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ABSTRACT. Let K be minimal among the kernels of the irreducible charac- 
ters of a finite group G, and let Q/K be a normal subgroup of G/K. Then 
Q is r-closed, where T is a set of primes, if and only if Q/K is. This re- 
sult improves Theorem 12.24 in I.M. lsaacs, Characters of Finite Groups, 
Academic Press, New York, 1976. In particular, G is rr-closed if and only if 
G/K is. The analog of the result above holds for minimal quasikernels too. 
Some related results are proved. 

Throughout this note only finite groups and their complex characters are con- 
sidered. In what follows, 7r, I? are complementary sets of primes. A group G 
is n-closed if its maximal normal 7r-subgroup O,(G) is a T-Hall subgroup of G. 
Obviously, subgroups and epimorphic images of n-closed groups are r-closed. A 
group G is p-&potent if it is {p}‘-closed. Let r(G) be the set of prime divisors of 
(G( and Irr(G), Irrl(G) th e sets of irreducible, nonlinear irreducible characters of 
G, respectively. 

It is well known [G] that the Frattini subgroup Q(G) of G has the following 
properties: 

(al) If N is normal in G, then N is 7r-closed if and only if N@(G)/@(G) is. 
(Q2) If N is normal in G, then Q(N) 5 Q(G). 
(@3) r(G/@(G)) = r(G). 
(+4) If N is normal in G and N 5 @(A) for some A 5 G, then N 5 a(G). 
(al) and (ip2) are also true if N is subnormal in G. 
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In this note we will show that the kernels of some characters have properties 
similar to (@1))(@3). 

Let K be minimal among the kernels of irreducible characters of a group G (in 
that case, we will call K a minimal kernel of G). By [I], Corollary 12.20, K is 
nilpotent. Using that result, we will prove the following 

Theorem 1. Let K = ker(x) b e a minimal kernel of G and Q/K a normal 
subgroup of G/K. Then Q is r-closed if and only if Q/K is. 

PROOF. By [I], Corollary 12.20, K is nilpotent. 
If Q is rr-closed, then, obviously, Q/K is. Therefore, it remains to show that, 

if Q/K is rr-closed, then Q is. In what follows we assume, therefore, that Q/K 
is rr-closed. Let Qo/K be a (normal) rr-Hall subgroup of Q/K. Since Qo/K is 
characteristic in Q/K, it follows that Qo is normal in G. Obviously, IQ : Qe] 
is a 7r-number. Since K is nilpotent, it follows by Schur-Zassenhaus Theorem 
that Qc contains a T-Hall subgroup H (indeed, Qo contains a normal nilpotent 
r/-Hall subgroup that coincides with the r/-Hall subgroup of K). Obviously, H 
is a T-Hall subgroup of Q. Suppose that we have proved that H is normal in 
Qo. Since H is characteristic in Qo, it is normal in Q, and so Q is 7r-closed. 
Therefore we may assume, without loss of generality, that Qe = Q. Since, in that 
case, Q/K is a 7r-group, we get Q = HK. We have to prove that H is normal 
in G. Assume that this is false. Since all T-Hall subgroups of Q are conjugate 
by the Schur-Zassenhaus Theorem, G = NG(H)Q = NG(H)HK = NG(H)K, by 
Frattini’s argument; NG(H) < G since H is not normal in G. If M is a maximal 
subgroup of G containing NG(H), then G = MK, and so x~ = X E Irr(M). 
Since ker(XG) < ker(X) < M, it follows that K $ ker(XG). Therefore, there 
exists 29 E Irr(XG) such that K $ L = ker(d). 

Assume that L < M. Then, by reciprocity, 

L = M n L = M n ker(d) = ker(8M) 5 ker(X) = ker(xM) = M II K < K, 

contrary to the choice of K as a minimal kernel. Thus L $ M, and hence 
G = LM. In that case, r9~ E Irr(M). Then 29~~ = X since X E Irr(bM) by 
reciprocity, and 

M n L = M n ker(d) = ker(tiM) = ker(X) = K f? M. 

Put ker(X) = N. Note that N = ker(xM) = K rl M. 
Since K n L n M = K n (K n M) = K n M we get K n M 5 L and 
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and hence KnL < M. Therefore, KnL < KnM 5 KnL, and so KnL = KnM. 
Thus, 

(I) LnM=KnM=KnL=N. 

Now, by what has been proved and (l), 

(2) IQ:QnMI=IQM:MI=IG:MI=IML:MI=IL:LnMI 

=IL:KnLI=(KL:KI. 

Since H < QflM and H is a s--Hall subgroup of Q, it follows from (2) that IKL/KI 
is a 7r’-number. Since K H/ K = Q/K IS a n-group, we obtain KL/K n KH/K = 
{l}, and so KL/K and KH/K commute element by element: KH = Q and 
KL are normal in G since K and L are normal in G as kernels of characters 
of G. In particular, [L, KH] < K. Therefore, [L, KH] 5 K n L = N, so that 
[L, NH] 5 [L, KH] 5 N 5 NH. Thus L < NG(NH). Since N = M n K, 
KH = Q, MQ = G = MK and H < M, it follows, by the modular law, that 
NH = (MnK)H = MnKH = MnQ, and hence NH is normal in M since Q is 
normal in G. Then NG(NH) > (M, L) = G and NH is normal in G. Since H is a 
T-Hall subgroup of KH = Q, it follows that H is a T-Hall subgroup of NH < KH. 
Therefore, since NH as a subgroup of Q has a normal r/-Hall subgroup, T-Hall 
subgroups of NH are conjugate by the Schur-Zassenhaus Theorem, an so, by 
Frattini’s argument, G = NG(H)HN = NG(H)N 5 MN = M, contrary to 
assumption. Thus H is normal in G, as claimed. 0 

The theorem is also true if Q is subnormal in G. 

Remark. If K is as in the theorem and Q/K is a nilpotent normal subgroup of 
G, then Q is nilpotent as well. It follows that, if a minimal kernel K coincides 
with the Fitting subgroup of a nonidentity group G, then G/K is semisimple. 
If F/ker(x), where x E Irr(G), is the Fitting subgroup of G/ ker(>o and F is 
not nilpotent, then ker(x) is not a minimal kernel, by the theorem. This result 
coincides with [I], Theorem 12.24. 

Corollary 2. If K = ker(x) (x E Ix(G)) zs a minimal kernel of G, then x(G) = 

4GIW. 

PROOF. Set n = n(G/K) and let K1 be a rr’-Hall subgroup of the nilpotent 
subgroup K (see [I], Corollary 12.20); obviously, KI is normal in G. Then by the 
theorem G = Q x K1, where Q is a n-Hall subgroup of G. Assume that x(G) # r. 
Then Ki > (1). We have x = T x I*, where r E Irr(Q), P E Irr(Ki). Since 

K = ker(>o = ker(r) x ker(p) = (K n Q) x (K il KI) = (K n Q) x KI, 
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it follows that ker(p) = Ki, i.e., p = 1~~. Let ,ui be a nonprincipal character of 
Ki. Set xi = r x pl. Then ker(xi) < ker(x) = K, contrary to the choice of K. 
Hence K1 = (1) and r(G) = rr = n(G/K). cl 

We see that minimal kernels behave similarly the Frattini subgroup and, as 
(P(G), they are nilpotent. But, in general, minimal kernels are not contained in 
(P(G) (take G = E(p”), the elementary abelian group of order p” > p; see also 
the example below). 

Let x E Irr(G). The subgroup Z(x) = {z E G 1 Ix(x)l = x(l)} is called 
the quasikernel of x. It is known that Z(x) is normal in G, ker(x) 5 Z(x) and 
Z(x)/ ker(x) = Z(G/ ker()o) and the last group is cyclic; see [I], Lemma 2.27. A 
minimal quasikernel is defined similarly to a minimal kernel. 

Lemma 3. Let Z(x) b e a minimal quasikernel of G, where x E Irr(G). If T E 
Irr(G) is such that ker(r) < ker(x), then Z(T) = Z(x). 

PROOF. If Z(T) 5 Z(x), th e result holds since Z(x) is minimal. Setting H = 
Z(r) ker(x), we see that H/ ker(x) < Z(G/ ker(>o) = Z(x)/ ker(x), and so Z(r) < 
H I Z(x). 0 

Corollary 4. If2 = Z(x) (x E Irr(G)) zs a minimal quasikernel of G, then Z is 
nilpotent. 

PROOF. By the lemma, we may assume, without loss of generality, that ker(x) is 
a minimal kernel of G. In that case, Z/ ker(x) = Z(G/ ker(>o) is nilpotent, and 
the result follows from the theorem. 0 

Corollary 5. Let Z = Z(x) (x E Irr(G)) be a minimal quasikernel ofG and let 
Q/Z(x) be normal in G/Z(x). Then Q/Z is x-closed if and only if Q is. 

PROOF. In view of the lemma, we may assume that K = ker(x) is a minimal 
kernel of G. As in the proof of the theorem, we may assume, without loss of 
generality, that Q/Z . 1s a r-group. In that case, Q/ ker(x) as an extension of 

z/ker(x) = Z(G/ker(x)) by a n-group Q/Z, is r-closed. By the theorem, Q is 
7r-closed, as desired. 0 

Let Z be as in Corollary 5. Then G is nilpotent if and only if G/Z is nilpotent. 
But the analog of Corollary 1 does not hold for minimal quasikernels (let G be a 
nonidentity abelian group). 

Corollary 6. Let n be a set of primes. Suppose that x E Irr(G) is such that 
1 ker(x)ln is minimal with respect to divisibility. Then ker(x) = A x B, where A 
is a nilpotent T-Hall subgroup of ker(>o. 
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PROOF. Set K = ker(X). Let r E Irr(G) be such that L = ker(r) is a minimal 
kernel with L 5 K. Since ILIT divides lK(ls, it follows that IKIT = IL/,, by the 
choice of K. Since L is nilpotent ([I], Corollary 12.20), it follows that A, a K-Hall 
subgroup of L (and of K), is normal in G and so in K. Obviously, K/L is a 
7r’-group. Therefore, by the theorem, K = A x B, where B is a +-Hall subgroup 
of K. Since L is nilpotent and A 5 L, the result follows. 0 

We will show that the nilpotency is the only restriction on the structure of 
minimal kernels. Indeed, let K be a nilpotent group and rr(K) = (~1,. . ,p,}. 
Let H = PI x . x P,, where Pi is a nonabelian group of order pa, i = 1, . . , n. 
Let & be an irreducible character of Pi of degree pi, i = 1, . . , n. Set G = H x K 
and X = $1 x ... x & x 1~. Then X E Irr(G) and ker(X) = K. We claim that K 
is a minimal kernel of G. Indeed, let N be a proper normal divisor of K; then N 
is normal in G. By the construction of G, Z(G/N) . IS not cyclic. Therefore, there 
is no r E Irr(G) such that ker(r) = N ([I], Lemma 2.27(d), (f)). This means 
that K is a minimal kernel of G. Similarly, let G = C x K, where C is cyclic of 
order pl . . .p, with the same pi as above. Then K, C are minimal kernels of G. 
Moreover, in this case, K is the kernel of a linear character of G. 

Question 1. Let G be a nonabelian p-group such that the kernel of some linear 
character X of G is minimal. Study the embedding of ker(X) in G. 

Question 2. Let G be a nonabelian p-group such that some minimal kernel K = 
ker(X) (X E Irr(G) as nonlinear) has index p3 in G. Study the embedding of K in 
G. 

Question 3. Classify minimal kernels of: (a) a standard wreath product of two 
elementary abelian p-groups, (b) A x B in terms of A and B. 

Proposition 7. Let 

m = mini] ker(x)] I x E Irr(G)}, X = {X ] X E Irr(G), I ker(X)] = m}. 

Then D = nxEx ker(X) 5 G(G). 

PROOF. Let X E X, K = ker(X). Suppose that K $ a(G). Then there exists 
H < G such that G = KH. We assume that IHI is as small as possible. Then 
K II H 5 Q(H). Obviously, XH = 0 E Irr(H). Let r E Irr(BG). Then, by 
reciprocity, 

(3) H n ker(r) = ker(rH) < ker(0) = ker(XH) = K f~ H. 
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Assume that ker(r) <_ H. Then, by (3), ker(r) 5 K, and so ker(r) = K by the 
minimal choice of K. Since K f H, we obtain a contradiction. Hence it follows 

that HL = G = HK, where L = ker(r). Then by (3), (LI = IKI. $$$# 5 IKI, 

so that (L( = (K( by the choice of K and T E X, (H CT L( = (H n K(. Hence by 
(3), Hnker(r) = Hn K for every 7 E Irr(OG). S’ mce ker(BG) < H, it follows that 
ker(BG) = H n K. Since ker(OG) is normal in G and ker(BG) = H n K 5 Q(H), 
it follows that ker(BG) < @(G) by (Q4). S’ mce r E Irr(eG) is arbitrary, we obtain 
that Irr(eG) c X. Therefore, D = n,,, ker($) 5 ker(BG) < (P(G), proving the 
proposition. 0 

It is easy to prove that the intersection of the kernels of characters x E Irr(G) 
such that x(1) = max{~(l) ( T E Irr(G)} is also contained in (P(G). 

Let p be a prime. Set 

Irrr(G,p’) = {x E Irri(G) I ~‘i x(l)), G(d) = 0 k-(x), 
xEWG,P’) 

WG,p) = lx E WG) I P I x(l)), G(P) = n Wx). 
XEWG,P) 

Remark. We claim that G(p) is p-closed and its Sylow p-subgroup is abelian. By 
the Michler-Ito Theorem (see [I], Corollary 12.34 and [MI), it suffices to show 
that all characters in Irri(G(p)) have p’-degrees. Assume that p E Irri(G(p)) has 
degree divisible by p. Take x E Irr(p’); then G(p) $ ker(>o. Then, by Clifford’s 
Theorem, ~(1) divides x(l), and so G(p) < ker(x), a contradiction. The subgroup 
G(p) is characteristic in G. It is known that G(p’) has a normal p-complement 
and solvable; see [B], Proposition 9 and Remark 1 following it. Next, we will prove 
that G(p’) < G’ unless p divides the degrees of all nonlinear irreducible characters 
of G (and then G is pnilpotent by [I], Corollary 12.2). Indeed, let X be a nonlinear 
irreducible character of G of p/-degree, X a linear character of G, z E G(p’). Then 
Xx E Irr(G,p’), and so x(1) = x(z) = (XX))(Z) = X(z)x(s) = X(x)x(l). It follows 
that X(z) = 1 so z E G’ since X is an arbitrary linear character of G. Similarly, 
G(p) 5 G’ unless all characters in Irr(G) h ave p’-degrees (and then G is p-closed 

with abelian Sylow p-subgroup by [Ml; note that the proof in [M] depends on the 
classification on finite simple groups). 

Let N be a normal subgroup of G. Then Q(N) 5 (P(G), by (Q2). But, in 
general, N(p’) $ G(p’) (take G = S4, N = A4 and p = 3: in that case, N = N(3’) 

is of order 12 and ]G(3’)] = 4), and N(p) $ G(p) (take the same G, N and p = 2). 
However, the following result holds: 
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Proposition 8. If N is a normal subgroup of G, then N(p’) fl N’ < G(p’). In 
particular, if N(p’) f G(p’), then N is p-nilpotent. 

PROOF. Let x E Irrl(G,p’) and let XN = e(pl+. ..+pLt) be the Clifford decompo- 
sition. IfpI = 1, then N(p’)nN’ 5 N’ 5 ker(pl+...+pt) = ker(XN) 5 ker(x). 
If ~1( 1) > 1, then p does not divide pi(l) for all i since pi( 1) divides x(1) by 
Clifford’s Theorem, and so N(p’) n N’ < N(p’) 5 ker(pl +. + ,ut) = ker(x(ni) < 
ker(x). Therefore, N(p’) n N’ < nXEIrrlCG,p,j ker(x) = G(p’). Suppose that 

N(P’) $ G(P’). Th en, by what has just been proved, N(p’) $ N’, and so 
Irrl(N,p’) is empty by the Remark; in that case, N is p-nilpotent by [I], Corollary 
12.2. 0 

For a normal subgroup N of G, set Irrl(G 1 N) = Irrl(G) - Irr(G/N). 
The following proposition was inspired by [IK], Theorem D. 

Proposition 9. Let K 5 N be normal subgroups of G. 
(a) If NG(p)/G(p) is p-closed, then N is. In particular, if N/K is p-closed 

and all characters in Irq(G 1 K) h awe p/-degrees, then N is p-closed. 
(b) If NG(p’)/G(p’) is p-nilpotent, then N is. In particular, if N/K is p- 

nilpotent and all characters in Irrl(G 1 K) h ave degrees divisible by p, then N is 
p-nilpotent (moreover, if, in addition, N/K is solvable, then N is also solvable; 
compare to [IK], Theorem 0). 

PROOF. Let G be a counterexample of minimal order. 
(a) Let us prove the first assertion. Without loss of generality, we may assume 

that G(p) < N and, by induction, applied to N/O,(G(p)) < G/O,(G(p)), we 
get O,(G(p)) = {l}, i.e., G(p) is a p’-subgroup by the Remark. Let P/G(p) be a 
(normal) Sylow p-subgroup of N/G(p). Obviously, P is p-closed if and only if N is. 
Therefore, we may assume that P = N, i.e., N/G(p) is a p-group. Since N is not 
p-closed, (1) < G(p) < N. Assume that O,(N) > (1). Set c = G/O,(N). Take 

x E Irr(G,p) (‘f 1 such a x does not exist, ?? is p-closed, by Ito-Michler Theorem; 
in that case, G and so N are p-closed). We see that O,(N)G(p) 5 ker(x) (here 
we consider x as a character of G). It follows that G(p) 5 G(p) = E. Then -- 
NH/H, as an epimorphic image of N/G(p), is p-closed. Since NH/H E NH/H, 
it follows by induction that NH is p-closed. Since O,(N) is a p-group, NH 
is p-closed so N is, and G is not a counterexample. Thus O,(N) = (1). Let 
L/G(p) be a minimal normal subgroup of G/G(p) contained in N/G(p). Then 
L/G(p) is a (nonidentity) elementary abelian p-group. By what has been just 
proved, L is not p-closed. Therefore, by Ito’s Theorem (see [I], Corollary 12.34 
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for solvable groups, but the same proof works for p-solvable groups as well), L 
has an irreducible character X of degree divisible by p. Let x E Irr(XG). By 
Clifford’s Theorem, p divides x(1) so x E Irr(G,p). Then G(p) < ker(x), and 
so G(p) 5 L TI ker(x) = ker(xL) < ker(X), which is not the case since L/G(p) is 
abelian and X is nonlinear. The first assertion in (a) is proved. 

Suppose that N/K is p-closed and all characters in Irri (G ( K) have p/-degrees 
(here we do not assume that G(p) is contained in N). Then K 5 G(p). In 
that case, NG(p)/G(p) E N/N n G(p) as an epimorphic image of the p-closed 
group N/K is also pclosed. Therefore, by what has been proved in the previous 
paragraph, NG(p) is p-closed so is N. The proof of (a) is completed. 

(b) Let us prove the first assertion. Without loss of generality, we may assume 
that G(p’) < N and, by induction, O,! (G(p')) = {l}, i.e., G(p’) is apsubgroup by 
the Remark. Let H/G($) b e a normal) p/-Hall subgroup of N/G($). Obviously, ( 
N is p-nilpotent if and only if H is. Therefore, we may assume, without loss of 
generality, that H = N; in that case N/G@‘) is a p’-subgroup and G(p’) is a p- 
subgroup. Since G is a counterexample, N > G(p’) > (1). Let P E Syl,(G); then 
G(p’) < P. We claim that G(p’) f Q(P). A ssume that this is false. Then G(p’) < 
Q(G) by (+4), and so N is pnilpotent since N/G(p’) is, which is a contradiction. 
Since P’ < Q(P), it follows that G(p’) $ P’, and so P possesses a linear character 
X such that G(p’) $ ker(X). S’ mce XG(l) = IG : P( $ 0 (mod p), there exists 
x E Irr(XG) h w ose degree is not divisible by p. By reciprocity, G(p’) $ ker(>o. 
By the Remark, G(p’) 5 G’ (otherwise, G is p-nilpotent, and so N is). In that 
case, G’ $ ker(x), i.e., x is nonlinear and x E Irri(G,p’). Then G(p’) < ker()o, 
contrary to what has just been proved. 

Now suppose that N/K is p-nilpotent and the degrees of all characters in 
Irri(G 1 K) are divisible by p (here we do not assume that G(p’) is contained in 
N). In that case, K 5 G(p’). Then NG(p’)/G(p’) E N/N fl G(p’) is p-nilpotent 
as an epimorphic image of the p-nilpotent group N/K. By what has been proved 
in the previous paragraph, NG(p’) is p-nilpotent so is N. Since K is solvable, the 
last assertion of (b) is obvious. 0 

In general, G(p’), G(p) are not necessarily subgroups of Q(G). If G = S4, then 
G(2) = G(3’) $ Q(G) = (1) since IG(2)I = 4. If W = ASL(3,2) = SL(3, 2).E(23), 
where E(23) is elementary abelian of order 8, and G/E(23) is a subgroup of order 
21 in W/E(23), then G(3) = G(7’) = E(23) $ a(G) = (1). 

Let N be subnormal in G (i.e., N is a member of some composition series of 
G), let NG(p)/G(p) be p-closed and K/G(p) its normal p-Sylow subgroup. Then 
K/G(p) is a subnormal p-subgroup of G/G(p). It is easy to prove by induction 
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that K/G(p) 5 H/G(p) = O,(G/G(p)). By Proposition 7(a), H is p-closed. 
Therefore, K is p-closed and subnormal in N. Since IN : KI is a $-number, a 
Sylow p-subgroup P of K is a Sylow subgroup of N. Since P is subnormal in G, 
it is subnormal in N. Then P is normal in N, and hence N is p-closed. Similarly, 
a subnormal subgroup N is p-nilpotent if and only if NG(p’)/G(p’) is. 

I am indebted to the referee for remarks and comments. 
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