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ABSTRACT. Let X and Y be real Banach spaces. A mapping q5 : X --t Y is 
called an &-isometry if 1 IIq5(z) - ~$(y)jl - 11% - yI/ I 5 E holds for all z,y E X. 
If q5 is surjective, then its distance to the set of all isometries of X onto Y is 
at most yx~, where yx denotes the Jung constant of X. 

1. INTRODUCTION AND STATEMENT OF THE RESULTS 

The first result in what we call now the theory of Hyers-Ulam stability is due 
to Hyers who solved a stability problem for additive functions posed by Ulam in 
1940 [24]. For some recent results on stability behaviour of additive mappings we 
refer to [l, 9, 10, 11, 15, 181. 

In 1945 Hyers and Ulam posed a similar stability problem for isometries [16]. 
A mapping 4 : X -+ Y is called an E-isometry if 

The natural question here is, of course, whether there exists an isometry U : 
X -+ Y that is close to 4. Note that when studying &-isometries there is no loss 
of generality in assuming that 4(O) = 0. Indeed, if a mapping C#J is an &-isometry 
then the same must be true for C#J - 4(O) and C#J - 4(O) can be approximated by 
an isometry U if and only if 4 is close to isometry U + 4(O). Hyers and Ulam [16] 
gave an example of an &-isometry mapping the real line into the real plane which 
can not be approximated by an isometry. So, in order to get a stability result one 
has to assume that 4 is surjective. 

It took almost forty years to get a general stability result for all pairs of Banach 
spaces X and Y. After several partial results [4, 5,6, 7, 16, 171 a breakthrough was 
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made by Gruber [13] who showed that all surjective asymptotically isometric E- 
isometries satisfying 4(O) = 0 can be uniformly approximated by linear isometries. 
He also showed that in the finite-dimensional case there exists a linear isometry 
U : X + Y such that I]~(z) - U(Z)]] _ 5 f < E or every z E X. This result was 
extended to arbitrary real Banach spaces by Gevirtz [12]. Recently, Omladic and 
the author [22] showed that the estimate 5s can be improved to 2s. In the same 
paper a simple example was given to show that this estimate is sharp. Consider 
a surjective function 4 : IR + IR defined by 4(t) = -3t for t E [0,1/2] and 
4(t) = t - 1 elsewhere. Clearly, 4 is a surjective 1-isometry. There are only 
two linear isometries U : IR + Et, namely, U(t) = t and U(t) = -t. Obviously, 
the second one does not approximate 4 uniformly. One can easily verify that 
maxtEn 14(t) - t] = 2, which proves that 2s is a sharp estimate. 

The reason that this simple example works is that the problem was ill-posed in 
a sense. We should have asked for the distance of a surjective s-isometry to the set 
of all (not necessarily linear) surjective isometries. Here, the distance between an 
approximate isometry 4 and an isometry U is defined as dist (4, U) = sup{ ( I+(x) - 
U(x)\1 : z E X} E [O,oo]. Let U d enote the set of all surjective isometries of X 
onto Y (note that by Mazur-Ulam theorem [21] surjective isometries are linear 
up to a translation). Then the distance of an approximate isometry 4 to the set 
of all surjective isometries is defined by dist ($,U) = inf{dist (4, U) : U E U}. 
In the above example dist (+,U) is the distance between 4 and U(t) = t - 1, 
which is equal to 1. At this point it would be tempting to conjecture that the 
distance of a surjective s-isometry to the set of all surjective isometries is at most 
E. Surprisingly, it turns out that the estimate 2s remains sharp after replacing 
the set of all linear surjective isometries by the set of all surjective isometries in 
our stability problem. Namely, let K c Iw, K = {l/n : n = 1,2,. . . } U {-l/n : 
n = 1,2,. . . } u {-2,0,2}, and let C(K) be the space of all real-valued continuous 
functions on K with the usual norm. Then we can prove the following result. 

Proposition 1.1. There exists a surjective 1-isometry 4 : C(K) + C(K) such 
that dist (4, U) is 2. 

So, the estimate 2s is sharp for general Banach spaces. But if we consider 
surjective s-isometries between a given pair of Banach spaces X and Y, then in 
many cases this estimate can be improved. First we need one definition. For a 
bounded subset A c X we define 

VA = inf{r E R+ : there exists z E X such that A c B(z, r)} 
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Here, B(z, r) denotes the closed ball with radius T centered at 2. The Jung 
constant yx (see [2, 191) is defined as 

yx = sup{v~ : A c X and diamA 5 2). 

Clearly, 1 5 yx < 2. It is easy to see that YC(K) = 2 (in fact, this will follow 
directly from Proposition 1.1 and the next theorem). An example of a real Banach 
space X with yx = 1 is a space of all bounded real-valued functions defined on 
an arbitrary set M equiped with the sup norm. 

Theorem 1.2. Let X and Y be real Banach spaces. Suppose that E > 0 and that 
4 : X + Y is a surjective &-isometry. Then dist (4,U) 5 yx~. 

Note that if there exists a surjective E-isometry 4 : X + Y, then X and Y are 
isometric, and hence, yx = yy. 

The Jung constant 7~ of an infinite dimensional real Hilbert space is fi [23]. 
At the end of this note we will give a much shorter elementary proof of this 
statement. So, if 4 : H -+ H is a surjective &-isometry then its distance to the set 
of all surjective isometries on H is at most &E. In the finite-dimensional case an 
analogous result holds without the surjectivity assumption. 

Corollary 1.3. Let E, be the n-dimensional Euclidean space. Suppose that E > 0 
and that 4 : E, + E, is an &-isometry. Then there exists an isometry U : E, + 
E, such that 

for every x E E,. 

2. PROOFS 

PROOF OF PROPOSITION 1.1. We denote K+ = {l/n : n = 1,2.. . } and K_ = 
{-l/n : n = 1,2....}, so that K = K+ U K_ U {-2,0,2}. We define two 
sequences of functions fn, gn E C(K), n = 1,2,. . . , by fn(2) = n and fn(x) = 0 
for all x E K \ {a}, and gn(-2) = - n and gn(z) = 0 for all x E K \ (-2). We 
denoted=3uGwhere3={(fl,f2,...}andG={g1,g2,...}. Wewillneedtwo 
more sequences of functions h,, k, E C(K) defined by h, = fn - (1/2)~{(~+3)-1) 
and k, = gn+(l/2)x{_(n+3)-l}, n = 1,2,. . . Here, x{~) denotes the characteristic 
function of the singleton {z}. 

We define a mapping $1 : C(K) + C(K) by 

41(f)(~) = f(x) + min{l,lf(z)l - IfW - l/d+ 31 
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if x E K+ and If(x)1 > /f(2) - 1/x1 - 3, 

&(f)(x) = f(x) - min{l, If(x)1 - lf(-2) - l/xl + 31 

if x E K- and if(x)\ 2 \f(-2) - l/s\ - 3, and 

41(f)(~) = f(x) 

otherwise. Note that for every f E C(K) we have &(f)(x) = f(x) for all but 
finitely many x E K. Hence, &(f) 1s continuous, and so, 41 is well-defined. In 
order to show that #I is surjective we first observe that for every a f i-3, CQ) the 
functions (Pi, $, : IR t R defined by 

(PLL(t) = 
{ 

t + min{l, ItI - a} if Itl 2 a 
t if Itl I a 

and 

tia(t) = 
{ 

t - min{l, ItI - a} if ItI > a 
t if ItI I a 

are surjective. Let g be any function in C(K). We define f : K --t IR by f(x) = 
g(x) if x E {-2,0,2}. F or x E K+ we denote a = lg(2) - l/xl - 3. Since (Pi is 
surjective we can find a real t such that p,(t) = g(x). We choose such a number 
t and define f(x) = t. Similarly, for x E K- and a = jg(-2) - l/xl - 3 we define 
f(x) = t where t was chosen in such a way that $a(t) = g(z). It is easy to see 
that f(x) = g(x) f or all but finitely many x E K. It follows that f E C(K). 
Obviously, we have &(f) = g. Hence, 41 is surjective. 

Now, we define 4 : C(K) + C(K) by 

4(f) = fn + 2~{1/~} 

1 

41(f) if fed 
if f = fn 

Qn - Q-l/n} if f = !ln 

First we observe that whenever we have f(2) = g(2), f(-2) = g(-2), and 

f(x) = g(x), the equation h(f)(x) = h(g)( cc must be satisfied. It follows that ) 
&(fn)(x) = &(h,)(z) if x # (n + 3)-l. It is easy to verify that this equation 
holds true also for x = (n+3)-l, and consequently, &(fn) = &(hn), 71 = 1,2,. . . 
Similarly, we get &(gn) = &(k,). This together with the surjectivity of $1 yield 
the surjectivity of 4. 

Next, we will prove that 4 is a 1-isometry. Assume first that neither f nor 
g belong to A. For every x E K we have 4(f)(x) = f(x) + A, and 4(g)(z) = 
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g(z) + B, for some real numbers A,, B, satisfying \A,), ]Bz] 5 1 and A,B, 2 0. 
It follows that 

If(x) - dxc)l - 1 I IWHX) - 4(9)(x)1 5 If(x) -9(x)1 + 1. 
Since this is true for every x E K we have the desired inequalities 

Ilf - 911 - 1 i llKf) - &I)11 5 IV - 911 + 1. 
It is trivial to see that ) ]]4(f) - 4(g)]] - ]]f -g]] ] 5 1 whenever both f and g 

belong to A. So, it remains to consider the case that f $ A while g E A. Once 
again we have two possibilities. We will consider only the first one that g E 3 
since almost the same argument can be applied when g E S. So, let g = fn for 
some positive integer n. We will first show that ]]4(f) - 4(fn)]] > ]]f - fn]] - 1. 
Let us first assume that ]]f - fn]] = If(x) - fn(x)] for some x # l/n. Then we 
have 4(f)(x) = f(x) + A f or some real A with IAl 5 1 and 4(fn)(x) = fn(x). 

Consequently, M(f) - 4(fn>ll 2 l4W4 - Wn)(~)I 2 If(x) - f&)l - IAI 2 
Ilf-All-l, as&sired. If IL-fnll = If(lln)-fn(lln)l = If(l/n)l L If@-9 
then 4(f)(lln) = .01/n) + 1. This yields l4U)(l/n) - cKL)(l/~)l = lf(l/n) - 
11 2 Ilf - fnll - 1. 
So, it remains to show that 14(f)(~)-$(fn)(x)] 5 ]]f-fn]]+l for every x E K. 

Ifz # l/n then W)(x) - Kfn)(x)I 5 If(x) - fn(x)l + 1 5 Ilf - fnll + 1. In the 
case that x = l/n and ]f(l/n)] 2 /f(2)-n]-2 we have l~(f)(l/~)-~(fn)(l/n)I i 
If(l/n)l + 1 I IIf - fnll + 1. Finally, if x = l/n and ]f(l/n)] 5 Jf(2) - n] - 2 
then ]4(f)(l/n) - 21 i ]f(l/n)] + 2 5 ]f(2) -n] 5 ]]f - fn]]. This completes the 
proof of the fact that 4 is a 1-isometry. 

Assume now that there exist a surjective isometry U : C(K) + C(K) and a 
positive real number A4 < 2 such that 

Ikw) - U(.f)ll 5 A4 
for every f E C(K). Th en, by Mazur-Ulam theorem [21], U(f) = Af + g for 
some linear isometry A : C(K) + C(K) and some g E C(K). Dividing the 
inequality ]]+(nf) - A(nf) - gl( 5 M by n and sending n to infinity we get 
Af = limn+oo n-l 4(nf) which f ur th er yields that Af = f for every f E C(K). 

Hence, IlKf) - f - gll I M, f E C(K). Replacing f by fn we get 14(fn)(lln) - 
f,(l/n) - g(l/n)] 5 M which implies g(l/n) 2 2 - M. Replacing f once again, 
this time by gnr we get g(-l/n) 5 -2 + M. As g E C(K) is continuous at zero 
we have g(0) 2 2 - M and g(0) 5 -2 + M. This contradiction completes the 
proof of Proposition 1.1. 0 
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PROOF OF THEOREM 1.2. As we have already mentioned in the introduction 
there is no loss of generality in assuming that 4(O) = 0. For every 5 E X we 
define & : X -+ Y by &(z) = 4(z + Z) - 4(x). Clearly, & is a surjective E- 
isometry satisfying &(O) = 0. It follows from [22, Main Theorem] that for every 
z E X there exists a unique surjective linear isometry U, : X + Y such that 

II&(~) - UZ(Z)II - 2 f < E or every z E X. Choose any x in X and denote Uc = U. 
For an arbitrary z E X we have 

IIU(z) - Uz(z)ll 2 
lIU(z) - 4(z)II + II4((z - x) +x) - 4(z) - Udz - XIII + ll~(~)ll+ IlUd~)ll I 

4E + ll~(~)ll + II~Z(~)ll~ 
The right hand side of this inequality is independent of z. As U - U, is linear, it 
must be zero. Therefore, U, e U is independent of x. It follows that for every 
x, y E X we have 

II(4(~) - U(x)) - (ti(Y) - U(Y))11 = IP,(x -Y) - U(x - YIII 5 2E. 
Hence, if we define (Y : X + Y by Q(Z) = 4(x:) - U(x), IC E X, then the diameter 
of the range of (Y is at most 2~. Consequently, for every positive b there exists 
u6 E Y such that the range of cy is contained in the closed ball with diameter 
ETY + 6 centered at ug. Equivalently, we have 

lM(z) - (U(z) + w)ll I WY + 6 

for every z E X. This completes the proof. 0 

In the proof of Theorem 1.2 we have shown that if 4 : X + Y is a surjective 
s-isometry then there exists a bijective linear isometry U : X + Y such that 
the range of cy = #J - U has diameter at most 2~. The surjectivity assumption 
on s-isometries was used only once in the proof of Theorem 1.2. Namely, for 
general Banach spaces X and Y it is impossible to obtain the Main Theorem in 
[22] without this assumption. However, in the special case that X = Y is an 
Euclidean space the conclusion of the Main Theorem in [22] holds without the 
surjectivity assumption [3, 81. Jung [19] proved that the Jung constant of E, is 

YE,, = J- 
%. This gives us Corollary 1.3. 

We will conclude this note by giving a short proof of the Routledge’s result 
[23] on the Jung constant for Hilbert spaces. Let H be an infinite dimensional 
real Hilbert space. Then 7~ = a. Routledge considered the special case that 
H is separable. In the proof he used the fact that YE,, = (2n/(n + 1))‘i2. We 
will show that the infinite dimensional case can be proved directly without using 
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the finite dimensional result. In fact, the proof in the infinite dimensional case is 
even simpler than the proof of the finite dimensional case. 

We first observe that if A c H satisfy A c B(x, T-) n B(y, r) for some z, y E H 
and nonnegative real number I-, then 

A~~(~,~r~)~ 

It follows easily that for every nonempty bounded subset A c H there exists 
ze E H such that A c B(Q, 77~). Moreover, if A c B(z, r) for some z E H \ (~0) 
and some positive I-, then r > T]A. 

We choose an arbitrary subset A c H with diamA = 2 and find x0 such that 
A C B(xo,vA). With no loss of generality we can assume that 20 = 0. We will 
first consider the possibility that for every E > 0 there exist u, u E A such that 

llUllr 1kl1 2 VA - E and (u,u) < E. Then 4 > 11’1~ - ~11~ = 11~1)~ + 11~11~ - 2(u,v) 2 
2(nA - E)~ - 2~. As this is true for every positive E we have necessarily r& 5 2. 

So, assume that there exists E > 0 such that I[u[~, l(wj) > VA --E implies (u, u) > 
E. We choose ue E A with \\uc)) > VA - E and 6 > 0 such that 67]A < ~/2 and 
77; - 26~ + d2r+j = a2 < T&. If u E A satisfies llvll < 7i’A - E then [l&e - VII 5 

~~\uo\\+\~zI\\ < qA-E/2. If \\u\\ L VA-E then \\~ucI-v\)~ = 62))u~))2-2b(u~,u)+ 
l~v~~2 5 a’. Hence, A is contained in the closed ball centered at 6~0 with the radius 
max{qA - ~/2, a} < 17,~. This contradiction shows that the second possibility can 
not occur. It fOllOWS that 7~ < fi. 

Let {ei : i = 1,2,...} b e an orthonormal set of vectors in H, and let A = 
{fiei : i = 1,2,. . }. Then obviously, diamA = 2. Choose xo such that 

A C B(Xo,TJA). As limi+,(xo,ei) = 0 we have nA 2 &, and consequently, 
7~ 2 fi. This completes the proof. 

PI 
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