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A UNICITY THEOREM FOR MEROMORPHIC MAPPINGS

ZHUAN YE
Communicated by Giles Auchmuty

ABSTRACT. We prove a unicity theorem of Nevanlinna for meromorphic
mappings of C* into P™.

1. INTRODUCTION

As an application of Nevanlinna’s second main theorem and Borel’s lemma, R.
Nevanlinna proved that for any two meromorphic functions in the complex plane
C on which they share four distinct values, then, these two meromorphic functions
are the same up to a Mobius transformation. Since then, there have been a number
of papers (e.g. [4], [2], and [8]) working towards this kind of problems. Recently,
motivated by the accomplishment of the second main theorem for moving targets
(cf. [6]), M. Shirosaki [9] has proved a unicity theorem of meromorphic functions
for moving targets, i.e. replacing four values in the original problem by four ‘small’
functions. However, his result is only dealing with one complex variable. In this
paper, we extend this kind of theorem to the case of meromorphic mappings
of C* into P™ for moving targets. Broadly speaking, for any two meromorphic
mappings of C* into P™ sharing 2(m + 1) ‘small’ mappings in a certain sense,
then, there is a non-zero bilinear function vanishing on these two meromorphic
mappings. Particularly, when m = 1, these two meromorphic mappings in C*
are the same up to a Mobius transformation. Thus, Shirosaki’s result is a special
case of ours when n=m = 1.
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2. PRELIMINARIES AND OUR RESULTS
For z = (z1,... ,2,) € C*, we define, for any r € RF,
lzll = (|2 + -+ [2a[*)/?,  and  Ba(r) = {z € C; |z| < r},
Sa(r)={2€C" |zl =r}, and Ba[r]={2€C" |2 <r}.
Let d = 8 + 0 and d° = (0 — 9)/4ni, we write,
wn(2) = dd°log|jz|?, and  0n(z) = d°log |zl AWl (2),
v(z) = dd||z||> for z e C™\ {0}.

Thus 0,,(z) defines a positive measure on S, (r) with total measure one, and v7(2)
defines a positive measure on B, (r) with total measure one.

Let F': C* — P™ be a meromorphic mapping, then F' can be represented by
a holomorphic mapping f: C* — C™*! such that f = (fo, f1,- -+, fm), and

I := {ze T fo(2) = fi(z) = -+ = fm(z) =0}

is an analytic subvariety of C* of codimension at least 2 and F =7 o f on Iy on
C"\ I, where 7 : C™*1\ {0} - P™ is m(w) = [w] = complex line through 0 and
w. We call Iy the set of indeterminacy. We call f as a reduced representative of

F (the only factors common to fg, ---, fm are units). F will often be identified
with its reduced representative f.
Let I = (a1, 00, - ,a,) be a multi-index with o; € Z*t U {0} with 1 < j <n.
We denote the length of the I by |I] = E;’l:l a; and define
ol f = _al_llfl_ e ﬂm__
Qzgt -+ Bz’ T 8zpt - Bz
and f,r = 0% f|8zF = (8% f1/82%, -, 8*f,,/B2F), for any holomorphic map
f=(, -, fm): C* > C™.

For all 0 < s < r, the growth of a meromorphic mapping f : C* — P™ is
measured by its characteristic function

Tl . n—
Ty(r,s) = /stg—nj/B[t]f(wo)/\Vn 'dt

—=— dd®log || f||* Av]: ™" dt,
/“J t2n—1 nlt] “ ”

where wyp is the Fubini-Study metric on P™. Sometimes, for simplicity, we write
Ty(r) instead of Ty(r, s) if no confusion occurs.
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A meromorphic mapping a : C* — P™ is ‘small’ with respect to mapping f
of C* into P™ if T,(r) = o(T¢(r)). Let a = (ao, a1, ---
representation of a, we denote by

_Nf,a(r)z/ , log ((f, a)lon +O(1), and mf,a(T)Z/SH(T) 1°g|(1|f|f|(lz)|”"’

where (f, a) = >°¢" fja;. Moreover, the first main theorem states

, am) be a reduced

n

TH(r) = Npa(r) + mya(r) + O(1) = /5 Togllfll o+ 001,

If f is a meromorphic function in C* and a € C U {oo}, then we adopt the
standard notations for N¢(a,r), ms(a,r), and etc. Thus we have

Nf,a(’r‘) = N(f’a)(o, T‘)

if @ is a non-zero meromorphic mapping.

For any ¢ > m + 1, let a1,--- , a4 be ¢ ‘small’ meromorphic mappings of C*
into P with reduced representations a; = (ajo, ---, ajm) (0 < j < g). We say
that a; is in general position if for any 0 < jo, ji, -+, jm < g, det(a;,1) # 0.

Let R({a;}]) be the smallest subfield containing {a;x}UC of the meromorphic
mappings field on C. Then, for any h € R({a;}{), h is a ‘small’ mapping with
respect to f. Furthermore, we call that f is non-degenerate over R({a,}1) if
fo, fi, -+, fm are linearly independent over R({a;}}).

Suppose f(r) and g(r) are two positive functions in RT. “f(r) < g(r)||” means
that f(r) < g(r) for all large r outside a set of finite Lebesgue measure.

Assume f and {a:}{ (g > m + 1) are meromorphic mappings of C* into P™,
and {a;}] are ‘small’ with respect to f. If f is non-degenerate over R({a;}%),
then, Nevanlinna’s second main theorem for moving targets can be described as,
for any € > 0,

(1) (g—m—1-e)Ty(r Z Fa; (1) + o(Ts(r))]|-

It follows that a corresponding defect relatlon for moving targets holds. This
was proved by M. Ru and W. Stoll [6] in a more general setting. Recently, M.
Shirosaki [7] has given another proof of (1) when f is a holomorphic mapping of C
into P™. In fact, Shirosaki’s proof of (1) can be carried over to any meromorphic
mappings of C* into P™. We now state our unicity theorem.

Theorem 2.1. Let f,g: C* — P™ be non-constant meromorphic mappings, and
let {at}Q(mH) be ‘small’ (with respect to f ) meromorphic mappings of C* into P™



522 ZHUAN YE

with in general position, and f non-degenerate over R = R({at}f(:"lbﬂ)). Assume

(i) there are nowhere vanishing holomorphic functions ¢¥; : C* — C such that
(2) Fj = (f» a]):dh(g, aj) ::d}jGj, ]:1,2772(m+1)’

(1) if Fi(z) = Gi(z) = 0 for some z € C* and some l € {1,--- ,2(m + 1)}, then
there is a c(z) € C\ {0} such that f(2) = ¢(2)g(z).

Then there exists (m + 1) x (m + 1) non-zero matriz Y with elements in R such
that

go(2)
(2)
(fole) Hi(2), o falY() | ) | =0,
gm(2)
where (fo, -+, fm) and (go, - ,gm) are reduced representatives of f and g, re-

spectively.

Corollary 2.2. Let f,g : C* — P! be meromorphic mappings, and suppose
{a¢}i_, are ‘small’ (with respect to f) meromorphic mappings of C* into P! with
in general position, and f is non-degenerate over R({a;};_;). Assume there are
nowhere vanishing holomorphic functions 1; : C* — C such that

(f, @) = (9, @), 7=1,2,3,4
then, there are A, B,C, and D in R({a;}}.,) with AD — BC # 0 such that

Ag+ B
Cg+ D’

f=

Remark. The unicity theorem proved by Shirosaki in [9] and [8] is a special case
of our Corollary when n = 1. Moreover, we can see from the proof of Theorem
that the determinant of the matrix ¥ may be identically equal to zero in some
cases.

3. LEMMAS

In order to prove our theorem, we need the following lemmas.

Lemma 3.1. Let fy, f1, -+, fm be entire functions in C* and linearly inde-
pendent over C. Then there are multi-indices B1, -+, Bm such that 1 < |3;] < j
foranyj=1,---,m, and f, 8% f, ---, 0% f are linearly independent over C,

where f = (fo, f1, -~ fm)-
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The proof of the lemma can be found in {11] and {3].

For any multi-indices 31, -+, Om, let
fo fi fm
aﬁl 851 e aﬁl
Wo, o pmlfos ooy fu) = | O 00 070 O
8Pmfy Fmf .. BB,
Thus, Wg,, ... g..(fo, -~ , fm) =0if and only if f, 8Prf, ... 8% f are linearly
dependent, where f = (fo, -+, fn). Moreover, we have
Lemma 3.2. Holomorphic functions fo, f1, -+, fm are linearly dependent over
C if and only if
Wﬂh SN ﬁm(fﬂa Tty fm) =0,
for any multi-indices By, -+, Bm with |3;| < j forj=1,--- ,m.
Proor. If fy, f1, -+, fm are linearly dependent over C, then there are m + 1
complex numbers ¢; (i = 0,--- ,m) in C such that |cp| + |c1] + -+ |em| # 0, and

for any z € C™,
cofo(z) +c1fi(2) - emfm(2) = 0.
Consequently, for any multi-indices 8; (j = 1,--- ,m) with |5;| > 1,

c0d% fo(2) + c18% f1(2) - - em®P frn(2) = 0.

It follows
Wﬂh R ﬁm(f(]! Ty fm) =0,
for any multi-indices 1, -+, By with |G| <jforj=1,--- ;m.

Conversely, if fo, fi, -+, fm are linearly independent over C, then we have
from Lemma 1 that there are multi-indices 81, -+, By such that 1 < |3, < j
forany j =1,---,m, and f, 0% f, ---, 0% f are linearly independent over C,
where f = (an fla T, fm) Thusa

Wﬂlw sy ﬂm(f07 ) fm) 3—6 Oa
for some multi-indices By, -+, Bp with 1 < |8;] < jfor j=1,--- ,m. Thisis a
contradiction. Therefore Lemma 2 is proved completely. 0
Lemma 3.3. Suppose m > 1 is an integer, and hy, - -+, hy, are nowhere vanish-
ing entire functions in C*, and a;, -+, a, are non-zero meromorphic functions
in C* with

(3) To,(r) = o(T(r)) + O(1),
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where T(r) = 371" T, () (Note: if one of T, ’s is unbounded, then (3) is Ty, (r) =
o(T(r)); and otherwise, all h;’s and a;’s are constants). Assume that

(4) arhy +agho + -+ amh, = 1.

Then a1hi, asho, -+, aphy, are linearly dependent over C. Moreover, if m = 1,
then h1 and a1 are constants; and if m = 2, then hy, hs, a1, and ay are constants.

PRrOOF. First, we consider the case of m = 1. Suppose h; is not a constant, then
Ty, is unbounded. Therefore, we have from (4), the first main theorem, and (3)
that

Tp (1) = Ty (r) + O(1) = Ty () + O(1) = o(Th, (r)).
This is impossible. Thus, h; is a constant, so is a;.

Second, we deal with the case of m > 2. Put H; = ajh;. Without loss
of generality, we assume H; (1 < j < m) is not identically equal to zero and
m > 2. For any multi-indices 81, --+, By with |5;| > 1forj=1,--- ,m -1,
differentiating both sides of (4) gives

m .
9% H.

> IH;=0, (1<i<m-1),
HJ

i=1
which, with (4), form a system of m equations Gg,, ... g, ,H = E, where

E=(1,0,~-~,O)t, H:(HlyHZ""va)ta and

— H H H.
Gpr, o\ Bnos = ..
Pm-1H, 9Pm—1H, 8Pm-1H,
H; Hy H,,

We claim det Gg,, ..., g,,_, = 0. In fact, if it is not so, then, Gg,, ..., g5,,_, H =F
has unique solutions. Moreover, each solution is composed of logarithmic deriva-
tives 8% H;/H;. Thus we have from a logarithmic derivatives lemma (e.g. see
[10] or [11]) and the definition of H; that

Thy(r) < O Tay(r)) + 0D Tar,(r)) + O(L)].
=1 i=1

Consequently, if one of T},’s is unbounded, then we get from (3) and H; = a;h;
that

m m

Z Thy(r) < O()_ Tui(r)) + O(Z Thi (7)) +O(1) < oY T, (M)l-

i=1 i=1
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This is a contradiction. So, if one of Th].’s is unbounded, then
detGg,, -, By =0,

for any (3;’s. However, if all Tj,’s are bounded, then all h;’s are constants, and
so all a;’s are constants, too. Hence, in either case, we always have, for m > 2,

(5) detGgp,. .. 3, =0, for any pBi, - ,Bm.

Hence, Wg, ... g,._,(H1, -+ ,Hm) =0 forany 1, -, Bn. It follows from Lemma
3.2 that the first part of the lemma is proved.

If m = 2, then, for any 3; = (0, ---, 1, ---,0) (the j-th component is 1), we
have from (5) that det Gg, = 0. Accordingly, we have two equations:
H +Hy, = 1,
HPi H; P H, - 0
Hy H, 7
from (5) and the definition of Gg,. Solving the system presents 0H,/9z; = 0 for
i=1,2and j =1, --- ,n. It turns out each H; (¢ = 1, 2) is a constant. Therefore,

T,, and T}, have the same order of magnitude. Now suppose that if one of h; and
hs is not constant, then T(r) = Ty, (r) + Th,(r) is unbounded. Thus, (3) implies
Ty (1) + Thy (1) = Tay (1) + Tao(r) + O(1) = o(T(r)),
which is a contradiction. Hence, each h; is a constant, so is each a;. It follows

that Lemma 3.3 is proved completely. O

Remark. Clearly, Lemma 3.3 extends the classical Borel Lemma (e.g. see [5])
which is the case of n = 1 in Lemma 3.3; and the frame of Lemma 3.3 is influenced
by [5]. In addition, ones can find other versions of extension of the classical Borel
lemma (e.g. see [1]).

4. PROOF OF THE THEOREM
For simplicity, we write,

f=(fo,*+,fm), and g=1(90,""" 9m);
and let
as = (a0, + ,atm), t=1, -, 2(m+1).
We first show that our Theorem is a consequence of the following claim.

Claim: There exist j and k with j # k such that ; /1, is a non-zero constant.
Suppose the claim is true, then there is a non-zero constant b such that

Uy = b



526 ZHUAN YE

It turns out from (2) that

b(f7 ak)(91 aj) = (fv aj)(gv ak),

which is
(6)
t t t
fo Ao ajo a;o ako go
: b - =0.
fm Akm Ajm Qjm Qkm m

This implies our Theorem.
We now start to prove Claim. Let j and k be any positive integers with j # k
and 1 < j,k < 2(m + 1), then (2) gives

(7) Yi oy - BEGe-BG _ 1 | (fia) (9 a)
Uk I G, FeGi | (f, ax) (9, ax)
(8) _ FlG ii Foip 9005
kY5 =0 p=0 fp@kp  GqQkq
9o
=: F:Gj(fo’ fi, -, fm)Sjk 91 ,
Im
where the matrix S, is anti-symmetric, i.e. S;k = —Sjk. Note that if S is

identically equal to zero, i.e. ¥; /1y is identically equal to one, for some j and k
with j # k, then Claim is proved.

Let j and k be fixed and j # k, and suppose that ¥;/v; is not identically
equal to a constant. Assume [ is neither equal to j nor equal to k, and with
1 <1 <2m+2. If Fi(z) = 0 for some z € C", then the equation(2) and the
nowhere vanishness of ;s give that G;(z) = 0. Hence we have from the condition
(ii) of Theorem that f(z) = c(2z)g(z) for some ¢(z) € C\ {0}. It follows from (7)
that

$22) -1 = £2o(2S5u(2)5'(2) =0
It turns out that, (noting Ny, (r) = Ng (0, 7))

S Nra)= > N0, 1) < Ny,yp, (1, 7).

1#7,k;1<1<2m+2 1#5,k;1<I<2m+2
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Therefore, for j # k, u # v and #{j,k,u,v} > 3 (here we denote the number of
distinct integers ni,n2,--- ,n, by #{n1,ns,--- ,n,}), we obtain from (1) that

Ty (r) + Ty yu, (r) = N,y (1, 1)+ Ny, (1,7)

> > N+ Y Npaln)
1#7,k;1<I<2m+2 l#u,v;1<I<2m+2
> > Nia.(r)
at least 2m+1 dif ferent terms
m
(9) 2 (2m+1-m=—1-eTs(r) - o(Tf(r)) 2 5 Ts(r)ll

It follows from (9) that, for j # k, u # v, (#{J,k,u,v} > 3),
To,(r) = o(T5(r)) = o(Ty, o (r) + Ty, (r)), for amy t=1,--,2m+2.

Consequently, for any h € R({a; f(:”f+1)), we have
(10) Th.(r) = o(Ty, /4y, (r) + Ty, ().

Since F; —¢;G; =0 for j =1,---,2(m + 1) and f is non-degenerate, then, by
Cramer’s rule for solving systems of equations, we obtain

A =
ao o a1m —¥1a10 e —1a1m
ago e a2m —taazo e —aa2m
Am+1)0 " Cmilym —Ymt18mi10 0 —Ymt1G(m+)m
a(2m4+2)0 " 2(2m42)m —¢2m+2a(2m+2)0 —¢2m+2a(2m+2)m
= E AigiyimWio¥iy - i, =0,
1<i0,81, 0 yim $2m+2
where
Qg0 0 Qigm YigGigh  *° Qigm
N a0 v Gim Yi @0 0 Gigm
- sign(io,ir, b
Amn---zm - (_1) ( m) .
Qino 0 Gigm || YinQino 0 Qipm

Note first that the determinant is the cofactor of the second determinant in A
and

Aigiyim € R({a}707).



528 ZHUAN YE

Furthermore, A;;,...i,. is not identically equal to zero since a}s are in general
position. Therefore, we have

(11) A= Z Aigiy imWYioPiy - Yi, = 0.
1<i0,t1, ,tm <2m+4-2
In order to avoid an unnecessary complexity of computation, we begin to finish
the proof of our Claim by using induction with respect to m. First let m = 1,
thus (11) can be written as

(12)  Agavivpe + Ash1ths + Arahi1hs + Agsthaths + Asatbaths + Asathshs = 0.

We first show that we can eliminate any term in (12) as long as the identity (12)
contains more than two terms. Without loss of generality, let us eliminate the
term Asgtp31p4. Indeed, (12) can be written as

A iy | Asiys | At | A taths | Asa Yoty
Asgthstpy  Asg sy Asg 3y Aza P3ths Azg sy ’

since 1y, is nowhere vanishing and Ag4 is not identically equal to zero. Because the
number of the terms in the left hand side of the equation is more than one, (10)
ensures the condition (3) is satisfied. Hence from Lemma 3.3, there are ¢;; € C,
not all zero, such that

c12412912 + c13A4139103 + c14A1a¥194 + ca3 Aazhaths + cog Anahatpa = 0.

Clearly, this identity is one term shorter than the identity (11); i.e. the term
Asav31y, which is in (11), has disappeared. Repeating the above procedure
again and again, we get that there are some indices i, %1; jo,j1 and kg, k1; and
constants cjgi,, Cj,5, and cg,k,, not all zero, such that

cioixAioh ¢i0¢i1 + cjoj1Aj0j1 wjowh + ckoklAkokl Yro Py = 0,

and noting ig # i1; jo # j1 and kg # k1. Without loss of generality, we assume
that cgox, is not equal to zero. Furthermore, either ¢;;, or cj,; is not equal to
zero since we know that v is nowhere vanishing and Ax is not identically equal
to zero. Thus,

Cioir, PioWir _ Ciogr Yio¥ir _ _

Choky VkoWhky  Choks WhoWVky
It follows from Lemma 3.3 that both
(13) Vio¥i, 4 Vio Vi

Yo Vi Vo ks

are constants. Now we have to consider two cases.
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Case one: Either #{io,1; ko, k1} = 2 or #{jo, j1; ko, k1} = 2, recall
#{n01 Ty, =+, nt}

means the number of distinct integers in the set {ng,ny, - ,n:}.

1t is straightforward to see that the Claim follows this case by noting ¢ # i1;
Jo # Jji; ko # k1; and {qo0,q1} # {po.p1} for ¢ # p, and p,q = 1,5, k.

Case two: Both #{ig,%1; ko, k1} and #{jo,j1; ko, k1} are greater than 2, i.e.
equal to 4.

We now show that this is an impossible case (it is possible when m > 1). In
fact, since

#{i0,%1; ko, k1} = 4,
so, {ig,%1;k0,k1} = {1, 2, 3, 4}. It turns out from the fact {jo,j1} # {ko,k1}
that #{Jo, 71; ko, k1} must be 2, which contradicts to the fact that #{jo, j1; ko, k1 }
is greater than 2.
It follows that Theorem is proved for m = 1. For simplicity, we consider the

Claim m = 2 by using the fact that the Claim holds for m = 1. For m = 2, we
write (11) as

(14) Z Aigivia Yio Vi ¥i, = 0.
1<ip<i1<12<6

From the discussion we have done for m = 1, we know that we can eliminate any
terms which do not have the factor ¢ in (14). In this procedure, we still have
two cases as we have had for m = 1; either min(#{po, p1; ko, k1}) =2 for p =1, 7,
then the claim follows; or miny—; ;(#{po, p1; ko, k1}) > 2. If we have both that
#{10, 1, 2; ko, k1, j2} and #{jo, j1; ko, k1, k2} are greater than 2, then, similar to
(13) there are two non-zero constants a and b in C such that

Yio Wiy Vip = AWko Wi, Yk, and Y5005, 05, = b, Yk, Yk, -

Substituting these two equations into the identity (14), we get a new identity.
Clearly the new identity is at least two terms shorter than the identity (14)
(Remark: it would be three terms shorter when A;gi,i,a+ A g 5,0+ Akoky b, = 0).
Thus we can eventually eliminate all terms which do not have factor v, i.e. we get
an identity in which every term has the factor ¥g. Thus dividing both sides of the
identity by v, we obtain an identity having terms ;,1;, (where 1 <ip <3 < 5)
rather than ¥, 1;,v;, (where 1 << ig < 41 < iz < 6). Similarly, we can get rid
of the terms with the factor 15 from the new identity only having terms ;,%;,
where 1 < 5 < i3 < 5. Thus we have an identity which only contains terms
i,1;, where 1 < 4p < iy < 4. This is the situation we have had in the proof for
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m = 1. Thus the Claim is proved for m = 2. In the same manner, we can prove
the Claim for m = 3,4, ---. It follows that the Theorem is proved.

5. PrRoOOF OoF COROLLARY
Let

f= (an fl), g= (907 g1)7 and a; = (ath atl)7 t= 17273a4'

If Fi(z) = Gi(z) = 0 for some z € C", then the vectors f(z) and g(z) in C?
are perpendicular to the vector a;(z) in C?. So, there exists a c(z) € C\ {0}
such that f(z) = c(2)g(2). It follows that the condition (ii) of the Theorem is
redundant when m = 1. Thus, we know from (6) there are j and k with j # k
and 1 < j,k < 4 and a non-zero constant b such that

(fo, f1) ( (b — Daxoajo baroa;1 — ax1aj0 > ( 9o )

bamajo — akoaj1 (b - 1)aklaj1 g
=: (fo, f1)E ( % ) =0.
)1

Consequently,

N D
aj1 bakl a;0 ajl

It turns out from the general position of a;’s that det E is not identically equal

to zero. Therefore, let

2
an ajl
aro a1

A = —bargaj1 + axiajo, B = —(b-1)aroajo,
C = (b — 1)ak1aj1, D = baklajo — akoajl;

now our corollary can be verified after a little computation.
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