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1. INTRODUCTION 

An integral domain (resp. a commutative, cancellative monoid) D is said to 
be atomic, if every non-zero non-unit element a E D allows a factorization into 
irreducible elements of D, say a = u1 . . . uk. In this case k is called the length 
of the factorization and the set of lengths L(a) C IV+ is defined as the set of all 
possible lc E IV+. D is said to be half-factorial, if it is atomic and #L(a) = 1 
for every non-zero non-unit a E D(equivalently, D has elasticity one). Obviously, 
noetherian domains are atomic and factorial domains are half-factorial. In 1960 L. 
Carlitz characterized half-factorial rings of integers in algebraic number fields. W. 
Narkiewicz, L. Skula, J. Sliwa and A. Zaks studied half-factorial Krull domains. 
Nowadays much work in the context of general integral domains is done by D.D 
Anderson, D. F. Anderson, S. Chapman and W. Smith (see [AA94, And97, AP97, 
ACS94a, ACS94b, ACS94c, ACS95] and the references cited there). 

A subset Go of an abelian group G is said to be half-factorial, if the block 
monoid B(Ge) over Go is half-factorial. We shall be mainly interested in the 
structure and the (maximal) size of half-factorial subsets. Define 

p(G) = sup{]Gu/ IGu C G is half-factorial} E W ii {oo} 

The connection between the two notions is as follows. Let D be a Krull domain 
(resp. a Krull monoid) with divisor class group G and let Go C G denote the 
set of classes containing prime divisors. Then D is half-factorial if and only if Go 
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is half-factorial. However, the significance of half-factorial subsets extends this 
interpretation. We give two examples. 

Let D be a ring of integers in an algebraic number field and let Ic E PI+. In the 
sixties W. Narkiewicz introduced the following counting function: 

In [GerSO] it was shown that 

Go N Cz(log X) P(GMGI--~(~~~ log X)B 

with B, C non-negative, real numbers. For a generalization see [GHKK95]. 
The current motivation for the present paper stems from investigations of pos- 

sible distances in arbitrarily long sets of lengths. For this one has to study minimal 
non half-factorial subsets. The interested reader is referred to [GG98b]. 

The whole paper is based on a characterization of half-factoriality going back 
to L. Skula and J. Sliwa (see Lemma 3.2). This result makes it possible to apply 
methods from additive group theory and combinatorics to the investigation of 
half-factoriality. In section 4 we derive an upper bound for p(G) by counting the 
number of solutions of a congruence mod n. In section 5 we characterize half- 
factorial subsets in cyclic groups in terms of splittable subsets of natural numbers. 
In the final section we obtain lower bounds for p(G) using generalizations of the 
Erdos-Ginzburg-Ziv Theorem. In particular, we show that half-factorial subsets 
of maximal size do not necessarily generate the group. Hence there are groups G 
having proper subgroups H with p(H) = p(G). 

2. PRELIMINARIES 

Let N+ denote the positive integers, N = N+ U (0) and P C N+ the set of 
prime numbers. For p E P let up : Q + Z be the p-adic valuation with up(p) = 1. 
For n E N+ let [l,n] = {j E N 1 1 < j < n}. 

Throughout, let G be an abelian group and Go C G a non-empty subset. Then 
(Go) (resp. [Go]) denotes the subgroup (resp. submonoid) generated by Go. If G 
is a torsion group, then (Go) = [Go]. We say that Go is a generating subset of G, 
if [Go] = G. Go is said to be an independent subset, if 0 $ Go and given distinct 
elements ei, . . ,e, E G and integers ml,..., m, E Z, the relation XI==, mzei = 0 
implies that miei = ... = m,e, = 0. The following simple lemma will be used 
several times. 
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Lemma 2.1. Let G be an abelian group, el, . . , e, independent elements with 
ord(el) = . = ord(e,) = n E N+ and ml,. . . , m, E Z. Then 

O& m,ei) = 
n 

t=l sd{ml,...,m,,n} 

PROOF. For every 1 I_ i < T we have ord(mie,) = gcdIz,,nI. Since el, . , e, are 
independent, it follows that 

T 

ord(x rnie%) = lcm{ n 
n 

) 
%=I gcd{ml,n}““‘gcd{m,,n} 

which implies the assertion. 0 

If G is finite and IGI > 1, then G = @GIC,, with 1 < nil . In, where T = r(G) 
is the rank of G and nl- = exp(G) is the exponent of G.! Let el, , e, E G 
with ord(e,) = n, for 1 < i < T. We say that (el, . . , e,) is a basis of G, if 
{el, , e,} is a generating subset consisting of independent elements (equiva- 
lently, G = @rzI(e,)). 

Let F(Go) denote the free abelian monoid with basis Go. An element 5’ = 

IX;; gz E F(G ) . 0 1s called a sequence in Go; it has a unique representation of the 

where ug (S) E N for all g E Go and ug(S) = 0 for all but finitely many g E Go. 
Then 

IS/ = 1= c TJg(S) E N 

is called the length of S, 

k(S) = -&-L- E Q 
2=1 ord(gi) 

is the cross number of 5’ and 

L(S)=cgi EG 
r=l 

denotes the sum of the elements of S. 
We say that S is a zero sequence (resp. a block) if 

&t = c ug(s)g = 0 E G 
i=l s6Go 
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The set B(Go) of all blocks is a submonoid of F(Go), called the block monoid 
over Go. The sequence 5’ is a minimal zero sequence, if no proper subsequence 
is a zero sequence. The set of minimal zero sequences U(Ge) is just the set of 
irreducible elements of the monoid B(Gs). Let 

I =su~{luI ( u ~U(Go11 ENU{~} 

denote Davenport’s constant of Go. If Go is finite, then U(Ge) and hence ‘D(Ge) 
are finite. For standard terminology in the theory of non-unique factorizations 
the reader is referred to the survey articles of S. Chapman, F. Halter-Koch and 
the second author in [And97]. The terminology concerning zero sequences is 
consistent with the one used in [GG98a]. 

3. HALF-FACTORIAL SUBSETS: FIRST RESULTS 

We start with the very definition. 

Definition 1. Let G be an abelian group 

1. A non-empty subset Go C G is said to be half-factorial, if the block monoid 
B(Go) is half-factorial. 

2. 

p(G) = sup{ ]Go] IGs & G is half-factorial} E N U {m} 

W. Narkiewicz gave a geometric interpretation of p(G), see [Nar79], Proposi- 
tion 5. 

Lemma 3.1. Let G be an abelian group with IGI > 1. 

1. Half-factoriality is a property of finite character i.e., a subset Go C: G is 
half-factorial if and only if every finite subset of Go is half-factorial. 

2. If Go C G is half-factorial, then so is Go U (0). In particular, (0, g} is 
half-factorial for every g E G, whence ,u(G) > 2. 

3. If H < G is a subgroup, then p(H) 5 p(G). 
4. If G1, Gz are subgroups of G with G1 n Gs = {0}, then p(G) > p(G1) + 

/4G2) - 1. 
5. An independent subset is half-factorial. 

PROOF. l., 2. and 3. are obvious. 
4. Let Hz C G, be half-factorial subsets with IH,\ = ,u(G~) for 1 5 i < 2. Then 

B(H,u Hz)=B(HI)xB(H2) 
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is half-factorial, Hi n Hz & (0); whence 

p(G) 2 IHr u H2l > [HII+ lH21- 1. 

5. Let Gc = {ei 1 i E I} be an independent subset. Since for every i E I the 
monoid B({e%}) is half-factorial, the block monoid 

B(Go) = u W{ei)) 

iEI 

is half-factorial. 
0 

The following result, due to Skula and Sliwa, plays a key role in the investiga- 
tion of half-factorial subsets. It will be used without further quoting. A proof in 
the present terminology may be found in [CG97], Proposition 5.4. 

Lemma 3.2. Let G be an abelian torsion group and Go c G a non-empty subset. 
Then the following conditions are equivalent: 

1. Go is half-factorial, 
2. k(U) = 1 for every U E U(Ge). 

Lemma 3.3. Let G be an abelian torsion group, Go C G a half-factorial subset 

and g E G\(Go) such that pg E Go for some p E P. Then Gou(g} is half-factorial. 

PROOF. Consider an irreducible block 

U = gk fig;< E U(Go u (9)). 
i=l 

We have to show that lc(lJ) = 1. Setting Ic = lp + j with 1 E N and 0 < j I p - 1 

we obtain that 
B 

jg = -l(Pg) - C Icigi. 
i=l 

If j # 0, there is some x E N+ such that jx = 1 + mp for some m E Z which 
implies that 

s 

g = -x(m(w) + l(pg) + C kgi) E (Go), 
i=l 

a contradiction. Therefore, k = lp and 

U’ = (w)’ ng;% E WGo) 
2=1 
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with Ic(U’) = 1. Assume to the contrary, that p lord(g). Then there are m, n E Z 
such that 1 = mp + nerd(g); w h ence g = (mp + nord(g))g = mpg E (Go), a 
contradiction. Thus we have p]ord(g), ord(pg) = y and k(V) = Ic(U’) = 
1. 0 

In the sixties L. Claborn showed that for every abelian group G there exists a 
Dedekind domain R whose class group Cl(R) is isomorphic to G. The question 
was raised whether for every given G there is a half-factorial Dedekind domain R 
with Cl(R) N G. Theorem 3.6 in [CG97] shows that this question is equivalent 
to the following: 

Does every abelian group have a half-factorial generating subset? 
For direct sums of cyclic groups this is obvious. In [MS861 Michel and Steffan 

found various other classes for which the answers is yes. The general case is 
wide open. However, it is at least easy to see that infinite groups have infinite 
half-factorial subsets, as the following result shows. 

Proposition 3.4. Let G be an abelian group. If G is infinite, it has an infinite 
half-factorial subset. In particular, p(G) < 0~) if and only if G is finite. 

PROOF. If G is finite, then p(G) 5 JG] < oo. Suppose that G is infinite and 
consider the following three cases. 

Case 1: G contains a subgroup isomorphic to Z. By the very definition it 
follows that { -1) U N C Z is a half-factorial subset. 

Case 2: G contains an infinite independent subset. Then Lemma 3.1.5 implies 
the assertion. 

Case 3: There is some prime p E P such that for every lc E W+ the group 
G contains some element of order greater than pk. Let k E N+ and g E G with 
ord(g) = p’ for some 1 > k. An inductive argument applied to Lemma 3.3 shows 
that {pig10 < i 2 1) is a half-factorial subset. 0 

Proposition 3.5. Let G be a finite abelian group which is either cyclic or el- 
ementary (i.e., exp(G) is squarefree) and Go C G a half-factorial subset with 

lGo/ = p(G). Then G 0 is a generating subset. In particular, ,LL(G) > p(H) for all 

proper subgroups H < G. 

PROOF. Assume to the contrary that (Go) # G. 
Case 1: G is elementary. Then there is a non-trivial direct summand such 

that G = (Go) $ G 2; whence Lemma 3.1 implies that 

/J(G) L ,4(Go)) + 4G2) - 1 > ~((Go)) L IGol = p(G)> 
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a contradiction. 
Case 2: G = C, for some n E IV+. Suppose that I( = m and let p E IF’ 

with up(n) > up(m). Choose some h E Go with 

v,(ord(h)) = max{+(ord(g))lg E GOI = ydm) 

Then there is some g E G with pg = h. Since up(ord(g)) = pv,(m), it follows that 
g 6 (Go). Thus Lemma 3.3 implies that Go U {g} is half-factorial, a contradiction 
to IGol = P(G). 

Therefore, Go generates G which implies that p(G) > p(H) for every proper 
subgroup H < G. cl 

Lemma 3.6. Let G = CL with r, n E N+ , (er, . , e,) a basis of G and a = 

c:= 1 azez, a’ = CI=‘=, aie, E G distinct with ord(a) = ord(a’) and 1 5 ai, ai 5 n 
for every 1 5 i < r. Let Go C G be a half-factorial subset with {el, . . , e,, a} C: 
Go. Then we have 

1. Cz=‘=,(n - a,) = n - gcd{al,. . ,a,,n}, 
2. If a’ E Go and r = 2, then al # ai and a2 # ah. 
3. If a’ E Go, then a, = ai implies that ord(aie,) < ord(a) for every 1 < i 5 r. 

PROOF. 1. By Lemma 2.1 we have ord(a) = gcdlal,~,,,a,,nj. Since 

U = a n eypal E .F(Go) 
i=l 

is a minimal zero sequence, Lemma 3.2 implies that 

1 = k(U) = &cd{ al,. . ,cb,n} + e(n ~ a%)). 
z=l 

2. Suppose a’ E Go and r = 2. Since ord(a) = ord(a’) = gcdIal,T,,,n,,n), 1. 
implies that 

(n - al) + (n - a2) = (n - a:) + (n - a;). 

Hence the assertion follows because a # a’. 
3. Assume to the contrary that a’ E Go, al = ai and ord(arer) = ord(a). Then 

there are n2,. , n, E W such that 

u = ao4a)-la’ fi eT3 E U(Go). 
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Note that U is irreducible, since (urer) ord(a)-la\er is irreducible. Furthermore, 
a # u’ implies that xi=, nj > 0. Therefore, 

ord(a) - 1 
‘(‘) = ord(a) ’ 

a contradiction. 0 

We present a method to count elements in an r-fold product 
Let Z be a finite set, T E N+, E & Z and H C 2”. For a = (al,. 
V C_ [l,r] define 

of a finite set. 
,a,) E H and 

and 

H(V) = #{a E H 1 V(a) = V}. 

Let V be a system of subsets of [l, r] such that V(a) E V for every a E H. Then 

c H(V) = IHI 
VEV 

and for every 1 < j 5 T 

c H(V) = #{a E H 1 j E V(a)}. 
VEV 
jEV 

Suppose that IV] > k 2 1 for every V E V. Then 

k c H(V) 5 2 c H(V); 
VEV j=l VEV 

JEV 

whence 

Proposition 3.7. Let G = C$ with lc, r E N+, p E P and Go C G a generating 
half-factorial subset. Then we have 

1. IGol I 1 + r(pk - l), 
2. If k = 1, then jGo[ < 1 + 3. 
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Therefore we infer that 

,Go,~l+r+,H,<li~+~C(p-2)=1+~. 
j=l 

4. AN UPPER BOUND FOR p(G). 

In this section we follow ideas of J. Sliwa developed in [Sli82]. However, note 
that Lemma 2 and its Corollary in that paper are incorrect. 

Lemma 4.1. Let G be a bounded abelian group of exponent n and Go C G a 
non-empty subset. Then the following conditions are equivalent: 

1. k(U) E IV+ for every U E U(Ge), 
2. there exists some f E Hom(G,Z/nZ) such that Go C {g E G 1 f(g) = 

& + nZ]. 

PROOF. 1) + 2) Define a map f : Go + Z/nZ by f(g) = &+nZ for every g E 
Go. In order to show that f extends to a homomorphism f : (Go) + Z/&Z let, for 
every g E Go, integers m, E (0,. . , ord(g) - 1) be given such that CgEGo m,g = 
0. We have to verify that CgEGo m,f(g) = 0. Since B = nSEGo g”g E B(Gs) 
allows a factorization into irreducible blocks, it follows that k(B) E N. Therefore, 

C m,f(g) = gzo s + 72 = d(B) + nZ = 0. 
gtGo 

Since Z/nZ is an injective Z/nZ module, f : (Go) + Z/nZ may be extended 
to a Z/&Z (and hence Z) module homomorphism f : G + ZlnZ. 

2) =S 1) Let U = ngEGo g”g E U(Go) be given. Then for some f E 
Hom(G, iZ/nZ) h aving the above property we infer that 

O = f Co) = f ( C m,g) = ggo s + nZ = nk(U) + n%; 
gEGo 

whence k(U) E W+. 

Let G be a finite abelian group. Define PO(G) as the maximal size of a subset 
Go C G for which the equivalent conditions of Lemma 4.1 hold. Then Lemma 3.2 
implies that 

p(G) I PO(G). 
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Using property 2) of Lemma 4.1 we shall determine po(C;). To do so we have 
count to the number of solutions of a certain congruence. For n, lc E N+ let 

cQ(n) = c dk 
l<d 1 n 

the sum of the kth powers of the divisors of n. 

Proposition 4.2. Let T, n E N+, d,al,..., a, EZ andc=gcd{al,..., a,,n}. 

1. 1fc ( d, then 

#{x E [I, n]’ 1 c aixi = d mod n} = cnTel. 
i=l 

2. Ifc = 1, then 

#{x E [l,n]’ 1 ~agc~ - gcd{zl,. . , XT, n} mod n} = gr_l(n). 
i=l 

3. #{x E [l, nlT 1 CIz=, agci c gcd{q,. . ,G., n} mod n) = OT-I(~‘) for 

some divisor n’ of n. 

PROOF. 1. see Proposition 3.1 in [McC86]. 
2. Suppose c = 1. If d 1 n and x:=1 atxi E d mod n, then gcd{zl 

Therefore, we have 

#{x E [l, nlT I xa,z, E gcd{xl, . . , z,,n} mod = n} 
i=l 

= C #{x E [l,nlr ( e,iX, s d mod n, d ( gcd{xl,. 
l<d 1 n %=I 

> . . 

. 7 

= c #{y E [l, :I’ I koiy, = 1 mod :} 
l<d 1 71 i=l 

= C (a)7-1 = gr_-l(n). 
ljd \ n 

3. We proceed by induction on n. Obviously, the assertion holds for n = 1. 
Suppose n > 2. If c = 1, then the assertion holds by part 2). Suppose there is 
some p E P such that p I gcd{ al,. , a,, n}. Then there is a bijection between 
the set of all x E [l,n]’ with 

Caie, -gcd{xl,...,x,,n} mod n 
i=l 
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and the set of all y E [l, F]’ with 

c aiyi = gcd{yl, , yr, 3 P 
mod n. 

2=1 

Hence the assertion follows by induction hypothesis. 

Theorem 4.3. pu(CL) = cr_I(n) vlhere n,r E lV+. 

0 

PROOF. Let G = CL, (eI,. . . , e,) a basis of G, f E Hom(G, Z/nz) and Gf = 

(9 E G I f(g) = & + nZ}. By Lemma 4.1 we have to estimate ]Gf]. Suppose 

f(ei) = a, + nZ for 1 < i 5 r and let g = Cz=‘=, xiei E G with XI,. . , xT E [l, n]. 
Then Lemma 2.1 implies that ord(g) = gcd~zl,~‘,,z,,nl. Therefore we infer that 

Gf = {e xiei 1 x E [l, nlT, kaixi E gcd{xi,. . . ,x,,n} mod n}. 
i=l i=l 

Proposition 4.2 implies that ]Gf] = cr,_I(n’) for some divisor n’ of n. Further- 
more, if f is surjective, then gcd{aI, . . , a,,n} = 1; whence ]Gf] = 0,-I(n). 0 

Corollary 4.4. Let G be a finite abelian group of exponent n and rank r. Then 

p(G) 5 or-I(n). 

PROOF. Set G = C,, $ . . . @ Cnr with 1 < nI I. . .I%. = n. Then 

p(G) I c~(C3 L PO(G) =+-1(n). 

0 

5. SPLITTABLE SETS AND CYCLIC GROUPS 

In this section we characterize half-factorial subsets of cyclic groups in terms of 
splittable sets. This notion was introduced by A. Zaks (cf. Theorem 4 in [Zak76]) 
and further studied by P. Erdos and A. Zaks in [EZ90]. 

Definition 2. A set N c N+ is said to be splittable, if given distinct elements 
nI, . . , nl E N and positive integers ICI,. . . , lcl E N+ such that cf=, 2 E N+, 

then there exist Ic: E (0,. . . , Ici} for every 1 < i 5 1 such that cf=, 2 = 1. 

Lemma 5.1. Let N c N+ be chain of divisors (i.e., n,n’ E N with n’ < n 
implies n’(n). Then N is splittable. 
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PROOF. LetnI ,..., nlENwithnII...InlandIcI ,..., klEN+suchthat&$ 

= s E N+. If s = 1, we are done. Suppose s > 2. Set m = nf=, ni and rni = $ 

for 1 < i 5 1. Then ml1 . . ImI and cf=, k,mi = sm. Let t E N+ be the smallest 
integer such that CT=, kim; > m. Then 

t-1 

O<m- c kmi < ktmt 

i=l 

and mt 1 m - CiI: k%mi. Therefore there is some ki E (0,. , kt - l} such that 

m - )?t kimi = k;mt; whence 

Lemma 5.2. Let Go C Z/&Z with 2 5 n E N+ a generating half-factorial subset. 
Then there exists some cp E Aut(Z/nZ) such that cp(Go) C {a + nZ I 1 5 a < 
n, aIn). 
PROOF. By Lemma 4.1 there exists some f E End(Z/nZ) such that 

Go C Gf = (9 E G I f(g) = --& + nz}. 

Suppose f(1 + nZ) = r + nZ for some 1 < T 5 n and set s = gcd(r, n). Then 

Gf = {a + nZ I ar E gcd(a, n) mod n}; 

whence sla for a + nZ E Gf. Since (Go) = (Gf) = Z/n& it follows that s = 1. 
Therefore 

Gf = {a + nZ I ar s gcd(ar, n) mod n}. 

Define cp : Z/n72 -+ Z/nZ by cp(z + nZ) = rx + nZ for x E Z. Then 

P(G~) = {ar + nZ I ar E gcd(ar, n) mod n} 
={b+nZI l<b<n, bEgcd(b,n) modn} 
= {b + n% I 1 5 b < n, bin}. 

Theorem 5.3. Let n E N+, A c [l,n], D = {d E N+ I d divides n} and 

Go={a+nZ I UEA}. 
1. If Go is a generating half-factorial subset, then there is some cp E Aut(Z/nZ) 

szlch that cp(Go) C {d + nZ ) d E D} and (ord(g) \ g E Go} C N+ is splittable. 
2. If A C D and {: I a E A} C W+ is splittable, then Go is half-factorial. 
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3. ,u(Gn) = max{IAI ( A C D, A is splittable}. 

PROOF. 1. The first assertion follows from Lemma 5.2. Since for every cp E 
Aut(Z/nZ) d an every g E Go ord(g) = ord(cp(g)) we may assume that 

G,, C {ai + nZ 1 15 i < Ic, ai E D}. 

Then for every 1 < i < k we have ord(ai + nZ) = z = ni. Suppose that 

c;Z,$ EN+. Consider the sequence 

B = fi(ai + nzp. 
i=l 

Ic k, k(B)=~;=;j_k&tN+; 
i=l z i=l 

whence C,“=, lciai E 0 mod n i.e., B is a block. Therefore, there is some irre- 

ducible block U = nt,(ai + nZ)“i dividing B. Thus 0 5 Ic: 5 Ici for every 
1 < i 5 lc and 

2. Suppose that A = {al,. . , ak} C D and {ni = $ ( 1 < i 5 k} is splittable. 
Let some 

U = fi(ai + nZ)“’ E U(Go) 
i=l 

be given. Then CF=, lciai E 0 mod n; whence 

kJCi lk 
k(U)=$=;C&EN+. 

z i=l 

By assumption there are k: E (0,. . . , kz} such that 

$ ; = ; & k:ai = 1. 
z i=l 

Therefore, U’ = &(ai + nZ)k’ t is a zero subsequence of U whence U’ = U and 

1 = k(U’) = k(U). 
3. If A C D is splittable, then IAl 5 p(C,) by 2. Conversely, let GO C Z/nZ be 

half-factorial with (GoI = p(G). Then Go is a generating subset by Proposition 
3.5. Therefore 1) implies that p(G) = \Gul < max{IAI 1 A g D is splittable}. q  
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Main parts of the following Corollary were first achieved by Skula (Proposition 
3.4 in [Sku76]), Sliwa (Lemma 1 in [Sli76]), Zaks (Corollary 5 in [Zak76]) and by 
Michel and Steffan (Proposition 5 in [MS86]). 

Corollary 5.4. Let p E P be a prime and k E NJ,. 
1. G,, = {pi + p”Z ] 0 5 i 5 Ic} c iz/p”Z is a generating half-factorial 

subset. For every generating half-factorial subset H C Z/p”Z there is some y E 
Aut(Z/p”Z) such that p(H) c Go. In particular, ,u(Z/p”Z) = k + 1. 

4?. Let T&P’) z G = (5 \ a E Z, i E N}/Z C (Q/z, +). Then Go = 

{++I?+EN}CG’ zs a generating half-factorial subset. 

PROOF. 1. Go is half-factorial by Theorem 5.3.2 and Lemma 5.2. The sec- 
ond assertion follows from Theorem 5.3.1. Using Proposition 3.5 we infer that 
&Z/p%) = Ic + 1. 

2. Go is a generating subset by construction. Since half-factoriality is a prop- 
erty of finite character (see Lemma 3.1.1) implies that Go is half-factorial. q  

6. LOWER BOUNDS FOR p(G) 

Definition 3. For a finite abelian group G let s(G) E N+ denote the minimum 
of all s E lV+ such that every S E F(G) with IS] > s has a zero subsequence S’ 
with IS’] = exp(G). 

For a finite abelian group G the invariant s(G) plays a key role in zero sum 
theory. Furthermore, it allows a geometric interpretation if G = (z/nZ)‘. We 
list some main results on s(G). For more information the reader is referred to the 
paper of Alon and Dubiner [AD93]. 

Lemma 6.1. Let G be a finite abelian group and n E N+. Then we have 

1. (Erdiis-G’ b znz urg-Ziv- Theorem) s(Cn) = 2n - 1, 

2. s(G) 5 IGI + exp(G) - 1, 
3. s(C, @C,) <_ 6n - 5, 
4. For every r E N+ there is some constant c(r) E N+ such that s(CL) 5 c(r)n. 

PROOF. 1) was first proved by Erdos, Ginzburg and Ziv in [EGZGl]. For a variety 
of different proofs of 1) and for 3) and 4) cf. [AD93]. 2) is due to Gao and Yang 

[GY97]. 0 

Corollary 6.2. Let G be a finite abelian group of order n, m a divisor of n and 
S E F(G) a zero sequence of length IS\ = 2n - m. Then S contains a zero 
subsequence St of length ISI = n. 
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PROOF. Let H be a subgroup of G with IG/H/ = m and ‘p : G + G/H the 
canonical epimorphism. Since 

Iv(S)1 = ISI = m(Wf - 1) 

we can apply Erdos-Ginzburg-Ziv-Theorem (2]H] - 1)-times to obtain subse- 
quences 5’1,. . , S~IH+~ such that S = SoSi . . &l~l-2, ]Si] = ... = ]5’2/~+2] = 
m and cp(Si), . . , ‘p(&lH~_~) have sum zero in G/H. But this implies that 
/So] = m and cp(So) is a zero subsequence in G/H. Therefore T = nfl:‘P2 ~(5’~) 
is a sequence in H. Applying the Erdos-Ginzburg-Ziv-Theorem to T we obtain 
the assertion. 0 

Theorem 6.3. Let G = H @ C, be a finite abelian group with exp(H) = m and 
exp(G) = n where min. 

1. IfD(G) < 2n or s(H) 5 n + m, then ,u(G) > $ + 1. 
2. Ifn is ewen, D(G) < 2n and IGI = n2, then p(G) > n + 2. 

Remark. Note that JG] < n2 implies I HI < n; whence Lemma 6.1.2 yields s(H) 5 
n + m - 1. Part 2) shows that the Corollary after Lemma 2 in [Sli82] is incorrect. 

PROOF. Set G = H $ (a) with ord(a) = n and n = mlc. Define 

Go = (0) U {h + a I h E H}. 

Then [Go] = 1-t IHI = l+ M. 
1. To show that Go is halcfactorial we verify that It(U) = 1 for every 0 # U E 

U(G6). Let 0 # U = niEI(hz + a) E U(Go) be given. Since k(U) = F, we have 
to check that ]U] = n. Clearly, n = ord(a) divides ]U]. 

If D(G) < 2n, then 1 < ]U/ 5 D(G) < 2n implies that ]U] = n. 
Suppose that s(H) < n + m. Assume to the contrary that 

ISI > 2n = n + km. 

By definition of s(H) there exist Ic zero sequences V, = nzEI, hi with IV,\ = 
exp(H) = m for 1 < u 5 Ic such that VI . Vk ) nzEI hi. Then 

S’ = fi n (h, + u) 
v=l icEI, 

is a proper zero subsequence of S, a contradiction. 
2. Suppose that n is even, D(G) < 2n and (HI = n. Set a* = ;a and 

G;; = Go U {a*}. T o s h ow that GG is half-factorial it remains to consider blocks 



HALF-FACTORIAL DOMAINS AND SUBSETS OF ABELIAN GROUPS 609 

U E U(Gu) of the form 

U = a* n(lli + u) E U(Go) 
iEI 

Since U has sum zero and D(G) < 2n, it follows that ]I] E {%, %}. Assume to 
the contrary, that ]I] = 2. Then by Corollary 6.2 the sequence ni,, hi contains 
a zero subsequence n %el, hi with (I’( = n. Therefore, nLEl, (hi + u) is a proper 
zero subsequence of U, a contradiction. This implies that ]I] = 5 and 

k(U) = ; + III; = 1. 

Part 2) of the following Corollary was first established in [GK92] Theorem 8. 

Corollary 6.4. Let n,r E W+ and R(n) the number of prime divisors of n 
counted with multiplicity. 

1. 1+ (r - a[;])qn) + n[f] 5 P(q) L or-l(n). 

2. If n = p E IP, then 

1 + (r - 2[;]) +p[i] < p(Ci) L I+ T. 

3. Ifn=pEIPandkEN+, then 

PROOF. 1. The right inequality follows from Corollary 4.4. Let n = pl p, with 
s = 0(n) and pl,. . . ,p, E P. Then {nF=,~i I 0 5 lc < s} is a splittable set of 
divisors of n; whence p(C,) > s + 1 = n(n) + 1 (cf. Theorem 5.3 and Lemma 
5.1). Theorem 6.3 implies that p(C, @ Cn) > n + 1. Thus the left inequality 
follows from Lemma 3.1.4 by induction on r. 

2. Since R(p) = 1, the left inequality follows from 1. Let Go C G = Ci be 
a half-factorial subset with JGu] = p(G). By Proposition 3.5 Go is a generating 
subset; whence Proposition 3.7 implies that (Go] 5 1 + y. 

3. This is a consequence of 1. 0 

Corollary 6.5. Let p E P, k, s E N+ with k 2 2, pfk > 6 and G = (Cpk)(P+‘)‘. 
Then p(G) > 1 + spP ckW1). If Go C G is half-factorial with /GoI = AL, then 

(Go) # G but p((Go)) = P(G). 
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PROOF. Set H = Czk_l @C,h. Then exp(H) = p” and D(H) = p”+p(p”-‘- 1) < 

2~“. Thus Theorem 6.3 implies that p(H) 2 1 + pP(“-‘1. By Lemma 3.1.4 we 
infer that 

/1(G) 2 /A(W) > 1 + s(p(H) - 1) > 1 + spP(“-l). 

Let Go C. G be a generating half-factorial subset. Then Proposition 3.7 shows 
that 

IGol I 1+ S(P + %P” - 1). 

Since 2 5 k and p + k > 6 it follows that [GoI < p(G). Therefore, if Go C G is 
half-factorial with lGo\ = p(G), then (Go) # G but 
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