{E})$, since, for each each $x \in X$ and $h \in \Delta$ we have $\widetilde{T_{x}}(h)=T_{x}\left(e_{h}\right)+X^{h}=e_{h} x+X^{h}=x+X^{h} \in X_{h}$. The space $\widetilde{M(X)}=\{\widetilde{T}: T \in M(X)\} \supset \widetilde{X}$ is therefore also full. It follows by Proposition 1 or Proposition 2, above, that there is a unique topology on \mathcal{E} which turns $\pi: \mathcal{E} \rightarrow \Delta$ into a bundle of Banach spaces, such that each $\widetilde{T}(T \in M(X))$ is a member of the Banach $C_{0}(\Delta)$-module $\Gamma^{b}(\pi)$ of all continuous and bounded sections of the bundle $\pi: \mathcal{E} \rightarrow \Delta$. Moreover, we may regard $\Gamma^{b}(\pi)$ as a Banach A-module under the operation $(a \cdot \sigma)(h)=\widehat{a}(h) \sigma(h)$, as described above. In the language of [4], the map ${ }^{\sim}: M(X) \rightarrow \Gamma^{b}(\pi)$ is a sectional representation of $M(X)$ of Gelfand type.

We recall that, in this bundle topology on \mathcal{E}, neighborhoods of a point $x+X^{h}$ are described by tubes: let $\sigma \in \Gamma^{b}(\pi)$ be such that $\sigma(h)=x+X^{h}$, let V be a neighborhood in Δ of h, and let $\varepsilon>0$. Then $\mathcal{T}=\mathcal{T}(V, \sigma, \varepsilon)=\left\{z+X^{h^{\prime}}: h^{\prime} \in V\right.$, $\left.\left\|\sigma\left(h^{\prime}\right)-\left(z+X^{h^{\prime}}\right)\right\|<\varepsilon\right\}$ is a neighborhood of $\sigma(h)$, and in fact sets of this form, as V ranges over all neighborhoods of h and $\varepsilon>0$ varies, form a fundamental system of neighborhoods of $\sigma(h)$. Denote by \mathcal{E}_{2} the set \mathcal{E} with its bundle topology generated by the $\widetilde{T}(T \in M(X))$, and let $p: \Delta \times X \rightarrow \mathcal{E}_{2}$ be the natural map $(h, x) \mapsto \widetilde{x}(h)$.

Proposition 2.6. Let A be a commutative Banach algebra with bounded approximate identity, and let X be a Banach A-module. Then the spaces \mathcal{E}_{1} and \mathcal{E}_{2} are homeomorphic.

Proof. Since the topology on \mathcal{E}_{1} is the quotient topology on \mathcal{E} induced by the $\operatorname{map} p: \Delta \times X \rightarrow \mathcal{E}$, it suffices to show that the topology \mathcal{E}_{2} is also the quotient topology. We will show that the map $p: \Delta \times X \rightarrow \mathcal{E}_{2}$ is continuous and open, and the desired result then follows from a standard topological argument.
a) p is continuous: Let $\mathcal{T}=\mathcal{T}(V, \widetilde{x}, \varepsilon)$ be a bundle neighborhood of $\widetilde{x}(h)=$ $x+X^{h}=p(h, x)$ in \mathcal{E}_{2}, as described above. If $B(x, \varepsilon)$ denotes the open ball around $x \in X$ of radius $\varepsilon>0$, then $V \times B(x, \varepsilon)$ is a neighborhood of (h, x) in the product topology on $\Delta \times X$. If $\left(h^{\prime}, y\right) \in V \times B(x, \varepsilon)$, then $h^{\prime} \in V$, and $\left\|\widetilde{x}\left(h^{\prime}\right)-\widetilde{y}\left(h^{\prime}\right)\right\| \leq\|x-y\|<\varepsilon$; i.e. $\widetilde{y}\left(h^{\prime}\right)=p\left(h^{\prime}, y\right) \in \mathcal{T}$.
b) p is open: Consider a set of form $V \times B(0, \varepsilon)$, which is nearly a typical open set in the product topology on $\Delta \times X$. We claim that $p(V \times B(0, \varepsilon))$ is open in \mathcal{E}_{2}. Let $h \in V$ and $y \in B(0, \varepsilon)$, and set $\varepsilon^{\prime}=\varepsilon-\|y\|$.

Consider the tube $\mathcal{T}=\mathcal{T}\left(V, \widetilde{y}, \varepsilon^{\prime}\right)$ around $\widetilde{y}(h)$, and let $\widetilde{x}\left(h^{\prime}\right) \in \mathcal{T}$. Then $h^{\prime} \in V$, and $\left\|\widetilde{x}\left(h^{\prime}\right)-\widetilde{y}\left(h^{\prime}\right)\right\|<\varepsilon^{\prime}$. From the definition of the coset norm, we may choose $q=\sum a_{i} w_{i}+\left(1-e_{h^{\prime}}\right) z \in K_{h^{\prime}} X+\left(1-e_{h^{\prime}}\right) X \subset X^{h^{\prime}}$ such that

$$
\left\|\widetilde{x}\left(h^{\prime}\right)-\widetilde{y}\left(h^{\prime}\right)\right\| \leq\|(x-y)+q\|<\varepsilon^{\prime} .
$$

Then

$$
\|x+q\| \leq\|x-y+q\|+\|y\|<\varepsilon
$$

and

$$
\widetilde{(x+q)}\left(h^{\prime}\right)=\widetilde{x}\left(h^{\prime}\right)+\widetilde{q}\left(h^{\prime}\right)=\widetilde{x}\left(h^{\prime}\right) .
$$

That is, $\widetilde{x}\left(h^{\prime}\right) \in p(V \times B(0, \varepsilon))$. Hence, $\mathcal{T} \subset p(V \times B(0, \varepsilon))$, and thus $p(V \times B(0, \varepsilon))$ is an open set. The final result follows by translation.

The space $\widehat{M(X)}=\{\widetilde{T}: T \in M(X)\}$ is a subspace of $\Gamma^{b}(\pi)$ for the bundle $\pi: \mathcal{E}_{1}=\mathcal{E}_{2} \rightarrow \Delta$. Given the homeomorphism of \mathcal{E}_{1} and \mathcal{E}_{2}, for the remainder of the paper we will denote by \mathcal{E} the fibered set with its bundle topology, and we will speak of the section space $\Gamma(\pi)\left(\Gamma^{b}(\pi)\right)$ of all continuous (bounded) sections of the bundle $\pi: \mathcal{E} \rightarrow \Delta$. We will call this the multiplier bundle for X.

We now examine for a moment the module $Y=X_{e}=$ closure in X of $\operatorname{span}\{a x$: $a \in A, x \in X\}$. We note that, due to the Hewitt-Cohen factorization theorem, we actually have $X_{e}=A X$.

As an A-module, Y has a representation (its sectional Gelfand representation, in the language of [4]) as a space $\widehat{Y} \subset \Gamma\left(\pi^{\prime}\right)$ of a "canonical bundle" of Banach spaces $\pi^{\prime}: \mathcal{F} \rightarrow \Delta$; the fibers of this bundle are the spaces $Y_{h}=Y / Y^{h}$, where $Y^{h}=$ closure in Y of $\operatorname{span}\left\{a y: a \in K_{h}, y \in Y\right\}$. It can be easily checked that, because Y is an essential A-module, we actually have $Y^{h}=K_{h} Y+\left(1-e_{h}\right) Y$, as defined earlier. We note that we can also write $Y^{h}=K_{h} X$, since A has a bounded approximate identity and is therefore factorable. The mapping ${ }^{\wedge}: Y \rightarrow \Gamma\left(\pi^{\prime}\right)$ is given by $\widehat{y}(h)=y+Y^{h}$.

Consider the space $M(Y)=\operatorname{Hom}_{A}(A, Y)$ of multipliers from A to Y. Let $y \in Y$, and let $T_{y} \in M(Y)$ be given by $T_{y}(a)=a y$. Then $\widetilde{T_{y}}(h)=T_{y}\left(e_{h}\right)+Y^{h}=$ $e_{h} y+Y^{h}=y+Y^{h}=\widehat{y}(h)$. In other words, the representation of T_{y} as a section in the multiplier bundle for Y can be identified with the representation of y as a section in the canonical bundle for Y. It turns out that the fibers of the multiplier bundle for $Y=X_{e}$ and the multiplier bundle for X are related in general.

Proposition 2.7. There is a topological linear isomorphism of the fiber $X_{h}=$ X / X^{h} of the multiplier bundle for X and of the fiber $Y_{h}=Y / Y^{h}=X_{e} /\left(X_{e}\right)^{h}$ of the multiplier (canonical) bundle for $Y=X_{e}$. If $\left\|e_{h}\right\| \leq 1$, then these fibers are isometrically isomorphic.

Proof. Let $i: X_{e} \rightarrow X$ be the inclusion map, and let $\rho_{h}: X \rightarrow X_{h}=X / X^{h}$ be the quotient map. Then $\rho_{h} \circ i: X_{e} \rightarrow X_{h}$ is norm-decreasing and surjective (because, for each $x \in X$, we have $\left.\left(\rho_{h} \circ i\right)\left(e_{h} x\right)=e_{h} x+X^{h}=x+X^{h}\right)$. If $a y \in K_{h} X=\left(X_{e}\right)^{h}=Y^{h}$, then $a y \in X^{h}$, and so $\left(\rho_{h} \circ i\right)(a y)=a y+X^{h}=X^{h}$; i.e. $K_{h} X \subset \operatorname{ker}\left(\rho_{h} \circ i\right)$. Thus, there is a norm-decreasing map $\phi_{h}: X_{e} /\left(X_{e}\right)^{h} \rightarrow X / X^{h}$ which carries $a x+K_{h} X=a x+\left(X_{e}\right)^{h}$ to $a x+X^{h}$.

On the other hand, consider the map of $X \rightarrow X_{e}$ given by $x \mapsto e_{h} x$; this map clearly has norm $\leq\left\|c_{h}\right\|$. We compose this with the quotient map $\rho_{h}^{\prime}: X_{e} \rightarrow$ $X_{e} / K_{h} X=X_{e} /\left(\bar{X}_{e}\right)^{h}=\left(X_{e}\right)_{h} \rho_{h}^{\prime}: X_{e} \rightarrow X_{e} / K_{h} X=X_{e} /\left(X_{e}\right)^{h}=\left(X_{e}\right)_{h}$ and obtain a $\operatorname{map} \psi_{h}^{\prime}: X \rightarrow\left(X_{e}\right)_{h}$ of norm $\leq\left\|e_{h}\right\|$. If $w=a y+\left(1-e_{h}\right) z \in X^{h}$, then
$\psi_{h}^{\prime}(w)=e_{h} w+K_{h} X=K_{h} X$, so that we obtain a map $\psi_{h}: X / X^{h} \rightarrow X_{e} / K_{h} X$, with $\left\|\psi_{h}\right\| \leq\left\|e_{h}\right\|$. Note also that ψ_{h} is surjective, since, for $a x \in X_{e}, \psi_{h}(a x+$ $\left.X^{h}\right)=e_{h} a x+K_{h} X=\widehat{e_{h}}(h)\left(a x+K_{h} X\right)=a x+K_{h} X$.

It is now easily checked that $\phi_{h} \circ \psi_{h}$ and $\psi_{h} \circ \phi_{h}$ are the identities on the appropriate spaces. This establishes the desired topological linear isomorphism. That the isomorphism is isometric if $\left\|e_{h}\right\| \leq 1$ is evident.

The preceding establishes a bijection between the fiber space \mathcal{E} of $\pi: \mathcal{E} \rightarrow \Delta$, the multiplier bundle for X, and the fiber space \mathcal{F} of the multiplier bundle π^{\prime} : $\mathcal{F} \rightarrow \Delta$ for X_{e}. We define the maps $\Phi: \mathcal{F} \rightarrow \mathcal{E}$ and $\Psi: \mathcal{E} \rightarrow \mathcal{F}$ fiberwise; e.g. $\Phi\left(x+\left(X_{e}\right)^{h}\right)=\phi_{h}\left(x+\left(X_{e}\right)^{h}\right)$.

Proposition 2.8. The spaces \mathcal{E} and \mathcal{F}, with the bundle topologies generated by X and X_{e}, respectively, are homeomorphic.

Proof. We will show that $\Psi: \mathcal{E} \rightarrow \mathcal{F}$ is continuous; the proof of the continuity of Φ will be similar. Let $D=\sup \left\{\left\|e_{h}\right\|: h \in \Delta\right\}$, let $x+X^{h} \in \mathcal{E}$, and consider the tube $\mathcal{T}_{1}=\mathcal{T}_{1}\left(V, \widehat{e_{h} x}, \varepsilon\right)$ around $e_{h} x+\left(X_{e}\right)^{h}=\Psi\left(x+X^{h}\right)=\psi_{h}\left(x+X^{h}\right) \subset \mathcal{F}$. Then $\mathcal{T}_{2}=\mathcal{T}_{2}(V, \widetilde{x}, \varepsilon / D)$ is a neighborhood of $x+X^{h}=\widetilde{x}(h)$ in \mathcal{E}. Let $y+X^{h^{\prime}} \in \mathcal{T}_{2}$. Then $h^{\prime} \in V$, and

$$
\left\|\left(y+X^{h^{\prime}}\right)-\widetilde{x}\left(h^{\prime}\right)\right\|=\left\|\left(y+X^{h^{\prime}}\right)-\left(x+X^{h^{\prime}}\right)\right\|<\varepsilon / D
$$

Then

$$
\begin{aligned}
\left\|\Psi\left(y+X^{h^{\prime}}\right)-\Psi\left(x+X^{h^{\prime}}\right)\right\| & =\left\|\psi_{h^{\prime}}\left(y+X^{h^{\prime}}\right)-\psi_{h^{\prime}}\left(x+X^{h^{\prime}}\right)\right\| \\
& \leq D\left\|\left(y+X^{h^{\prime}}\right)-\left(x+X^{h^{\prime}}\right)\right\| \\
& <\varepsilon
\end{aligned}
$$

so that $\Psi\left(y+X^{h^{\prime}}\right) \in \mathcal{T}_{1}$.
We offer the following without proof.
Corollary 2.9. Let $\pi: \mathcal{E} \rightarrow \Delta$ and $\pi^{\prime}: \mathcal{F} \rightarrow \Delta$ be the multiplier bundle of X and the multiplier bundle for X_{e}, respectively. Then there is a topological linear isomorphism $\psi: \Gamma^{b}(\pi) \rightarrow \Gamma^{b}\left(\pi^{\prime}\right)$, which is an isometry if the approximate identity for A is bounded by 1. Moreover, ψ is a $C_{0}(\Delta)$-linear map. For $\sigma \in \Gamma^{b}(\pi)$, we have $\psi(\sigma)=\Psi \circ \sigma$. The inverse map $\phi: \Gamma^{b}\left(\pi^{\prime}\right) \rightarrow \Gamma^{b}(\pi)$ is given by $\phi(\tau)=\Phi \circ \tau$.

The following diagram illustrates the relationship among the maps constructed in this section. Here, ρ_{h} and ρ_{h}^{\prime} will denote the quotient maps, $e v_{h}$ will denote the evaluation maps, and \sim will denote the section maps.

$$
\begin{aligned}
& \phi \\
& \rho_{h} \searrow \downarrow e v_{h} \quad \downarrow e v_{h} \swarrow \quad \rho_{h}^{\prime} \\
& \psi_{h} \\
& X_{h} \quad \rightleftarrows \quad\left(X_{e}\right)_{h} \\
& \phi_{h}
\end{aligned}
$$

3. The BSE CONdition

An element $\sigma \in \mathcal{C}(\mathcal{E})$ is said to be $B S E$ (this refers to Bochner-SchoenbergEberlein; see [7] for an etymology of the term) if there exists some $\beta=\beta_{\sigma}>0$ such that, for any choice of $h_{i} \in \Delta, f_{i} \in\left(X_{h_{i}}\right)^{*}(i=1, \ldots, n)$ we have

$$
\left|\sum_{i=1}^{n}\left\langle\sigma, f_{i} \circ e v_{h_{i}}\right\rangle\right|=\left|\sum_{i=1}^{n}\left\langle\sigma\left(h_{i}\right), f_{i}\right\rangle\right| \leq \beta\left\|\sum_{i=1}^{n} f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}}
$$

where $\rho_{h}: X \rightarrow X_{h}$ is the quotient map and $e v_{h}: \mathcal{C}(\mathcal{E}) \rightarrow X_{h}, \sigma \mapsto \sigma(h)$, is the evaluation map. Takahasi [7] shows that if $x \in X$, then $\widetilde{T_{x}}$ is $B S E$. If in addition A is a regular Banach algebra, then \widetilde{T} is $B S E$ for each $T \in M(X)$. The fundamental question explored in [7] is, When is $\widetilde{M(X)}$ equal to the space of all continuous \mathcal{E}-valued $B S E$ selections on Δ, with \mathcal{E} given its quotient topology? From the work done in the previous section, this is equivalent to the question of when $\widetilde{M(X)}$ is equal to $\Gamma_{B S E}(\pi)$, the space of $B S E$ sections of the multiplier bundle $\pi: \mathcal{E} \rightarrow \Delta$. If $\widehat{M(X)}=\Gamma_{B S E}(\pi)$, then the A-module X is said to be $B S E$.

We first make an elementary observation, noted without proof in [7].
Lemma 3.1. Suppose that $\sigma \in \mathcal{C}(\mathcal{E})$ is $B S E$. Then σ is bounded.

Proof. From the definition of the $B S E$ property, there exists $\beta=\beta_{\sigma}>0$ such that for each $h \in \Delta$ and $f \in\left(X / X^{h}\right)^{*}$, we have

$$
|\langle\sigma(h), f\rangle| \leq \beta\left\|f \circ \rho_{h}\right\|_{X^{*}} \leq \beta\|f\|,
$$

since $\left\|\rho_{h}\right\| \leq 1$. We choose $f \in\left(X / X^{h}\right)^{*}$, with $\|f\|=1$, such that $|\langle\sigma(h), f\rangle|=$ $\|\sigma(h)\|$, and we obtain

$$
\|\sigma(h)\|=|\langle\sigma(h), f\rangle| \leq \beta\|f\|=\beta
$$

i.e. $\|\sigma\|=\sup \{\|\sigma(h)\|: h \in \Delta\} \leq \beta$.

Thus, the question of when an A-module X is $B S E$ can now be studied by using only elements of $\Gamma^{b}(\pi)$, the bounded sections of the bundle $\pi: \mathcal{E} \rightarrow \Delta$. There is a relationship between $\Gamma_{B S E}(\pi)$ and $\Gamma_{B S E}\left(\pi^{\prime}\right)$.
Proposition 3.2. Let $\psi: \Gamma^{b}(\pi) \rightarrow \Gamma^{b}\left(\pi^{\prime}\right), \phi: \Gamma^{b}\left(\pi^{\prime}\right) \rightarrow \Gamma^{b}(\pi)$ be the topological linear isomorphisms described at the end of the previous section. If $\sigma \in \Gamma_{B S E}\left(\pi^{\prime}\right)$ (arising from X_{e}), then $\phi(\sigma) \in \Gamma_{B S E}(\pi)$ (arising from X). Conversely, if $A=$ $C_{0}(\Delta)$ is a C^{*}-algebra, and if $\sigma \in \Gamma_{B S E}(\pi)$, then $\psi(\sigma) \in \Gamma_{B S E}\left(\pi^{\prime}\right)$.

Proof. First, let $h \in \Delta$, let $f \in\left(X_{h}\right)^{*}$, and let $a x \in X_{e}$. Then

$$
\begin{aligned}
\left\langle a x, f \circ \rho_{h}\right\rangle & =\left\langle a x+X^{h}, f\right\rangle \\
& =\left\langle\phi_{h}\left(a x+\left(X_{e}\right)^{h}\right), f\right\rangle \\
& =\left\langle a x+\left(X_{e}\right)^{h}, \phi_{h}^{*}(f)\right\rangle \\
& =\left\langle a x, \phi_{h}^{*}(f) \circ \rho_{h}^{\prime}\right\rangle
\end{aligned}
$$

That is, $\phi_{h}^{*}(f) \circ \rho_{h}^{\prime} \in\left(X_{e}\right)^{*}$ is the restriction to $X_{e} \subset X$ of $\int \circ \rho_{h} \in X^{*}$, where $\rho_{h}: X \rightarrow X_{h}$ and $\rho_{h}^{\prime}: X_{e} \rightarrow\left(X_{e}\right)_{h}$ are the quotient maps.

With this in mind, we now let $h_{i} \in \Delta, f_{i} \in\left(X_{h_{i}}\right)^{*}, i=1, \ldots, n$, and suppose that $\sigma \in \Gamma_{B S E}\left(\pi^{\prime}\right)$. Then

$$
\begin{aligned}
\left|\sum\left\langle[\phi(\sigma)]\left(h_{i}\right), f_{i}\right\rangle\right| & =\left|\sum\left\langle\phi_{h_{i}}\left(\sigma\left(h_{i}\right)\right), f_{i}\right\rangle\right| \\
& =\left|\sum\left\langle\sigma\left(h_{i}\right), \phi_{h_{i}}^{*}\left(f_{i}\right)\right\rangle\right| \\
& \leq \beta_{\sigma}\left\|\sum \phi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}^{\prime}\right\|_{\left(X_{e}\right)} \\
& \leq \beta_{\sigma}\left\|\sum f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}}
\end{aligned}
$$

Thus, $\phi(\sigma) \in \Gamma_{B S E}(\pi)$.
Now, let A be a C^{*}-algebra. We first note that, given $h_{i} \in \Delta(i=1, . ., n)$ we can choose our $e_{h_{i}}$ to have disjoint support. We also note that, if $a x \in X_{e}$ and $f \in\left(X_{e}\right)_{h}^{*}$, we have

$$
\begin{aligned}
\left\langle a x, \psi_{h}^{*}(f) \circ \rho_{h}\right\rangle & =\left\langle a x+X^{h}, \psi_{h}^{*}(f)\right\rangle \\
& =\left\langle\psi_{h}\left(a x+X^{h}\right), f\right\rangle \\
& =\left\langle a x+\left(X_{e}\right)^{h}, f\right\rangle \\
& =\left\langle a x, f \circ \rho_{h}^{\prime}\right\rangle
\end{aligned}
$$

That is, $f \circ \rho_{h}^{\prime} \in\left(X_{e}\right)^{*}$ is the restriction to X_{e} of $\psi_{h}^{*}(f) \circ \rho_{h} \in X^{*}$.
Let $h_{i} \in \Delta, f_{i} \in\left(X_{e}\right)_{h_{i}}^{*},(i=1, \ldots, n)$. Let $\sigma \in \Gamma_{B S E}(\pi)$; we claim that $\psi(\sigma) \in \Gamma_{B S E}\left(\pi^{\prime}\right)$. We have

$$
\begin{aligned}
\left|\sum\left\langle[\psi(\sigma)]\left(h_{i}\right), f_{i}\right\rangle\right| & =\left|\sum\left\langle\psi_{h_{i}}\left(\sigma\left(h_{i}\right)\right), f_{i}\right\rangle\right| \\
& =\left|\sum\left\langle\sigma\left(h_{i}\right), \psi_{h_{i}}^{*}\left(f_{i}\right)\right\rangle\right| \\
& \leq \beta_{\sigma}\left\|\sum \psi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}\right\|_{X^{*}} .
\end{aligned}
$$

If $\varepsilon>0$ is given, we can choose $x \in X,\|x\|=1$, such that

$$
\beta_{\sigma}\left\|\sum_{i} \psi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}\right\|_{X^{*}}<\beta_{\sigma}\left|\sum_{i}\left\langle x, \psi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}\right\rangle\right|+\varepsilon
$$

From our choice of $e_{h_{i}}(i=1, \ldots, n)$ to have disjoint support, we see that $\left\|\sum_{j} e_{h_{j}}\right\|=$ 1 and that $\left[\psi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}\right] \cdot\left(e_{h_{j}}\right)=\delta_{i j}\left[\psi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}\right]$, where $\delta_{i j}$ is the Kronecker δ. It follows that

$$
\begin{aligned}
\beta_{\sigma}\left|\sum_{i}\left\langle x, \psi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}\right\rangle\right|+\varepsilon & =\beta_{\sigma}\left|\sum_{i}\left\langle x,\left[\psi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}\right] \cdot\left(\sum_{j} e_{h_{j}}\right)\right\rangle\right|+\varepsilon \\
& =\beta_{\sigma}\left|\sum_{i}\left\langle\left(\sum_{j} e_{h_{j}}\right) x, \psi_{h_{i}}^{*}\left(f_{i}\right) \circ \rho_{h_{i}}\right\rangle\right|+\varepsilon \\
& =\beta_{\sigma}\left|\sum_{i}\left\langle\left(\sum_{j} e_{h_{j}}\right) x, f_{i} \circ \rho_{h_{i}}^{\prime}\right\rangle\right|+\varepsilon \\
& \leq \beta_{\sigma}\left\|\sum_{i} f_{i} \circ \rho_{h_{i}}^{\prime}\right\|_{\left(X_{e}\right)^{*}}+\varepsilon
\end{aligned}
$$

because $\left(\sum_{j} e_{h_{j}}\right) x \in X_{e}$, by the restriction argument above and $\left\|\left(\sum_{j} e_{h_{j}}\right) x\right\| \leq$ 1. Thus, $\psi(\sigma) \in \Gamma_{B S E}\left(\pi^{\prime}\right)$.

Corollary 3.3. If A is a C^{*}-algebra and if X_{e} is a BSE A-module, then so is X.

Proof. Let X_{e} be $B S E$, and let $\sigma \in \Gamma_{B S E}(\pi)$. Then $\psi(\sigma) \in \Gamma_{B S E}\left(\pi^{\prime}\right)$, and so there exists $T^{\prime} \in M\left(X_{e}\right)$ such that $\widetilde{T^{\prime}}=\psi(\sigma)$. If $i: X_{e} \rightarrow X$ is the inclusion, then $T=i \circ T^{\prime}: A \rightarrow X$, and $T \in M(X)$. We have

$$
\begin{aligned}
\left.\widehat{\left(i \circ T^{\prime}\right.}\right)(h) & =\left(i \circ T^{\prime}\right)\left(e_{h}\right)+X^{h} \\
& =T^{\prime}\left(e_{h}\right)+X^{h} \\
& =\phi_{h}\left(T^{\prime}\left(e_{h}\right)+\left(X_{e}\right)^{h}\right) \\
& =\left(\phi_{h} \circ \psi_{h}\right)(\sigma(h)) \\
& =\sigma(h),
\end{aligned}
$$

that is,$\left(\widetilde{i \circ T^{\prime}}\right)=\sigma$.

We now turn to some special cases involving commutative C^{*}-algebras. If $A=C_{0}(\Delta)$ is a commutative C^{*}-algebra, an A-module X is said to be $C_{0}(\Delta)$ locally convex if (among other equivalent formulations) we have $\left\|a y_{1}+b y_{2}\right\|=$ $\max \left\{\left\|a y_{1}\right\|,\left\|b y_{2}\right\|\right\}$ for all $a, b \in A$ with disjoint support, and for all $y_{1}, y_{2} \in X$. If X is $C_{0}(\Delta)$-locally convex, and if X is essential, then there is an isometric $C_{0}(\Delta)$ isomorphism of X and $\Gamma_{0}(\pi)$, the space of sections of the multiplier bundle for X which disappear at infinity. (See [2] or [4] for details.)

Proposition 3.4. Suppose that $A=C_{0}(\Delta)$ is a commutative C^{*}-algebra, and suppose that X is an A-module such that X_{e}, the essential part of X, is $C_{0}(\Delta)$ locally convex. Then 1) each element of $\Gamma^{b}(\pi)$ is $B S E$; and 2) $\widehat{M(X)}=\Gamma^{b}(\pi)$.

Proof. For 1), let $\sigma \in \Gamma^{b}(\pi)$, and choose arbitrary $h_{i} \in \Delta, f_{i} \in\left(X_{h_{i}}\right)^{*}=$ $\left(X / X^{h_{i}}\right)^{*}(i=1, \ldots, n)$. Choose $e_{h_{i}} \in A$ with disjoint support and such that $\left\|e_{h_{i}}\right\|=e_{h_{i}}\left(h_{i}\right)=1$, and choose $x_{i} \in X$ such that $\sigma\left(h_{i}\right)=x_{i}+X^{h_{i}}=\widetilde{x}_{i}\left(h_{i}\right)$. Given $\varepsilon>0$, for each $i=1, \ldots, n$ choose $z_{i} \in K_{h_{i}} X+\left(1-e_{h_{i}}\right) X \subset X^{h_{i}}$ such that

$$
\left\|\sigma\left(h_{i}\right)\right\| \leq\left\|x_{i}+z_{i}\right\|<\|\sigma\|+\varepsilon
$$

Set $w=\sum e_{h_{i}}\left(x_{i}+z_{i}\right)$. Then $w \in X_{e}$, and so

$$
\begin{aligned}
\|w\|= & \left\|\sum e_{h_{i}}\left(x_{i}+z_{i}\right)\right\| \\
= & \max \left\{\left\|\epsilon_{h_{i}}\right\|\left\|x_{i}+z_{i}\right\|\right\} \\
& \text { (because } X_{e} \text { is } C_{0}(\Delta) \text {-locally convex and the } e_{h_{i}} \\
& \quad \text { have disjoint support) } \\
< & \|\sigma\|+\varepsilon .
\end{aligned}
$$

Hence, it follows that

$$
\begin{aligned}
\left|\sum_{i}\left\langle\sigma\left(h_{i}\right), f_{i}\right\rangle\right|= & \left|\sum_{i}\left\langle x_{i}+z_{i}, f_{i} \circ \rho_{h_{i}}\right\rangle\right| \\
= & \left|\sum_{i}\left\langle e_{h_{i}}\left(x_{i}+z_{i}\right), f_{i} \circ \rho_{h_{i}}\right\rangle\right| \\
= & \left|\sum_{i}\left\langle\sum_{j} e_{h_{j}}\left(x_{j}+z_{j}\right), f_{i} \circ \rho_{h_{i}}\right\rangle\right| \\
& \quad\left(\text { since } c_{h_{i}}\left(h_{j}\right)=\delta_{i j}=\text { Kronecker } \delta\right) \\
= & \left|\sum_{i}\left\langle w, f_{i} \circ \rho_{h_{i}}\right\rangle\right| \\
\leq & \|w\|\left\|\sum_{i} f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}} \\
< & (\|\sigma\|+\varepsilon)\left\|\sum_{i} f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}}
\end{aligned}
$$

(We note that for $x \in X$ and $a \in A$, we have $\left(f \circ \rho_{h}\right)(a x)=f(\widetilde{a x}(h))=$ $\left.f(a(h) \widetilde{x}(h))=a(h)\left(f \circ \rho_{h}\right)(x)\right)$.

For part 2), suppose that $\phi: \Gamma_{0}(\pi) \rightarrow X_{e}$ is the isometric $C_{0}(\Delta)$-isomorphism of the assumption. Among other properties of ϕ, we have $[\phi(\sigma)]^{\sim}(h)=\sigma(h)$ for each $\sigma \in \Gamma_{0}(\pi)$. Now, let $\sigma \in \Gamma^{b}(\pi)$. We define $T_{\sigma}: A \rightarrow X$ by $T_{\sigma}(a)=\phi(a \sigma)$. Then, for $b \in C_{0}(\Delta)$, we have

$$
b T_{\sigma}(a)=b \phi(a \cdot \sigma)=\phi(b a \cdot \sigma)=T_{\sigma}(b a)
$$

Clearly, T_{σ} is bounded, and so $T \in M(X)$. Moreover, for $h \in \Delta$, we have

$$
\widetilde{T_{\sigma}}(h)=\left[T_{\sigma}\left(e_{h}\right)\right]^{\sim}(h)=\left[\phi\left(e_{h} \cdot \sigma\right)\right]^{\sim}(h)=\left(e_{h} \cdot \sigma\right)(h)=\sigma(h)
$$

Two examples, worked out at some length in [7], then follow as corollaries:
Corollary 3.5. Let A be a commutative C^{*}-algebra, and let $I \subset A$ be a closed ideal. Then I is BSE as an A-module, and A is BSE as an I-module.

Proof. As an A-module, $I=I_{e}$ is cssential, and since $I \subset C_{0}\left(\Delta_{A}\right)$ is $C_{0}\left(\Delta_{A}\right)$ locally convex, the result follows. On the other hand, as an I-module, $A_{e}=I=$ $C_{0}\left(\Delta_{I}\right)$, which is $C_{0}\left(\Delta_{I}\right)$-locally convex.

Corollary 3.6. Let A be a quasi-central C^{*}-algebra, with center Z. Then A is $B S E$ as a Z-module.

Proof. From the proof in ([7], Theorem 3.2), A is essential as a Z-module. Note that $Z \simeq C_{0}\left(\Delta_{Z}\right)$. A variant of a result by Varela ([9], Theorem 3.5) shows that A is isometrically isomorphic to the space $\Gamma_{0}(\pi)$ of sections of $\pi: \mathcal{E} \rightarrow \Delta_{Z}$ which vanish at infinity, and hence that A is $C_{0}\left(\Delta_{Z}\right)$-locally convex.

We now address questions asked by Takahasi in [7], as to whether $\Gamma_{B S E}(\pi) \subset$ $\Gamma^{b}(\pi)$ is a Banach A-module.

Proposition 3.7. Let A and X be as generally given. Then $\Gamma_{B S E}(\pi)$ is an $A-$ module.

Proof. Let $\sigma, \tau \in \Gamma_{B S E}(\pi)$. Choose β_{σ} and β_{τ} as in the definition of $B S E$, and let $h_{i} \in \Delta, f_{i} \in\left(X_{h_{i}}\right)^{*}(i=1, \ldots, n)$. Then

$$
\begin{aligned}
\left|\sum\left\langle(\sigma+\tau)\left(h_{i}\right), f_{i}\right\rangle\right| & \leq\left|\sum\left\langle\sigma\left(h_{i}\right), f_{i}\right\rangle\right|+\left|\sum\left\langle\tau\left(h_{i}\right), f_{i}\right\rangle\right| \\
& \leq\left(\beta_{\sigma}+\beta_{\tau}\right)\left\|\sum f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}},
\end{aligned}
$$

so that $\sigma+\tau \in \Gamma_{B S E}(\pi)$. Similarly, let $a \in A$. Then

$$
\begin{aligned}
\left|\sum\left\langle(a \cdot \sigma)\left(h_{i}\right), f_{i}\right\rangle\right| & =\left|\sum\left\langle\widehat{a}\left(h_{i}\right) \sigma\left(h_{i}\right), f_{i}\right\rangle\right| \\
& =\left|\sum\left\langle\sigma\left(h_{i}\right), \widehat{a}\left(h_{i}\right) f_{i}\right\rangle\right| \\
& \leq \beta_{\sigma}\left\|\sum \widehat{a}\left(h_{i}\right)\left(f_{i} \circ \rho_{h_{i}}\right)\right\|_{X^{*}} \\
& =\beta_{\sigma}\left\|\sum\left(f_{i} \circ \rho_{h_{i}}\right) \cdot a\right\|_{X^{*}} \\
& \leq \beta_{\sigma}\|a\|\left\|\sum f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}}
\end{aligned}
$$

since $\sum\left(f_{i} \circ \rho_{h_{i}}\right) \cdot a=\sum\left(f_{i} \circ \rho_{h_{i}}\right) \widehat{a}\left(h_{i}\right)$. Thus, $a \cdot \sigma \in \Gamma_{B S E}(\pi)$.
However, as the following example shows, $\Gamma_{B S E}(\pi)$ may not be a Banach space, even when A is about as nice as it can be.

Example 3.1: Let $A-C([0,1])$, and let $X=A^{*}$, the set of bounded Borel measures on $[0,1]$. Since A has an identity, we have $M(X)=X$, and it can be shown (see [10] or [4]) that, for $h \in \Delta=[0,1]$, we have $X_{h} \simeq \mathbb{C}$. Under this
identification, for $\mu \in X$ and $h \in[0,1]$ we have $\bar{\mu}(h)=\mu(\{h\})$, so that $\operatorname{ker}\left(^{\sim}\right)$ is the space of continuous measures on $[0,1]$. Evidently, for any $\mu \in X=M(X)$, $\widetilde{\mu}$ has only countable support in $[0,1]$, and we can identify $\Gamma(\pi)=\Gamma^{b}(\pi)$ with $c_{0}([0,1])$, the closure under the sup-norm of the space of functions on $[0,1]$ which vanish off finite sets.

Now, A is a regular algebra, and so each element of $\tilde{X}=\widehat{M(X)}$ is $B S E$. We will describe an element $\sigma \in \Gamma(\pi)$ such that $\sigma \neq \widetilde{\mu}$ for any $\mu \in X$ but such that there is a sequence $\left\{\mu_{n}\right\} \subset X$ such that $\sigma=\lim \widetilde{\mu_{n}}$ in $\Gamma(\pi)$; thus $\Gamma_{B S E}(\pi)$ is not complete.

For each $h \in[0,1]$, we have $X_{h} \simeq \mathbb{C}$, so that for $f \in\left(X_{h}\right)^{*}$ the action of f on X_{h} can be identified with multiplication by some $\alpha=\alpha_{f} \in \mathbb{C}$. We show that, given $h_{i} \in[0,1]$ and $f_{i} \in\left(X_{h_{i}}\right)^{*}(i=1, \ldots, n)$, we have $\left\|\sum f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}}=$ $\max \left\{\left|\alpha_{f_{i}}\right|: i=1, \ldots, n\right\}$. First, let $\varepsilon>0$ be given. We can choose $\mu \in X,\|\mu\|=1$ such that

$$
\begin{aligned}
\left\|\sum f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}} & <\left|\sum\left\langle\mu, f_{i} \circ \rho_{h_{i}}\right\rangle\right|+\varepsilon \\
& =\left|\sum \alpha_{f_{i}} \mu\left(\left\{h_{i}\right\}\right)\right|+\varepsilon \\
& <\sum\left|\alpha_{f_{i}}\right|\left|\mu\left(\left\{h_{i}\right\}\right)\right|+\varepsilon \\
& \leq \max \left\{\left|\alpha_{f_{i}}\right|\right\} \sum\left|\mu\left(\left\{h_{i}\right\}\right)\right|+\varepsilon \\
& \leq \max \left\{\left|\alpha_{f_{i}}\right|\right\}+\varepsilon,
\end{aligned}
$$

since $\sum\left|\mu\left(\left\{h_{i}\right\}\right)\right| \leq\|\mu\|=1$. Hence, $\left\|\sum f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}} \leq \max \left\{\left|\alpha_{f_{i}}\right|\right\}$. On the other hand, for each $j=1, \ldots, n$, we let $\mu_{j} \in X$ be the unit point mass at h_{j}. Then $\left\|\mu_{j}\right\|=1$, and

$$
\left|\sum_{i}\left\langle\mu_{j}, f_{i} \circ \rho_{h_{i}}\right\rangle\right|=\left|\alpha_{f_{j}} \mu_{j}\left(\left\{h_{j}\right\}\right)\right|=\left|\alpha_{f_{j}}\right| \leq\left\|\sum_{i} f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}}
$$

so that $\max \left\{\left|\alpha_{f_{i}}\right|\right\} \leq\left\|\sum f_{i} \circ \rho_{h_{i}}\right\|_{X^{*}}$.
Now, consider $\sigma \in \Gamma(\pi)$ given by $\sigma(h)=h$, if $h=1 / k$ for some $k=1,2, \ldots$, $\sigma(h)=0$ otherwise. Let $h_{j}=1 / j$ for $j=1, \ldots, n$, and let $\int_{j} \in\left(X_{h_{j}}\right)^{*}$ be determined by $\alpha_{f_{j}}=1$. Then

$$
\left|\sum_{j=1}^{n}\left\langle\sigma\left(h_{j}\right), f_{j}\right\rangle\right|=\sum_{j=1}^{n} 1 / j
$$

but $\left\|\sum f_{j} \circ \rho_{h_{j}}\right\|_{X^{*}}=1$, so that $\sigma \notin \Gamma_{B S E}(\pi)$. However, let $\mu_{n} \in X$ be the discrete measure on $[0,1]$ such that $\mu_{n}(\{1 / j\})=1 / j$ for each $j=1, \ldots, n$. Then $\widetilde{\mu_{n}} \in \Gamma_{B S E}(\pi)$ and $\sigma=\lim \widetilde{\mu_{n}}$.
Example 3.2: It is also shown in [7] that when G is a compact abelian group, each of the convolution $L^{1}(G)$-modules $C(G), L^{p}(G)(1 \leq p \leq \infty)$ and $M(G)$ is $B S E$, and the question is asked whether the same is true for the case of noncompact G. This is true, at least for $L^{p}(G)$ when $1<p<\infty$, but the reason turns out not to be especially interesting, as the following shows:

We have noted that for algebras A of the sort we are using, and A-modules X, we have $a\left(x+X^{h}\right)=\widehat{a}(h)\left(x+X^{h}\right)$. Thus, if $f \in\left(X_{h}\right)^{*}=\left(X / X^{h}\right)^{*} \simeq$ $\left(X^{h}\right)^{\perp}$, we may write $(f \cdot a)\left(x+X^{h}\right)=\widehat{a}(h) f\left(x+X^{h}\right)$, that is, $f \cdot a=\widehat{a}(h) f$ in $\left(X_{h}\right)^{*}$. Hence \int (actually, its isomorphic image in $\left(X^{h}\right)^{\perp}$) generates a onedimensional submodule in X^{*}. Conversely, each element of X^{*} which generates a one-dimensional submodule in X^{*} clearly annihilates X^{h}, and therefore has an isomorphic image in $\left(X_{h}\right)^{*}$.

It is shown in [3] that for any locally compact abelian group G, the one dimensional submodules in $L^{p}(G)(1 \leq p \leq \infty)$ are scalar multiples of characters of G. But when G is non-compact, these characters are not in $L^{p}(G)$ for $1 \leq p<\infty$, and so $L^{p}(G)$ has no one-dimensional submodules. It follows that if $1<p<\infty$, $X=L^{p}(G)$, and G is non-compact, then $X_{h}=0$ for each character $h \in \Delta_{L^{1}(G)}=$ \widehat{G}. In this case, the only section of the multiplier bundle for $L^{p}(G)$ as a module over $L^{1}(G)$ is the zero section, which is trivially $B S E$.

Acknowledgment: The author wishes to thank the referee for his several helpful suggestions and for calling an additional reference to his attention.

References

[1] G. Gierz, Bundles of topological vector spaces and their duality, Lect. Notes Math. 955 (Berlin: Springer-Verlag), 1982.
[2] K. H. Hofmann, Bundles and sheaves are equivalent in the category of vector spaces, Tulane University preprint, 1974.
[3] J. W. Kitchen, Normed modules and almost periodicity, Monatsh. Math. 70 (1966), 233-213.
[4] J. W. Kitchen and D. A. Robbins, Gelfand representation of Banach modules, Dissertationes Math. (Rozprawy Mat.) 203 (1982) (1983).
[5] ———, Sectional representations of Banach modules, Pacific J. Math. 109 (1983), 135-156.
[6] S.-E. Takahasi, An extension of Helson-Edwards theorem to Banach modules, International J. Math. \& Math. Sci. 14 (1991), 227-232.
[7] —_-_ BSE Banach modules and multipliers, J. Funct. Anal. 125 (1994), 67-89.
[8] S.-E. Takahasi and M. Nakano, A generalized Fourier transform for $L^{p}(G)$-modules, Math. Japon. 44 (1996), 55-59.
[9] J. Varela, Duality of C^{*}-algebras, Mem. Amer. Math. Soc. 148 (1974), 97-107.
[10] ——, Sectional representation of Banach modules, Math. Z. 139 (1974), 55-61.

Department of Mathematics, Trinity College, Hartford, CT 06106 USA
E-mail address: david.robbins@mail.trincoll.edu

[^0]: 1991 Mathematics Subject Classification. 46H25, 46J25.
 Key words and phrases. Banach module, bundle of Banach spaces, essential module, $C(\Delta)$ locally convex module.

