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HYERS-ULAM STABILITY OF ISOMETRIES
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ABSTRACT. Let X and Y be real Banach spaces. A mapping ¢: X — Y is
called an ¢-isometry if | [|¢(z) — ¢(y)]| — ||z — y|l| < € holds for all z,y € X.
If ¢ is surjective, then its distance to the set of all isometries of X onto Y is
at most yxe, where yx denotes the Jung constant of X.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The first result in what we call now the theory of Hyers-Ulam stability is due
to Hyers who solved a stability problem for additive functions posed by Ulam in
1940 [24]. For some recent results on stability behaviour of additive mappings we
refer to [1, 9, 10, 11, 15, 18].

In 1945 Hyers and Ulam posed a similar stability problem for isometries [16].
A mapping ¢ : X — Y is called an e-isometry if

Ho(z) =@ = llz -yl <&, z,yeX.

The natural question here is, of course, whether there exists an isometry U :
X — Y that is close to ¢. Note that when studying e-isometries there is no loss
of generality in assuming that ¢(0) = 0. Indeed, if a mapping ¢ is an e-isometry
then the same must be true for ¢ — ¢(0) and ¢ — ¢(0) can be approximated by
an isometry U if and only if ¢ is close to isometry U + ¢(0). Hyers and Ulam [16]
gave an example of an e-isometry mapping the real line into the real plane which
can not be approximated by an isometry. So, in order to get a stability result one
has to assume that ¢ is surjective.

It took almost forty years to get a general stability result for all pairs of Banach
spaces X and Y. After several partial results [4, 5, 6, 7, 16, 17] a breakthrough was
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made by Gruber [13] who showed that all surjective asymptotically isometric &-
isometries satisfying ¢(0) = 0 can be uniformly approximated by linear isometries.
He also showed that in the finite-dimensional case there exists a linear isometry
U: X — Y such that ||¢(z) — U(z)|] < 5¢ for every z € X. This result was
extended to arbitrary real Banach spaces by Gevirtz [12]. Recently, Omladi¢ and
the author [22] showed that the estimate 5¢ can be improved to 2¢. In the same
paper a simple example was given to show that this estimate is sharp. Consider
a surjective function ¢ : R — R defined by ¢(t) = —3t for t € [0,1/2] and
#(t) = t — 1 elsewhere. Clearly, ¢ is a surjective l-isometry. There are only
two linear isometries U : R — R, namely, U(t) = t and U(t) = —t. Obviously,
the second one does not approximate ¢ uniformly. One can easily verify that
maxcr |¢(t) — ¢| = 2, which proves that 2¢ is a sharp estimate.

The reason that this simple example works is that the problem was ill-posed in
a sense. We should have asked for the distance of a surjective e-isometry to the set
of all (not necessarily linear) surjective isometries. Here, the distance between an
approximate isometry ¢ and an isometry U is defined as dist (¢, U) = sup{||¢(z) —
U(z)|]] : ¢ € X} € [0,00]. Let U denote the set of all surjective isometries of X
onto Y (note that by Mazur-Ulam theorem [21] surjective isometries are linear
up to a translation). Then the distance of an approximate isometry ¢ to the set
of all surjective isometries is defined by dist (¢,U) = inf{dist (¢,U) : U € U}.
In the above example dist (¢,Uf) is the distance between ¢ and U(t) = ¢t — 1,
which is equal to 1. At this point it would be tempting to conjecture that the
distance of a surjective e-isometry to the set of all surjective isometries is at most
€. Surprisingly, it turns out that the estimate 2¢ remains sharp after replacing
the set of all linear surjective isometries by the set of all surjective isometries in
our stability problem. Namely, let K C R, K ={1/n : n=1,2,...}u{-1/n :
n=1,2,...}U{-2,0,2}, and let C(K) be the space of all real-valued continuous
functions on K with the usual norm. Then we can prove the following result.

Proposition 1.1, There ezists a surjective 1-isometry ¢ : C(K) — C(K) such
that dist (¢, U) is 2.

So, the estimate 2¢ is sharp for general Banach spaces. But if we consider
surjective e-isometries between a given pair of Banach spaces X and Y, then in
many cases this estimate can be improved. First we need one definition. For a
bounded subset A C X we define

na = inf{r € R" : there exists r € X such that A C B(z,r)}.
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Here, B(r,r) denotes the closed ball with radius r centered at z. The Jung
constant yx (see [2, 19]) is defined as

p crintm, « A -— YV
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Clearly, 1 < vx < 2. It is easy to see that yg(x) = 2 (in fact, this will follow
directly from Proposition 1.1 and the next theorem). An example of a real Banach

space X with yx = 1 is a space of all bounded real-valued functions defined on
an arbitrary set M equiped with the sup norm.

IN

Theorem 1.2. Let X and Y be real Banach spaces. Suppose that e > Q and that
¢: X =Y is a surjective e-isometry. Then dist (¢,U) < yxe.

Note that if there exists a surjective e-isometry ¢ : X —» Y, then X and Y are
isometric, and hence, vx = vy.

The Jung constant vy of an infinite dimensional real Hilbert space is v/2 [23).
At the end of this note we will give a much shorter elementary proof of this
statement. So, if ¢ : H — H is a surjective e-isometry then its distance to the set
of all surjective isometries on H is at most v/2¢. In the finite-dimensional case an
analogous result holds without the surjectivity assumption.

Al T+ B ho +hoo _Adieviome ’\Mn, Loainlidonm omany Cammnce that ~ N N
wul Ullcll.y Leed LTV Lip UT LIEC T WHTTLC TS tUT WL Ly UL cWwit spyuLe L)U/IJ[JUDC e & 2~ v
and that ¢ : E,, — E,, is an e-isometry. Then there exists an isometry U : E,, —
E,, such that

2n
llp(z) = Ulz)l| < £
n+1
for every x € E,,.
2. ProOFS

PROOF OF PROPOSITION 1.1. We denote Ky ={1/n:n=1,2....} and K_ =
{=1/n : n =1,2....}, so that K = K, UK_ U{-2,0,2}. We define two
sequences of functions f,,g9, € C(K),n =1,2,..., by fn(2) =n and f,(z) =0
for all z € K \ {2}, and g,(—2) = —n and g,(z) =0 for all z € K \ {-2}. We
denote A = FUG where F = {f1, f2,... } and G = {91, g2, ... }. We will need two
more sequences of functions hy, k, € C(K) defined by hyn = fn — (1/2)X{(n+3)-1}
and kp, = gn+(1/2)X{—(n+3)-1}, 7 = 1,2,... Here, x{, denotes the characteristic
function of the singleton {z}.
We define a mapping ¢ : C(K) — C(K) by

¢1(f)(z) = f(z) + min{L,|f(z)| - |/(2) — /2| + 3}
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ifrze Ky and |f(2)] > |f(2) —1/z| — 3,

¢1(f)(z) = f(z) — min{L, |f(z)| — |£(-2) - 1/z] + 3}
ifre K_ and |f(z)| > |f(—2) — 1/z| — 3, and

1 (f)(z) = f(z)

otherwise. Note that for every f € C(K) we have ¢1(f)(z) = f(z) for all but
finitely many z € K. Hence, ¢;(f) is continuous, and so, ¢; is well-defined. In
order to show that ¢, is surjective we first observe that for every a € [-3,0) the
functions ¢,, %, : R — R defined by

t + min{1, |t| - a} if [t| > a
olt) =
#alt) { t if  Jt|<a

and

t — min{1, |t| - a} if it} >a
Yalt) = { ¢ it l<a
are surjective. Let g be any function in C'(K). We define f : K — R by f(z) =
g(z) if z € {-2,0,2}. For z € K, we denote a = |g(2) — 1/z| — 3. Since ¢, is
surjective we can find a real t such that p,(t) = g(z). We choose such a number
t and define f(z) =t. Similarly, for z € K_ and a = |g(—2) — 1/z| — 3 we define
f(z) = t where t was chosen in such a way that ¥, (t) = g(z). It is easy to see
that f(z) = g(z) for all but finitely many z € K. It follows that f € C(K).
Obviously, we have ¢1(f) = ¢g. Hence, ¢, is surjective.
Now, we define ¢ : C(K) — C(K) by

$1(f) it feA
d)(f) = { ot 2X{l/n} if f="fn

gn — 2X{~1/n} if  f=gn
First we observe that whenever we have f(2) = ¢(2), f(-2) = g(-2), and
f(z) = g(z), the equation ¢1(f)(z) = ¢1(g)(z) must be satisfied. It follows that
#1(fn)(x) = $1(hn)(z) if z # (n+ 3)7L. It is easy to verify that this equation
holds true also for z = (n+3)~!, and consequently, ¢1(fs) = ¢1(hn), n=1,2,...
Similarly, we get ¢1(gn) = ¢1(kn). This together with the surjectivity of ¢, yield

the surjectivity of ¢.

Next, we will prove that ¢ is a l-isometry. Assume first that neither f nor
g belong to A. For every r € K we have ¢(f)(z) = f(z) + A; and ¢(g)(z) =
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g(x) + By for some real numbers A,, B, satisfying |A,),|B,) <1 and A,B, > 0.
It follows that

[f() = 9(2)] = 1 < [$(f)(z) - ¢(g)(z)| < | f(z) — g(z)| + L.

Since this is true for every z € K we have the desired inequalities

F =gl =1 <l¢(f) = sl < IIf —gll + 1.

It is trivial to see that |||¢(f) — ¢(9)]] — || — gl]| < 1 whenever both f and g
belong to A. So, it remains to consider the case that f € A while ¢ € A. Once
again we have two possibilities. We will consider only the first one that ¢ € F
since almost the same argument can be applied when g € G. So, let g = f,, for
some positive integer n. We will first show that ||¢(f) — ¢(fu)l| > |If — fall = L.
Let us first assume that ||f — f,|] = |f(z) — fn(z)] for some z # 1/n. Then we
have ¢(f)(z) = f(z) + A for some real A with |A] < 1 and ¢(f,)(z) = f.(z).
Consequently, [|¢(f) - ¢(f)ll 2 16(F)(@) = @(fa)(@)] > |f(2) — fa(x)| — |A] >
£ = fall -1, as desired. I£ [|f = ful| = |£(1/n) = fu(1/n)] = |F(1/n)| > |£(2) ~n]
then ¢(f)(1/n) = f(1/n) +1. This yields |¢(f)(1/n) — 3(fa)(1/n)| = |F(1/n) -
1‘ Z Hf fn“ -1

So, it remains to show that |¢(f)(z)—&(fn ) (z )| <||f=fal]+1forevery z € K.
If 2 # 1/n then [§(f)(z) = $(fa)(@)| < |£(x) = ful@)| + 1 < |If = full + 1. In the
case that z = 1/n and |f(1/n)| > [f(2)—n|—2 we have |¢(f)(1/n)—¢(f.){(1/n)| <
F(1/m) +1 < |If = full + 1. Finally, if © = 1/n and |f(1/n)| < |f(2) — n| — 2
then |$(f)(1/n) — 2| < [F(1/n)[ +2 < |£(2) = nl < ||f = full. This completes the
proof of the fact that ¢ is a 1-isometry.

Assume now that there exist a surjective isometry U : C(K) - C(K) and a
positive real number M < 2 such that

le(f) —UNIl <M

for every f € C(K). Then, by Mazur-Ulam theorem [21], U(f) = Af + g for
some linear isometry A : C(K) — C(K) and some g € C(K). Dividing the
inequality ||¢(nf) — A(nf) — g|| < M by n and sending n to infinity we get
Af =limp o n ! @(nf) which further yields that Af = f for every f € C(K).
Hence, [[¢(f) — f —gll £ M, f € C(K). Replacing f by f, we get |¢(f.)(1/n) —
fn(1/n) — g(1/n)| < M which implies g(1/n) > 2 — M. Replacing f once again,
this time by g,, we get g(—1/n) < -2+ M. As g € C(K) is continuous at zero
we have g(0) > 2 — M and g(0) € -2+ M. This contradiction completes the
proof of Proposition 1.1. O
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PROOF OF THEOREM 1.2. As we have already mentioned in the introduction
there is no loss of generality in assuming that ¢(0) = 0. For every z € X we
define ¢, : X = Y by ¢(2) = ¢(z + z) — ¢(x). Clearly, ¢, is a surjective e-
isometry satisfying ¢.(0) = 0. It follows from [22, Main Theorem) that for every
z € X there exists a unique surjective linear isometry U, : X — Y such that

[|¢o(2) — Ugz(2)|| < 2¢ for every z € X. Choose any z in X and denote Uy = U.
For an arbitrary z € X we have

U (z) = Us(2)I] <
1U(2) = (@)1 + 1|8((z — &) + 2) = $(2) = Ua(z — )| + l|(@)|| + [|Ua(2)]] <

de + ||op(x)|| + |Us(2)]].

The right hand side of this inequality is independent of z. As U — Uy is linear, it
must be zero. Therefore, U, = U is independent of x. It follows that for every
z,y € X we have

[[(¢(z) = U(2)) = (&(y) = Ul = ll¢y(z —y) - Uz — y)|| < 2.

Hence, if we define a: X - Y by afz) = ¢(z) — U(z), = € X, then the diameter
of the range of « is at most 2. Consequently, for every positive § there exists
us € Y such that the range of « is contained in the closed ball with diameter
€7y + 6 centered at us. Equivalently, we have

llg(2) — (U(2) + us)l| < evy +6
for every z € X. This completes the proof. O

In the proof of Theorem 1.2 we have shown that if ¢ : X — Y is a surjective
e-isometry then there exists a bijective linear isometry U : X — Y such that
the range of @« = ¢ — U has diameter at most 2¢. The surjectivity assumption
on e-isometries was used only once in the proof of Theorem 1.2. Namely, for
general Banach spaces X and Y it is impossible to obtain the Main Theorem in
[22] without this assumption. However, in the special case that X = Y is an
Euclidean space the conclusion of the Main Theorem in [22] holds without the
surjectivity assumption [3, 8]. Jung [19] proved that the Jung constant of E, is
VE, = \/:?T’Z . This gives us Corollary 1.3.

We will conclude this note by giving a short proof of the Routledge’s result
[23] on the Jung constant for Hilbert spaces. Let H be an infinite dimensional
real Hilbert space. Then vy = v/2. Routledge considered the special case that
H is separable. In the proof he used the fact that vz, = (2n/(n 4+ 1))'/2. We
will show that the infinite dimensional case can be proved directly without using
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the finite dimensional result. In fact, the proof in the infinite dimensional case is
even simpler than the proof of the finite dimensional case.

We first observe that if A C H satisfy A ¢ B(z,r) N B(y,r) for some z,y € H
and nonnegative real number 7, then

:c—l—y |z -yl
ACB 2 —=1.
( 2 ’ 4

It follows easily that for every nonempty bounded subset A C H there exists
zo € H such that A C B(zg,n4). Moreover, if A C B(x,r) for some z € H\ {zo}
and some positive r, then r > n4.

We choose an arbitrary subset A C H with diam A = 2 and find zy such that
A C B(zg,n4)- With no loss of generality we can assume that zo = 0. We will
first consider the possibility that for every & > 0 there exist u,v € A such that
ull, o]} > 74 — & and (u,0) < e. Then 4 > |ju— vl[2 = [jull? + |[vl|* — 2(u,v) >
2(na — €)? — 2e. As this is true for every positive ¢ we have necessarily 7% < 2.

So, assume that there exists ¢ > 0 such that ||u||, |[Jv]] > na — ¢ implies (u,v) >
£. We choose ug € A with ||jug)] > na — & and § > 0 such that dn4 < /2 and
n% — 206 + 620} = a? < n?. If v € A satisfies ||v]] < g4 — € then |[dug — v|| <
Blluoll + llv]] < 114 —€/2. T |lu]] > 14 — € then |[B1o —vl|? = 62]jup||? — 28(uo, v) +
l[v]|? < a®. Hence, A is contained in the closed ball centered at dug with the radius
max{n4 —&/2,a} < na. This contradiction shows that the second possibility can
not occur. It follows that vy < v/2.

Let {e; : ¢ = 1,2,...} be an orthonormal set of vectors in H, and let A =
{V2e; : i = 1,2,...}. Then obviously, diamA = 2. Choose zy such that
A C B(zo,n4). As lim;00{To,e;) = 0 we have n4 > V2, and consequently,
g > /2. This completes the proof.
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