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ABSTRACT. In this paper, we prove that if P is a compact polyhedron in the 
Euclidean n-dimensional space R” and f : P -_$ P is any map, then there 
is a homeomorphism F : R2” + Rzn such that the inverse limit (P, f) of f 
is contained in R2n, F is an extension of the shift map J : (P, f) t (I’, f) 
of f, and (P, f) is an attractor of F. Moreover, if P is contractible, then F 
can be chosen so that (P, f) is a global attractor of F. For a special case, we 
prove that if S is the unit circle and f : S --f S is any map of S, then there 
is a homeomorphism F : R3 t R3 such that the inverse limit (S, f) of f is 
contained in R3, F is an extension of the shift map J : (S, f) -+ (S, f) of f, 
and (S, f) is an attractor of F. As a corollary, we show that it is possible 
to characterize attractors (of cascades) on topological manifolds. This is an 
answer to a problem of Giinther and Segal [4, Problems, p.3281. 

1. INTRODUCTION 

All spaces considered in this paper are assumed to be separable metric spaces. 
Maps are continuous functions. By a compactum we mean a compact metric space. 
A continuum is a connected, nondegenerate compacturn. By an ANR, we mean 
an absolute neighborhood retract. Let R be the real line and Rn the Euclidean 
n-dimensional space. For a topological manifold M, dM denotes the manifold 
boundary. Let F : Y + Y be a homeomorphism of a space Y (onto itself) with 
metric d and let A be a compact subset of Y. Then A is said to be an attractor 
of F provided that there exists an open neighborhood of U of A in Y such that 

F(Cl(U)) c U and A = rT,zoF”(U). 
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Note that F(A) = A. Moreover, if for each y E Y lim,,,d(F(y),R) = 0, then 
we say that A is a global attractor of F, where d(A, B) = inf{d(a, b)\ a E A, b E B} 
for sets A, B. Let f : X + X and g : Y + Y be maps. Then f is topologically 
conjugate to g if there is a homeomorphism 4 : X + Y such that 4. f = g. 4. 

Let X = {Xn,pi,++i( i = 1,2,. . . } be an inverse sequence of compacta X, and 
maps p,,i+i : Xi+1 + Xi(i = 1,2,. ) and let 

invlimX = {(zi)~i] Q E Xi, ~i,++~(zi+l) = xi for each i} c nz”=, Xi. 

Then invlimX is a topological space as a subspace of the product space n,“=, Xi. 
Then invlimX is a compactum. Let f : X + X be a map of a compactum X. 
Consider the following special inverse limit space: 

(X, f) = {(~i),“=i] zi E X and f(zi+i) = Q for each i > l}. 

Define a map f : (X, f) + (X, f) by f(~r, ~2,. . . ,) = (f(xl), 21,. ,). Then f 
is a homeomorphism and it is called the shift map of f. 

A map f : X + Y of compacta is a near homeomorphism if f can be approxi- 
mated arbitrarily closely by homeomorphisms from X onto Y. 

In [6, Theorem l], Isbell proved that if X = invlim{Xi,pi,++i} where each Xi is 
a compactum which can be embedded into R” (n fixed), then X can be embedded 
into R’“. In [2], B ar g e and Martin proved that if f : I + I is any map of the 
unit interval I = [0, l], then there is a homeomorphism F : R2 + R2 such that 
(1, f) is contained in R2, F is an extension of the shift map j : (I, f) -+ (I, f), 
and (I, f) is a global attractor of F. In [7], we proved that if f : 5’ + S is a map 
of the unit circle S with Jdeg(f)( < 1, then the shift map f can be extended to a 
homeomorphism of the plane R2 whose attractor is (S, f). 

In this paper, we show the following results: (i) If P is a compact polyhedron 
in R”, then for any map f : P + P there is a homeomorphism F : Rzn + R2” 
such that (P, f) is contained in Rzn, F is an extension of f, and (P, f) is an 
attractor of F. Moreover, if P is contractible, then F can be chosen so that (P, f) 
is a global attractor of F. (ii) If f : S + S of the unit circle S is any map, then 
there is a homeomorphism F : R3 t R3 such that (S, f) is contained in R3, F is 
an extension of f : (S, f) + (S, f), and (S, f) is an attractor of F. 

As a corollary, we show that it is possible to characterize attractors (of cas- 
cades) on topological manifolds. This is an answer to a problem of Gunther and 
Segal [4, Problems, p.3281. 
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2. SHIFT MAPS OF COMPACT POLYHEDRA IN R” 

One of the main results of this paper is the following theorem which is a gener- 
alization of Barge-Martin’s theorem [2], and which is related to Isbell’s theorem 
[6, Theorem l]. 

Theorem 2.1. If P is a compact polyhedron in R” and f : P -+ P is any map, 
then there is a homeomorphism F : R2” + R2” such that (P, f) is contained in 
R2”, F is an extension of the shift map f : (P, f) + (P, f) of f , and (P, f) is 
an attractor of F. Moreover, if P is contractible, then F can be chosen so that 
(P, f) is a global attractor of F. 

To prove the above theorem, we need the following lemma which was proved 
by Brown [3]. 

Lemma 2.2. Let X = invlim{X,,pi,i+l} be an inverse sequence of compacta 
X;. If each pi,++1 : Xi+1 + Xi is a near homeomorphism, then invlimX is 
homeomorphic to Xi for each i. 

By using Lemma 2.2, we obtain the following. 

Lemma 2.3. Suppose that X is a compact subset of a compactum Y and f : X --f 
X is a map of X. If there is an extension h : Y -+ Y off such that h is a near 
homeomorphism and there is a neighborhood N of X in Y such that h(N) C X, 
then there is a homeomorphism F : Y t Y such that (X, f) is contained in Y, 
F is an extension of the shift map f : (X, f) -+ (X, f) of f, and (X, f) is an 
attractor of F. 

PROOF OF LEMMA 2.3. Consider the inverse limit (Y, h) and the shift map 

i : (Y, h) + (Y, h) of h. By Lemma 2.2, we know that (Y, h) is homeomorphic to 

Y. Then F = h : Y = (Y, h) + Y = (Y, h) is a desired homeomorphism. 

PROOF OF THEOREM 2.1. Put R2” = (RI x ... Rn) x (R’, x ... RL), where 

R; = Ri = R. We may assume that P c RI x ..‘R, x {O}(= R”) C R2n, 
where 0 = (0,. . . ,O) E R’, x . . . R6. Choose a positive number a > 0 such that 

P c F(a) - 8Bn(a), h w ere B”(a) = {x E R”I 1x1 < a}. Choose a sufficiently 
large positive number b > 0 such that P(a) x B”(a) c Int(B2”(b)), where 
B2”(b) = {x E R2”/ 1x1 5 b}. 

Let N be a regular neighborhood of P in Int(B2”(b)) (e.g., see [9, Theorem 
1.6.41 or [5]). By [9, L emma 1.6.21, there is a retraction r : N -+ P. Moreover, 

by the proof of [9, Lemma 1.6.21, we see that there is an extension hl : B2n(b) + 

B2”(b) of r such that hl is a near homeomorphism and hlla(B2”(b)) U P = id. 
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In fact, since regular neighborhoods of locally finite complexes in PL manifolds 
are mapping cylinder neighborhoods (see [12]), we can also obtain such a near 
homeomorphism hi. 

Let Ti : Ri x R: + R, x RI be a homeomorphism of the plane R, x R: such 
that T,(z, 0) = (0, cc) f or each z E [-c, c] c Ri, [-c, cl2 c B:(d), T,]C1(RI x RI - 
B;(d)) = id, h w ere d > c > 0 and B:(d) = {x E Ri x Riljx( < d}. We may 
assume that 

P c E = [-c,c]” x (0) c n;=“=, B:(d) c B”(a) x W(a). 

By considering the product map of Ti(i = 1,2, .., n), we obtain the homeomor- 
phism h2 : R2” -+ R2” such that if x E P, then 

hz(xi,. . . ,x&,0 )... ,O) = (0 )... ,o,q ).‘. ,zn), 

and h2JC1(R2” - (F(a) x B”(a))) = id. 
Since F(a) - dRn( ) . a 1s an absolute retract, we can choose an extension f* : 

R” + (B”(a) - alIn( off : P + P c B%(a) - dW(u) such that f*(x) = 0 for 
each x E C1(Rn-F(a)). Define a map h3 : R2” + R2” by hs(x,y) = (&(x),y), 
where & : R” -+ R”(y E Rn) is the map defined as follows: 

If x E B”(a) and x = t. x’ for some x’ E dBn(u) and 0 5 t 5 1, 

!by(X)=(l-t).f*(Y)+t. x’, and if x E R” - B”(a), g+,(x) = x. 

Then h3 : R2” + R2” isahomeomorphismsuchthat hs][R2n.-(Bn(u)xBn(a))] = 
id. Note that proj.hs .hzjP = f, where proj : R2n + R” is the projection defined 
by proj(zi, , an) = (XI,. . ,x,). 

Choose a 2n-ball H in Int(R2”(b)) such that F(u) x B”(a) c Int H. Then 
there is a near homeomorphism h4 : R2” + R2” such that h4 ]Cl( R2” - H) = 
id, h4(x) = (21,. . r%, ,“’ 0 ,O) for each x = (~1,. . , ~2~) E B”(u) x B”(a). 

Put h = h4 . h3. h2 . hl(B2”(b) : B2”(b) + B2”(b). Then we see that h is a 
near homeomorphism, hlP = f and h(N) c P, and h(dB2”(b) = id. By Lemma 
2.3, we see that (R2”(b), h) is homeomorphic to a 2n-ball B, F’ = h : B = 
(B2”(b), h) -+ B = (B2”(b), h) is an extension of f, (P, f) is an attractor of F’, 
and F’]dB = id. Put F = F’I(B - aB)(= R2n). 

Next, suppose that P is contractible. Take a n-simplex A in R” containing P. 
Since P is an AR, there is a retraction r : A + P. Put f’ = f . r : A -+ P C A. 
Then (P, f) = (A, f’) and f = J’. H ence we may assume that P is collapsible. 
Note that every regular neighborhood of P is a 2n-ball (see [9, Corollary 1.6.41). 
Hence we may assume that N > H. Hence, moreover we can choose a near 
homeomorphism hl : B2”(b) + B2”(b) such that if x E B2”(b) - dB2”(b), then 
there is some natural number i > 0 such that hi(x) E N, and hence hi+‘(x) E P. 
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Note that hd . Its h2]C1(B2”(b) - H) = id. This implies that if x E B2”(b) - 
dB2”(b), then there is some natural number j > 0 such that hj(x) E P. This 
implies that (P, f) is a global attractor of F. This completes the proof. 

Remark. Concerning the above theorem, we have the following question: For 
what f is it the case that F can be chosen as a diffeomorphism ? Especially, in 
[l, p.177, Problem (1.5)] B ar g e asked: For what f : I + I is it the case that 
(1, f) can be embedded in the plane so that f extends to a diffeomorphism ? In 
[ll], Szczechla has shown that if f : I t I is a piecewise monotone map, then 
the plane homeomorphism F can be taken to be Cl. Naturally, we have the 
following question: Is it true that if f : P + P is a piecewise linear map, then 
the homeomorphism F : R2” + R2” can be taken to be C’ ? 

3. SHIFT MAPS OF THE UNIT CIRCLE S 

In this section, as a special case we show the following theorem. 

Theorem 3.1. Let f : 5’ + S be any map of the unit circle S, then there is 
a homeomorphism F : R3 + R3 such that (S, f) is contained in R3, F is an 
extension of the shift map f : (S, f) + (S, f), and (S, f) is an attractor of F. 

PROOF OF THEOREM 3.1. Let e : R + S be the natural covering projection, 
i.e., e(z) = ezp(2niz). Let L(f) : R + R be a lifting of f, i.e., L(f) : R t R is 
a map such that e. L(f) = f. e. By [7, (3.2)], we may assume that ]deg(f)] = 

IL(f)(l) -L(f)(O)1 _> 2. Also we may assume that deg(f) = n 2 2. Define a map 
g : R -+ R by g(z) = L(f)(z)/n. Clearly th ere is a map fi : S + S such that 

e . g = fl e. As in the proof of [8, p.3291, we can define a map p : S --t S x R 

by Ace(t)) = (fl(e(t)),g(t) - t) f or each t E R. Note that the map g(t) - t has 
period 1, and hence p is well defined. Then p is an embedding (see [S]). In fact, 

if 0 5 t < t’ < 1 and g(t) -t = g(t’) - t', then 0 < t' -t = g(t') -g(t) < 1. Hence 
fl(e(t)) = e g(t) # e . g(t') = fl(e(t')) which implies that p(e(t)) # p(e(t')). 

Therefore p is an embedding. 
We consider S c R2 x (0) c R3, Let T = S x D2 be the solid torus which 

is naturally embedded in R3 such that S = S x {*}, where D2 is a 2-ball and 
t E D2 - a(D2). Take a 3-ball B3(b) in R3 such that T c Int(B3(b)). Since 
R is homeomorphic to a sufficiently small open interval, we may assume that 

/J(S) c T n (R2 x (0)). Al so, we may assume that p : S + T n (R2 x (0)) 
satisfies q . p = fl, where q : R3 -+ R3 is a near homeomorphism such that 

q(S x D2) c S, q(s x D2) = s f or s E S and qjC1(R3 - B3(b)) = id. Then there 

is a homeomorphism r, : R3 + R3 such that r,(T) C Int T, q rn(e(t) x D2) = 
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e(n . t) for e(t) E S(t E R) and r,ldB3(b) = id (see Figure 1). By using the 
Schijnflies theorem, we can choose a homeomorphism k : B3(b) -+ B3(b) such 
that k]S = p,kJdB3(b) = id (see Figure 2). Put h = q. r, k q : B3(b) + 
B3(b). Note that hjS = f, hldB3(b) = id, and h is a near homeomorphism. 
Then (B3(b),h) = B3 is a 3-ball. Put F = hlB3 - dB3. Then F is a desired 
homeomorphism. This completes the proof. 

R’(b) 

(Figure 1) 

(Figure 2) 

Also, we have the following corollary whose proof is essentially by Figure 3. 
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Corollary 3.2. Let f : 5’ + S be a map of the unit circle S with ]deg(f)] 2 
1, then there is a homeomorphism F : S3 + S3 of the S-sphere S3 such that 
(S, f) c S3, F is an extension of f, (S, f) is an attractor of F and if A’ is 
the attractor of F-l, then F-‘/h’ : A’ + A’ is topologically conjugate to the 

shift map 9 : (Kg) + (Kg), where g : S t S is the natural covering map with 

d%(g) = k(f) = n. In fact, A’ is the n-adic solenoid. 

(Figure 3) 

Note that there is a finite graph G which is naturally embedded into R3 and 
a homeomorphism f : G + G such that there is no near homeomorphism F : 
R3 + R3 which in an extension of f. Naturally, we have the following question: 
If f : G + G is a map of any finite graph G, does there exist a homeomorphism 
F : R3 + R3 such that (G, f) c R3, F is an extension of the shift map J : 
(G, f) + (G, f), and (G, f) is an attractor of F ? 

4. A CHARACTERIZATION OF ATTRACTORS 

In [4], Gunther and Segal proved that the class of compacta which can occur 
as attractors of flows on topological manifolds coincides with the class of finite 
dimensional compacta having the shape of a finite polyhedron. In [4], they asked 
the following problem: Is it possible to characterize attractors (of cascades) ? In 
this section, we answer to this problem. 
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Theorem 4.1. Let f : A + A be a homeomorphism of a compactum A. Then 
the following are equivalent. 

1. There is an Euclidean space E containing A and a homeomorphism F : E -+ 
E such that A is an attractor of F and F is an extension of f. 

2. There is a topological manifold M containing A and a homeomorphism F : 
M + M such that A is an attractor of F and F is an extension off. 

3. There is a finite dimensional, locally compact ANR Y containing A and a 
map F : Y + Y such that F is an extension of f and there is an open 
neighborhood U of A in Y so that F(Cl(U)) c U and nr!,F”(U) = A. 

4. There is a compact polyhedron P and a map g : P + P such that f is 
topologically conjugate to the shift map fi : (P, g) + (P, g). 

5. There is a finite dimensional compact ANR X and a map g’ : X + X such 
that f is topologically conjugate to the shift map 5’ : (X,g’) + (X,g’). 

PROOF. The implications (1) + (2) and (2) + (3) are trivial. We show (3) + 
(4). We may assume that Y is a closed subset of an Euclidean space E. Since Y is 
an ANR, there is a retraction r : W + Y, where W is a neighborhood of Y in E. 
Take a compact polyhedron P in W such that F(Cl(U)) c P and r(P) c U. Put 
g = F. rlP : P + P. Note that ry&y(P) = A. Define a map K : (P, g) + A 
by K(xl, x2, ..,) = x1 (see [lo, Theorem 371). Then K is a homeomorphism and 
f K = K . ij. Hence f is topologically conjugate to 5. (4) + (5) is trivial. 
Finally, we show (5) + (1). We may assume that X is in R”. Then we can 
choose a compact polyhedron P containing X in R” and a retraction r : P -+ X. 
Put g = g’ . r : P + X c P. Then (P, g) = (X, g’) and j = 3’. Theorem 2.1 
shows (5) + (1). q  

By using the proof (5) + (1) of the above theorem, we can generalize Theorem 
2.1 as follows. 

Corollary 4.2. If X is a compact ANR in R” and f : X + X is any map, then 
there is a homeomorphism F : R2” -+ R2” such that (X, f) is contained in R2%, 
F is an extension of the shift map J : (X, f) + (X, f) of f, and (X, f) is an 
attractor of F. Moreover, if X is an AR, then F can be chosen so that (X, f) is 
a global attractor of F. 

Corollary 4.3. A compactum A is an attractor on a topological manifold if and 
only if there is a map g : X + X of a finite dimensional compact ANR X such 
that A is homeomorphic to (X, g). 
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Remark. The result of Giinther and Segal [4] implies that a compacturn A is an 
attractor of a flow on a manifold if and only if there is a map g : X + X of a 
finite dimensional compact ANR X such that g is homotopic to the identity lx 
and A is homeomorphic to (X, g). 

Proposition 4.4. Let A be a compactum. If A admits a homeomorphism F : 
M + M of a topological manifold M such that A is an attractor of F, then 
one has that runk(H”(A)) fi ‘t 2s na e, where H”(A) denotes the k-dimensional Czech 
cohomology group. 

PROOF. By Theorem 4.1, there is a compact polyhedron P and a map g : P + P 
such that (P,g) is homeomorphic to A. Note that Hk(A) = dirlim{H”(P) + 
H”(P) -_). . . }. Since H’“(P) is finitely generated, 
rank(H”(A)) is finite. 0 

The author wishes to thank the referee for his helpful and kind remarks. 
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