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ABSTRACT. We prove a unicity theorem of Nevanlinna for meromorphic 
mappings of P into Pm. 

1. INTR~DuOTI~N 

As an application of Nevanlinna’s second main theorem and Borel’s lemma, R. 
Nevanlinna proved that for any two meromorphic functions in the complex plane 
@ on which they share four distinct values, then, these two meromorphic functions 
are the same up to a Mijbius transformation. Since then, there have been a number 
of papers (e.g. [4], [2], and [8]) working towards this kind of problems. Recently, 
motivated by the accomplishment of the second main theorem for moving targets 
(cf. [6]), M. Sh’ lrosaki [9] has proved a unicity theorem of meromorphic functions 
for moving targets, i.e. replacing four values in the original problem by four ‘small’ 
functions. However, his result is only dealing with one complex variable. In this 
paper, we extend this kind of theorem to the case of meromorphic mappings 
of C? into IF” for moving targets. Broadly speaking, for any two meromorphic 
mappings of Cc” into F sharing 2(m + 1) ‘small’ mappings in a certain sense, 
then, there is a non-zero bilinear function vanishing on these two meromorphic 

mappings. Particularly, when m = 1, these two meromorphic mappings in Cc” 
are the same up to a Mijbius transformation. Thus, Shirosaki’s result is a special 
case of ours when n = m = 1. 
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2. PRELIMINARIES AND OUR RESULTS 

Forz=(zr,...,z,)ECn,wedefine,foranyrEIW+, 

l/z]] = (1.~11~ +. . . + 1.~~1~)~‘~~ and B,(r) = {.z E C”; ]]z]] < T}, 

&(T) = (2 E Cc”; ]]z]] = T}, and B,[r] = {z E C”; ]]z]] 5 r}. 

Let d = d + 8 and dc = (a - 8)/4ri, we write, 

w,(z) = dd” log ]]z]]‘, and g,(z) = d” log ]].z(]2 A wz-r(z), 

v(z) = ddclltl(2 for z E C” \ (0). 

Thus a,(z) defines a positive measure on &(T) with total measure one, and v,“(z) 
defines a positive measure on B,(r) with total measure one. 

Let F : C” + IT be a meromorphic mapping, then F can be represented by 
a holomorphic mapping f : @” + (c”+l such that f = (fe, jr, . . . , fm), and 

If := {.z E cc”; fo(.z) = fi(Z) = . . . = fm(z) = 0) 

is an analytic subvariety of Cc” of codimension at least 2 and F = IT o f on Ij on 
C” \ If, where 7r : Cmfl \ (0) + IP is ‘IT(W) E [w] = complex line through 0 and 
20. We call Ij the set of indeterminacy. We call f as a reduced representative of 
F (the only factors common to fo, . . , f,,, are units). F will often be identified 
with its reduced representative f. 

Let I = (or, cys,. . . , a,) be a multi-index with CY~ E Z+ U (0) with 1 5 j 5 n. 
We denote the length of the I by /II = Cj”=, CY~ and define 

Kf = ( alI1 fl alI1 fm 
azal 

1 
azan7 . . . , ... n aq . . . a+ > 

and f,: = dk f /a.$ = (a” fJa,$, . . . , akfm/&:),“>, for any holomorphic map 

f=(f1, “‘7 fm) : cc” --l u?. 

For all 0 < s < r, the growth of a meromorphic mapping f : cc” --+ P is 
measured by its characteristic function 

where we is the Fubini-Study metric on IY. Sometimes, for simplicity, we write 
Tf(r) instead of ‘I’j(r, s) if no confusion occurs. 
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A meromorphic mapping a : C” t P is ‘small’ with respect to mapping f 
of C” into lP if T,(r) = o(Tf(r)). Let a = (ae, al, ... , a,) be a reduced 
representation of a, we denote by 

-Nj,a(r) = 
J 

log I(f, a)I G + O(l), and mj,,(r) = 
J 

Ilf II 
L(r) &(T) log I(f, cnl 

where (f, a) = C;;” fjaj. M oreover, the first main theorem states 

Tj(T) = Nj,a(r) + mj,a(r) + O(l) = J 1% llfll gn + O(1). 
sn (r) 

If f is a meromorphic function in C” and a E C U {co}, then we adopt the 
standard notations for Nj(a, r), mf(a, T), and etc. Thus we have 

if a is a non-zero meromorphic mapping. 
For any q > m + 1, let ai,. , a4 be q ‘small’ meromorphic mappings of C” 

into P with reduced representations aj = (ajo, . . . , aj,) (0 5 j 5 q). We say 
that uj is in general position if for any 0 < ju, ~‘1,. . , j, 5 q, det(aj,l) $ 0. 

Let R({aj}y) be th e smallest subfield containing {ajk} U @ of the meromorphic 
mappings field on C. Then, for any h E R({aj}i), h is a ‘small’ mapping with 
respect to f. Furthermore, we call that f is non-degenerate over R({aj}T) if 

fo, fl, ... , fm are linearly independent over R( { aj}:). 

Swwe f(r) and d ) T are two positive functions in Iw+ . “f(r) < g(r) ]I” means 
that f(r) < g(r) for all large T outside a set of finite Lebesgue measure. 

Assume f and {at}; (q > m + 1) are meromorphic mappings of U? into P, 
and {at}: are ‘small’ with respect to f. If f is non-degenerate over R({a3}~), 
then, Nevanlinna’s second main theorem for moving targets can be described as, 
for any E > 0, 

(1) (4 - m - 1 - ~)Tj(r) 5 & Nj,a, (r) + o(Tj(r))II. 
j=l 

It follows that a corresponding defect relation for moving targets holds. This 
was proved by M. Ru and W. Stoll [6] in a more general setting. Recently, M. 
Shirosaki [7] has given another proof of (1) when f is a holomorphic mapping of @ 
into lP . In fact, Shirosaki’s proof of (1) can be carried over to any meromorphic 

mappings of cc” into P. We now state our unicity theorem. 

Theorem 2.1. Let f,g : cc” -+ IP be non-constant meromorphic mappings, and 

let {atltzl 2(m+1) be ‘small’ (with respect to f) meromorphic mappings of @” into IP 
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with in general position, and f non-degenerate over R = R( {at}~~~+‘)). Assume 
(i) there are nowhere vanishing holomorphic functions $j : @” + @ such that 

(2) Fj := (f, aj) = +j(g, aj) =: $J~G,, j = 1,2;.. ,2(m+l); 

(ii) if FL(Z) = Gl(z) = 0 f or some z E P and some 1 E (1, ... ,2(m + l)}, then 
there is a c(z) E @ \ (0) such that f(z) = c(z)g(z). 
Then there exists (m + 1) x (m + 1) non-zero matrix Y with elements in R such 
that 

go(z) 

(fo(z), fib), ..’ , fm(z))y(z) 
91(z) 

i.l 

: = 0, 

Sm (z) 

where (.fo;.. ,.fA and (go,... ,gm) are reduced representatives of f and g, re- 
spectively. 

Corollary 2.2. Let f, g : @” + IF” be meromorphic mappings, and suppose 
{at}:z=1 are ‘small’ (with respect to f) meromorphic mappings of P into IP1 with 
in general position, and f is non-degenerate over R({u~}$,). Assume there are 
nowhere vanishing holomorphic functions gj : @” + C such that 

(f, aj) = (g, aj)lClj, j = 1,2,3,4; 

then, there are A, B,C, and D in R({at}t==,) with AD - BC q! 0 such that 

AgfB f=- 
Cg-t D’ 

Remark. The unicity theorem proved by Shirosaki in [9] and [8] is a special case 
of our Corollary when n = 1. Moreover, we can see from the proof of Theorem 
that the determinant of the matrix Y may be identically equal to zero in some 
cases. 

3. LEMMAS 

In order to prove our theorem, we need the following lemmas. 

Lemma 3.1. Let fo, fl, .. . , fm be entire functions in C” and linearly inde- 
pendent over @. Then there are multi-indices /31, . . , Pm such that 1 < l,Ojl 5 j 
for any j = 1,. . ’ , m, and f, @lf, , . , aPmf are linearly independent over @, 

where f = (fo, fl, ... , fm). 
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The proof of the lemma can be found in [ll] and [3]. 

For any multi-indices PI, . , ,&, let 

f0 fl ... fm 
aa fo a/Q . . . 

w,,, . ..> Pm(fO, ... 7 fm) = .,. 
afll fm 

.., ... .,. . 

Thus, IV,,, , DC, (fo, . , fm) E 0 if and only if f, afll f, . . , 80-f are linearly 
dependent, where f = (fo, . , fn). Moreover, we have 

Lemma 3.2. Holomorphic functions fo, fl, . , fm are linearly dependent ouer 
C if and only if 

w,,, ‘..) P,(fO> ... , fm) = 0, 
for any multi-indices /?I, ... , ,& with I& <j forj = I,... ,m. 

PROOF. If fo, fl, . . . , fm are linearly dependent over C, then there are m + 1 
complex numbers ci (i = 0,. ! m) in C such that )cg\ + 1~1) +. . + )c,\ # 0, and 
for any z E C”, 

cofo(z) + Clfl(Z). '. Cmfm(~) = 0. 
Consequently, for any multi-indices pj (j = 1,. . . , m) with Ipj 1 > 1 , 

coaflj fo(z) + Claf13 fl(z). . CmaflJ f7n(z) = 0. 

It follows 

w,,, “‘, p,(fo, ... 1 fm) = 0, 
for any multi-indices PI, , Pm with I/Yj 1 5 j for j = 1, . . , m. 

Conversely, if fo, fl , f . . , fm are linearly independent over C, then we have 
from Lemma 1 that there are multi-indices PI, . , Pm such that 1 5 I&I < j 
for any j = 1,. . , m, and f, i3f11 f, . . , aflm f are linearly independent over C, 

where f = (fo, fl, ... , fm). Thus, 

w,,, “‘, &(fO, ..’ , fm) + 0, 

for some multi-indices PI, . , Pm with 1 5 I&) 5 j for j = 1,. . , m. This is a 
contradiction. Therefore Lemma 2 is proved completely. 0 

Lemma 3.3. Suppose m 2 1 is an integer, and hl, . . . , h, are nowhere vanish- 
ing entire junctions in Cn, and al, . . . , a, are non-zero meromorphic junctions 

in P with 

(3) Ta, (r) = oP(r)) + O(l), 
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whereT(r) = C;“Th,(r) (N o 0. z one of Thi ‘s is unbounded, then (3) is Ta, (r) = t: y 
o(T(r)); and otherwise, all hj ‘s and aj ‘s are constants). Assume that 

(4 alhl + azh2 + . + a m m= h 1. 

Then alhI, azha, . . , amhm are linearly dependent over @. Moreover, if m = 1, 
then hl and al are constants; and if m = 2, then hl, hz, al, and a2 are constants. 

PROOF. First, we consider the case of m = 1. Suppose hl is not a constant, then 
Th, is unbounded. Therefore, we have from (4), the first main theorem, and (3) 
that 

Thl (r) = Ti/,, (r) + G(1) = T,, (r) + G(1) = o(Thl (r)). 

This is impossible. Thus, hl is a constant, so is al. 
Second, we deal with the case of m > 2. Put H3 = ajhj. Without loss 

of generality, we assume Hj (1 < j 5 m) is not identically equal to zero and 
m 2 2. For any multi-indices /?I, . , ,&_1 with ],Bj] > 1 for j = l,... ,m - 1, 
differentiating both sides of (4) gives 

which, with (4), form a system of m equations Gp,, . ..) o,_~ H = E, where 

E = (l,O;.. ,O)t, H = (Hl,Jfz,... ,fL$, and 

1 

i 1 

1 . . 1 
ablH, 6LY5!2 . . . - 

Go,, “. 1 Pm-1 = Ff: HZ HWI 
. . . . 

a&-‘H aPm-1H2 a&-1 H . 
Hl HZ H, =I 

We claim det Gp,, ___ , P,,_~ E 0. In fact, if it is not so, then, Gp,, ._. , o,,_~ H = E 
has unique solutions. Moreover, each solution is composed of logarithmic deriva- 
tives 80~ Hi/H,. Thus we have from a logarithmic derivatives lemma (e.g. see 
[lo] or [ll]) and the definition of Hj that 

m m 

Thjb-) 5 O(~T,;(r)) + o(~Tfr,(r)) + o(l)ll. 
i=l ix1 

Consequently, if one of Thl’s is unbounded, then we get from (3) and Hi = aihi 
that 

m m m m 

c Thi (r) I 0(x Tai (r)) + o(c Thi (r)) + O(l) F 0(x Thi (r))II. 
j=l i=l i=l i=l 
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This is a contradiction. So, if one of Th,‘s is unbounded, then 

det Gp,, , P,,_~ E 0, 

for any 03’s. However, if all Thj’s are bounded, then all hj’s are constants, and 
SO all U~‘S are constants, too. Hence, in either case, we always have, for m > 2, 

(5) det Gp,, . . . . P,,_~ z 0, for any pi,... ,,&. 

Hence, WP~,...,P,,_~(H~,... ,Hm) E 0 for any pi,... ,&. It follows from Lemma 
3.2 that the first part of the lemma is proved. 

If m = 2, then, for any /3j = (0, ... , 1, ,O) (the j-th component is l), we 
have from (5) that det Go, E 0. Accordingly, we have two equations: 

HlfH2 = 1, 

r@ HI 80, Hz 

HI 
- = 0, 

Hz 

from (5) and the definition of Gp, . Solving the system presents aH,/&+ E 0 for 
i = 1,2 and j = 1,. . , n. It turns out each Hi (i = 1,2) is a constant. Therefore, 
T,, and Thi have the same order of magnitude. Now suppose that if one of hl and 
hz is not constant, then T(r) = Thl(T) + Thz( ) . T 1s unbounded. Thus, (3) implies 

Thl (r) + Thz(r) = T,,(r) + T,z(r) + G(I) = o(T(r)), 

which is a contradiction. Hence, each hi is a constant, so is each ai. It follows 
that Lemma 3.3 is proved completely. 0 

Remark. Clearly, Lemma 3.3 extends the classical Bore1 Lemma (e.g. see [5]) 
which is the case of n = 1 in Lemma 3.3; and the frame of Lemma 3.3 is influenced 
by [5]. In add’t’ 1 ion, ones can find other versions of extension of the classical Bore1 
lemma (e.g. see [l]). 

4. PROOF OF THE THEOREM 

For simplicity, we write, 

f = vol... ,.&7x)> and 9 = (go,... ,gm); 

and let 

at = (ato;.. ,%m), t = 1, .. . , 2(m + 1). 

We first show that our Theorem is a consequence of the following claim. 
Claim: There exist j and k with j # k such that $j/$+ is a non-zero constant 
Suppose the claim is true, then there is a non-zero constant b such that 

$‘j = b$‘k. 
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It turns out from (2) that 
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which is 

(6) 

This implies our Theorem. 
We now start to prove Claim. Let j and k be any positive integers with j # k 

and 1 < j, k 5 2(m + l), then (2) gives 

(7) 

(8) 
1 mm 

---ccl 
fp% w&ill 

= F&i qxop=o f&p hub 

-. -. &(fO, fl, .” > fm)Sjk 

where the matrix Sjk is anti-symmetric, i.e. Sjk = -Sjk. Note that if S,, is 
identically equal to zero, i.e. $j/$k is identically equal to one, for some j and k 
with j # k, then Claim is proved. 

Let j and k be fixed and j # k, and suppose that $j/?+!& is not identically 
equal to a constant. Assume 1 is neither equal to j nor equal to k, and with 
1 5 I 5 2m + 2. If FL(Z) = 0 for some z E C”, then the equation(2) and the 
nowhere vanishness of +j’s give that Gl(a) = 0. Hence we have from the condition 
(ii) of Theorem that f(z) = c(z)g(t-) f or some c(z) E @ \ (0). It follows from (7) 
that 

$2) - 1 = g k 3 d+%k(++(d = 0. 

It turns out that, (noting Nf,a,(r) = NF,(O, r)) 
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Therefore, for j # k, u # v and #{j, k, u, v} > 3 (here we denote the number of 
distinct integers ni, n2,. . . , np by #{ni, 7~2,. . , n,}), we obtain from (1) that 

TtiJkk (r) + T&J*“(r) 2 N$+ik (1, r) + N$,/$J, (17 r) 

> c Nf,ar (r) + c Nf ,a, (r) 
1#j,k;1<1<2m+2 -- 1#u,v;1<1<2m+2 

c Nf ,a,k CT) 
at least 2m+l different terms 

(9) 2 (2~2 + 1 - m - 1 - c)Tf(r) - o(Tf(r)) 2 yT+)ll. 

It follows from (9) that, for j # k, u # v, (#{j, k, u, v} > 3), 

T,,(r) = o(Tf(r)) = o(T+,,/+~ (r) + T$,,,$, (T)), for any t = 1,. . . ,2m + 2. 

Consequently, for any h E R({at}f~~+‘)), we have 

(19) Tht (r) = o(T*Jlfxk (r) + T*“/& (r)). 

Since Fj - $jGj = 0 for j = 1,. .. ,2(m + 1) and f is non-degenerate, then, by 
Cramer’s rule for solving systems of equations, we obtain 

A := 

a10 .’ 

a20 .. 

qm+l)o .. 

U(2m+2)0 . 

l<io,il,... ,i,52m+2 

where 

1 ai00 ... a&m 

Ai,i,..,.i, = (_l)sig~(io,il,..,,i*) ui,o ’ : ui,TTl . 

ai,0 .” ai,m 

Note first that the determinant is the cofactor of the 

and 

. . . -$lah 

. . . -7+32~2m 

. . -hn+&+l), 

. -1C12m+2q2m+2)m 

d%,ai,o . . . %,m I 
second determinant in A 

2(m+l) Aioz~-.i, E W(e),,, 1. 
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Furthermore, Aioil...i,,, is not identically equal to zero since a:s are in general 
position. Therefore, we have 

(11) A= c Aiozl...i,+io$tl . $i, = 0. 
l<iO,il,... ,i, <277x+2 

In order to avoid an unnecessary complexity of computation, we begin to finish 
the proof of our Claim by using induction with respect to m. First let m = 1, 
thus (11) can be written as 

(12) A12$~1$2 + &3+1$3 + A14$1$4 + A23$2$3 + A24$2’$4 + A34$3$~4 = 0. 

We first show that we can eliminate any term in (12) as long as the identity (12) 
contains more than two terms. Without loss of generality, let us eliminate the 
term As4+3$~4. Indeed, (12) can be written as 

A12 $162 -- 

A34 $3$4 

I A13 ‘7ihti3 I A14 1cl17!‘4 I A23 +2$3 + &b&z = _1, 

A34 $3~54 A34 $3~54 A34 1cI3$~4 A34 $3$4 

since ‘$k is nowhere vanishing and As4 is not identically equal to zero. Because the 
number of the terms in the left hand side of the equation is more than one, (10) 
ensures the condition (3) is satisfied. Hence from Lemma 3.3, there are cZj E @, 
not all zero, such that 

~12A127,h+2 + ~13A13$1$3 + ~14A14$1$~4 + C23A23$2$3 + C24A24$2+4 = 0. 

Clearly, this identity is one term shorter than the identity (11); i.e. the term 
A34+3+4, which is in (11)) has disappeared. Repeating the above procedure 

again and again, we get that there are some indices io, ii; jo, ji and Its, ICI; and 
constants ciOil, cj,j, and ck&, not all zero, such that 

%ilAic&~‘i0~il + ClOjl 30.l1 .I0 31 A’ ‘6 “b’ + Ck~klAkokl~ko~k~ = 0, 

and noting io # il; jo # jl and Ice # Ici. Without loss of generality, we assume 
that ckOkl is not equal to zero. Furthermore, either ciOil or cj,,j, is not equal to 
zero since we know that $& is nowhere vanishing and AK is not identically equal 
to zero. Thus, 

cioil Giolclil C’ &qiLjl -___ +J!LK_= -1. 
ckokl d’ko”bk, ckokl $‘ko +kl 

It follows from Lemma 3.3 that both 

(13) 

are constants. Now we have to consider two cases. 
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Case one: Either #{’ 20, il; ko, ICI} = 2 or #{je,ji; lco, Ici} = 2, recall 

#{no, 721, . ‘. 1 nt) 

means the number of distinct integers in the set {no, ni , , nt}. 
It is straightforward to see that the Claim follows this case by noting i. # ii; 

~o#~I;~o#~l;~~~{~o,~l}#{p~~pl}fo~q#p,~~dp,q=i,j,Ic. 

Case two: Both #{’ zo,ii;ko,ki} and #{je,ji; ko,lci} are greater than 2, i.e. 
equal to 4. 

We now show that this is an impossible case (it is possible when m > 1). In 
fact, since 

#{i0, il; k0, h) = 4, 

SO, {io,il; ko, kl} = (1, 2, 3, 4). It turns out from the fact {je,ji} # {Ics,ki} 
that #{js,ji; Ice, Ici} must be 2, which contradicts to the fact that #{jo, ji; ke, ki} 
is greater than 2. 

It follows that Theorem is proved for m = 1. For simplicity, we consider the 
Claim m = 2 by using the fact that the Claim holds for m = 1. For m = 2, we 
write (11) as 

(14) c Ai,i,izlC’io1CI,,$,, = 0. 

From the discussion we have done for m = 1, we know that we can eliminate any 
terms which do not have the factor ‘$6 in (14). In this procedure, we still have 
two cases as we have had for m = 1; either min(#{ps,pi; lco, ICI}) = 2 for p = i,j, 

then the claim follows; or min,,i,j(#{po,pl;ko,Icl}) > 2. If we have both that 
#{io, il, i2; ko, kl,j2} and #{je,ji; ice, ki, Its} are greater than 2, then, similar to 
(13) there are two non-zero constants a and b in @ such that 

Substituting these two equations into the identity (14), we get a new identity. 
Clearly the new identity is at least two terms shorter than the identity (14) 
(Remark: it would be three terms shorter when Aioiliza+Ajo3132b+AkOklk2 = 0). 
Thus we can eventually eliminate all terms which do not have factor $6, i.e. we get 
an identity in which every term has the factor ‘$6. Thus dividing both sides of the 
identity by ‘$6, we obtain an identity having terms $iO$Jil (where 1 5 io < il 5 5) 

rather than $i0$il$t2 ( w h ere 1 I< is < ii < is 2 6). Similarly, we can get rid 
of the terms with the factor $5 from the new identity only having terms $,,$il 
where 1 < io < il < 5. Thus we have an identity which only contains terms 
+!I~~$,, where 1 2 io < il <_ 4. This is the situation we have had in the proof for 
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m = 1. Thus the Claim is proved for m = 2. In the same manner, we can prove 
the Claim for m = 3,4,. . . It follows that the Theorem is proved. 

5. PROOF OF COROLLARY 

Let 

f = (fo, h), 9 = (go, a), and at = (ato, atl), t = L&3,4. 

If Fl(.z) = Gl(z) = 0 for some z E C”, then the vectors f(z) and g(z) in C2 
are perpendicular to the vector al(z) in UZ2. So, there exists a C(Z) E C \ (0) 
such that f(z) = c(z)g(z). It follows that the condition (ii) of the Theorem is 
redundant when m = 1. Thus, we know from (6) there are j and k with j # k 
and 1 5 j, k 5 4 and a non-zero constant b such that 

=: (fo, fl)E ;y E 0. ( ) 
Consequently, 

det E = det 
K 

aj0 bake 

>( 

2 
-akO -akl 

)) I 
= b 

aj0 ajl 

ajl bakl aj0 ajl ak0 akl 

It turns out from the general position of at’s that det E is not identically equal 
to zero. Therefore, let 

A = -bakoajl + aklaj0, B = -(b - l)a,Z&jO, 

c = (b - l)aklajl, D = bakiaje - akeaji; 

now our corollary can be verified after a little computation. 

PI 

PI 

PI 
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