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ABSTRACT. We investigate the existence of solutions of the fourth order non- 
linear elliptic boundary value problem under Dirichlet boundary condition 
A2u + CAU = bu+ + f in 0, where R is a bounded open set in Rn with 
smooth boundary and the nonlinearity bu+ crosses eigenvalues of A2 + CA. 
We also investigate a relation between multiplicity of solutions and source 
terms of the equation with the nonlinearity crossing an eigenvalue. 

1. INTRODUCTION 

We investigate the existence of solutions of the fourth order nonlinear elliptic 
boundary value problem 

(1) 
A2u+cAu=bu++f in fl, 

u = 0, Au =0 on dR, 

where uf = max{u, 0) and c is not an eigenvalue of -A under Dirichlet boundary 
condition. Here we assume that R is a bounded open set in KY with smooth 
boundary dR. The operator A2 denotes the biharmonic operator. We assume 
that b is not an eigenvalue of A2 + CA under Dirichlet boundary condition. 

The nonlinear equation with jumping nonlinearity have been extensively stud- 
ied by many authors [3,4,6,7,8]. They studied the existence of solutions of the 
nonlinear equation with jumping nonlinearity for the second order elliptic opera- 
tor [6], for one dimensional wave operator [3,4], and for the other operators [7,8j 
when the source term is a multiple of the positive eigenfunction. 
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In [lo], Tarantello considered the fourth order, nonlinear elliptic problem under 
the Dirichlet boundary condition 

(2) 
A2u + cAu = b[(u + l)+ + l] in R, 

u = 0, Au=0 on Xl. 

She showed by degree theory that if b > X1(X1 - c), then 2 has a solution u such 
that U(X) < 0 in R. 

In this paper we investigate the existence of solutions of the fourth order non- 
linear equation 1 when the nonlinearity bu+ crosses eigenvalues of A2 + CA under 
Dirichlet boundary condition. 

In section 1, we introduce the Banach space spanned by eigenfunctions of 
A2 + CA and investigate the existence of solutions of 1 when the nonlinearity bu+ 
satisfies Xi < c, b < X1(X1 - c) and when it satisfies c < Xi, Xi(Xi - c) < b. 

In section 2, we investigate the multiplicity of solutions of 1 under the following 
two conditions. 
Condition(l) : XI < c < X2, b < X1(X1 - c) and f = s > 0. 
Condition(2) : c < X1, Xk(Xk - c) < b < X IC+~(&+~ -c) (k = 1,2;..) and s < 0. 

In section 3, we investigate a relation between multiplicity of solutions and 
source terms of 1 with the nonlinearity crossing an eigenvalue. 

2. THE BANACH SPACE SPANNED BY EIGENFUNCTIONS 

In this section we introduce the Banach space spanned by eigenfunctions of the 
operator A2 + CA and we investigate the existence of solutions of the boundary 
value problem 

(3) A2u+cAu=buf+.s in R, 

u = 0, Au= 0 on 80. 

Here s is real, c is not an eigenvalue of -A under Dirichlet boundary condition 
and the nonlinearity bu+ satisfies Xi < c, b < X1(X1 -c) or c < Xi, Xi(Xi -c) < b. 

Let Xk(k = 1,2;. . ) denote the eigenvalues and &(k = 1,2. . . ) the corre- 
sponding eigenfunctions, suitably normalized with respect to L2(s2) inner prod- 
uct, of the eigenvalue problem Au + Xu = 0 in s1, under Dirichlet boundary 

condition, where each eigenvalue Xk is repeated as often as its multiplicity. We 
recallthatO<X1<X2FXg~...,Xi-$+cX,andthat~1(2)>OforzER.The 
eigenvalue problem 

A2u+cAu = pu in fl, 

u = 0, Au = 0 on dR 
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has infinitely many eigenvalues 

pk = xk(xk - C), Ic = 1,2,. . . 

and corresponding eigenfunctions &(z). 
The set of functions {$k} is an orthogonal base for W~‘2(R). Let us denote an 
element u of W,1>‘(R) as 

Let c be not an eigenvalue of -A and define a subspace H of W:“(R) as follows 

H = {u E W$‘(fl) : c I&(iik - c)lh; < KI}. 

Then this is a complete normed space with a norm 

lllulll = [x iXkcXk - cM:11’2. 
Since XI, + +cc and c is fixed, we have the following simple properties. 

Proposition 2.1. Let c be not an eigenvalue of -A under Dirichlet boundary 
condition. Then we have : For u E W,‘12(s2), 

(i) A2u + cAu E H implies u E H. 

(ii) lllulll 2 Cllull1,2(n) for some C > 0. 

(iii) lbll~2(i22) = 0 if and only if IlluIII = 0. 

PROOF. (i) Suppose c is not an eigenvalue of -A and let u = c hk&. Then 

A2u + cAu = c &(& - C)hkf$k. 

Hence 

0;) > l(lA2u + cAu~~~~ = c IAk(Ak - C)I(xk(xk - C))2h: 

> cc IAk(Ak - CM; = lllUll12, 
where c = i;f{[&(& - c)]” : k = 1,2, ...}. (ii) and (iii) are trivial. 0 

Lemma 2.2. Let d be not an eigenvalue of A2 + CA and u E L2(n). Then (A2 + 
CA + d)-‘u E H. 

PROOF. Suppose that d is not an eigenvalue of A2 + CA and finite. We know 
that the number of elements of {&(A, - c) : I&(& - c)l < Id\} iS finite, where 
&(Xk - c) is an eigenvalue of A2 + CA. Let u = c h&k. Then 

(A2 + CA + d)-‘u = c 
&(Xk : C) + dhk’k’ 
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Hence we have the inequality 

for some C, which means that 

lll(A2 + cA + d)-r41 I CIII~IIL~(R~, G = ~6. 
0 

With Lemma 2.2, we can obtain the following lemma. 

Lemma 2.3. Let f E L2(R). Let b be not an eigenvalue of A2 + CA. Then all 
solutions in W,1’2(R) of 

belong to H. 

A2u + cAu = bu+ + f(z) 

With the aid of Lemma 2.3, it is enough to investigate the existence of solutions 
of 3 in the subspace H of Wi’2(s2), namely, 

(4) A’u+cAu=bu++s in H. 

Let XI, < c < &+I and Xlc(Xk - c), X k+r(Xk+r - c) be successive eigenvalues of 
A2 + CA such that there is no eigenvalue between Xk(Xk -c) and Xk+r(Xk+r - c). 
Then Xk(Xk -c) < 0 < X ~c+r(Xl~+r - c) and we have the uniqueness theorem. 

Theorem 2.4. Suppose Xk < c < &+I and Xlc(Xk - c) < b < Xlc+~(Xlc+l - c). 
Then equation 4 has exactly one solution in L2(0) for all real s. Furthermore 
equation 4 has a unique solution in H. 

PROOF. We consider the equation 

(5) -A2u - cAu + bu+ = --s in L2(R). 

1 Let 6 = 2{Xk(Xk - c) + Xk+r(X ,++I - c)}. Then equation 5 is equivalent to 

(6) u = (-A” - CA + 6)-l@ - b)u+ - Su- - s], 

where (-A” - CA + 6)- l is a compact, self-adjoint, linear map from L2 (0) into 

L2(s2) with norm 2 
&+r(&+r - c) - Xk(Xk - c)’ we note that 
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It follows that the right hand side of 6 defines a Lipschitz mapping from L’(G) 
into L’(Q) with Lipschitz constant y < 1. Therefore, by the contraction mapping 
principle, there exists a unique solution u E L2(0) of 6. 

On the other hand, by Lemma 2.3, the solution of 6 belongs to H. q  

We now examine equation 4 when Xi < c and b < X1(X1 - c) < 0. 

Theorem 2.5. Assume that X1 < c and b < Xi(Xi - c) < 0. Then we have : 
(i) Ifs < 0, then equation 4 has no solution. 
(ii) Ifs = 0, th en equation 4 has only the trivial solution. 

PROOF. Assume s < 0. We rewrite 4 as 

{-A” - CA + Xi(Xi - c)}u + {-X,(X, - c) + b}u+ - {-X,(X1 - c)}u- = -s. 

Multiply across by 41 and integrate over 0. Since ({-A2-cA+xi(xi-c)}u, 41) = 
0, we have 

(7) 
J 
II[{-b(h -c) + b}u+ - {-k(& - c)}u-141 = -sl&. 

But {-X,(X, - c) + b}u+ - {-X,(X, - c)}u- < 0 for all real valued function u 
and 41 (z) > 0 for 2 E R. Therefore the left hand side of 7 is always less than or 
equal to zero. Hence ifs < 0, then there is no solution of 4 and ifs = 0, then the 
only possibility is u E 0. q  

For the case s > 0 in Theorem 2.5, we shall investigate the existence of solutions 
of 4 in the next section. 

If c < Xi, Xi(Xi - c) < b and s > 0, then the left hand side of 7 is larger than 
or equal to zero and the right hand side of it is negative. 

Therefore we have the following theorem. 

Theorem 2.6. Assume that c < X1 and 0 < X1(X1 - c) < b, b # Xk(Xk - c), 
k = 2,3;.. . Then we have : 

(i) Ifs > 0, then equation 4 has no solution. 
(ii) If s = 0, th en equation 4 has only the trivial solution. 

PROOF. Assume s 2 0. We rewrite 4 as 

{A” + CA - X1(X1 - c)}u + [X,(X, - c) - b]u+ - X1(X1 - c)u- = s 

Multiply across by C#Q and integrate over R. Since ({A” +cA - Xi(Xi -c)}u, 41) = 
0, we have 

J {[X,(X, - c) - b]u+ - 
R 

~l(xl- c)u-~l = s J+l. 
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But [X,(X, - c) - b]u+ - Xi(Xi - c)u- 5 0 for any real valued function u. Also 
&(x) > 0 in R. Th ere ore, f if s > 0, then equation 4 has no solution and if s = 0, 
then the only possibility is that u = 0. 0 

For the case s < 0 in Theorem 2.6, we shall investigate the existence of solutions 
of 3 in the next section. 

3. THE EXISTENCE OF SOLUTIONS 

In this section we investigate the multiplicity of solutions of the problem 

(9) A2u+cAu=bu++s in H 

under the following two conditions. 
Condition(l) : X1 < c < X2, b < X1(X1 - c) and s > 0. 
Condition(2) : c < X 1, Xk(Xk - c) < b < X~C+I(&+I - c) (k = 1,2,. . .) and 
s < 0. 

First we investigate the multiplicity of solutions of 9 under the Condition(l). 

Theorem 3.1. Assume that X1 < c < X2, b < X1(X1 - c) and s > 0. Then the 
problem 9 has at least two solutions. 

One solution is positive and the existence of the other solution will be proved 
by critical point theory. For the proof of the theorem, we need several lemmas. 

Lemma 3.2. Let Xk < c < &+l(lc > 1) and b < Xi(Xi - c). Then the problem 

(10) A2u + cAu = bu+ in H 

has only the trivial solution. 

PROOF. We rewrite 10 as 

{A2 + CA - Xi(Xi - c)}u + [X,(X, - c) - b]u+ - X1(X1 - c)u- = 0 in H. 

Multiply across by 41 and integrate over R. Since ({A’+cA-Xi(Xi-c)}u, 41) = 0, 
we have 

(11) s {[h(b - cl - blu+ - X1(X1 - c)u-}$I = 0. 
R 

But [X,(X, - c) - b]u + - Xi(Xi - c)u- > 0 for all real valued function u and 
&(z) > 0 for z E R. Hence the left hand side of 11 is always greater than or 
equal to zero. 

Therefore the only possibility to hold 11 is that u E 0. 0 
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Now, we study the existence of the positive solution of 9. 

Lemma 3.3. Let XI < c < X2, b < X1(X1 - c) and s > 0. Then the unique 
solution u1 of the problem 

(12) A’u+cAu=bu+s in L2(R) 

is positive. 

PROOF. Let XI < c < X2 and b < X1(X2 - c). Then the problem 

A2u + CAU - bu = ~_lu in L2(0) 

has eigenvalues Xk(Xk - c) - b and they are positive. Since the inverse (A” + CA - 
b)-l of the operator A2 + CA - b is positive, the solution u = (A’ + CA - b)-‘(s) 
of 12 is positive. This proves the lemma. 0 

An easy consequence of Lemma 3.3 is 

Lemma 3.4. Let c < X1, b < X1(X1 - c) and s > 0. Then the boundary value 
problem 9 has a positive solution ur. 

PROOF. The solution ur of the linear problem 12 is positive, hence it is also a 
solution of 9. q  

Now, we investigate the existence of the other solution of problem 9 under the 
condition Xr < c < X2, b < X1(X1 - c) and s > 0 by the critical point theory. 

Let us define the functional corresponding to 9 in H x R 

(13) 

For simplicity, we shall write F = Fb when b is fixed. Then F is well-defined. 
The solutions of 9 coincide with the critical points of F(u, s). 

Proposition 3.5. Let b be fixed and s E R. Then F(u,s) = Fb(u,s) is continu- 
ous and Fre’chet differentiable in H. 

The proof of Proposition 3.5 is similar to that of Proposition 2.1 of [3]. 
Let V be the one-dimensional subspace of L2(R) spanned by ~$1 whose eigen- 

value is Xr (Xl - c). Let W be the orthogonal complement of V in H. Let 
P : H -+ V be the orthogonal projection of H onto V and I - P : H -+ W denote 
that of H onto W. Then every element u E H is expressed by u = u + z, where 
v = Pu, z = (I - P)u. Then the problem 9 is equivalent to 

A% + cAv = P[b(v + .z)+ + s], 
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A2z + CAZ = (I - P)[b(w + z)+ + s] 

We look on the above equations as a system of two equations in two unknowns v 
and w. 

Lemma 3.6. Let Xr < c < X2, b < Xr(Xr - c) and s > 0. Then we have : 
(i) There exists a unique solution z E W of the equation 

(14 A2z + cAz - (I - P)[b(v + z)+ + s] = 0 in W 

If for fixed s E R, we put z = 0(v, s), then 0 is continuous on V. In particular, 0 
satisfies a uniform Lipschitz condition in v with respect to the L2 norm (also the 

norm III . III). 
(ii) If F : V + R is defined by fi(v, s) = F(v+o(w, s), s), then F has a continuous 
Frechet derivative DF with respect to v and 

DF(v, s)(h) = DF(w + e(v,s),s)(h) = 0 for all h E V. 

If vo is a critical point of fi, then vg + ~(wo, s) is a solution of the problem 9 and 
conversely every solution of 9 is of this form. 

PROOF. Let Xr < c < X2, (Y < b < X1(X1 - c) and s > 0. Let 6 = 8 < 0 and 

g(t) = bc+. If gr(<) = g(E) - St, th en equation 14 is equivalent to 

(15) z = (A2 + CA - 6)-‘(I - P)(gr(v + z)+ + s). 

Since (A2+cA-b)-1(I-P) IS self-adjoin& compact, linear map from (I-P)L2(n) 
into itself, the eigenvalues of (A” + CA - 6)-l(I - P) are (X,(X, -c) -6)-l, where 

Xl (Xl - c) > X2(X2 - c). Therefore its L2 norm is X2(X2 1 c) _ 6’ Since 

bl(SZ> -s71(Edl 5 max-ilb- 61, I~IIEz - Ell, 

it follows that the right hand side of 15 defines, for fixed u E V, a Lipschitz 
mapping of (I - P)L2(n) into itself with Lipschitz constant y < 1, where 

Ibl 1 

y = z. X2(X2 -c) - ; 
< 1. 

Therefore, by the contraction mapping principle, for given w E V, there exists 
a unique z E (I - P)L2(n) which satisfies 15. 

Since the constant S does not depend on v and s, it follows from standard 
arguments that if 0(w, s) denotes the unique z E (I - P)L2(s1) which solves 15, 
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then 0 is continuous with respect to v. In fact, if zi = 8(vr, s) and z2 = 6’(~z, s), 
then we have 

111~1 - ~2111 = ll(A2 + CA - 6)-1(1 - J’)(gl(vl + a> - gl(u2 + z2)11 

= YlJ(W + 21) - (212 + z2)ll 

L Y(lI”1 - 41 + IIZl - z2ll). 

Hence we have 

11Zl - z2\1 I Cl\% - 7J2\\, 
Y 

c = - 
1-y 

which shows that B(v, s) satisfies a uniform Lipschitz condition in v with respect 
to L2-norm. With the above inequality we have 

111~1 - zzlll = IlKA” + CA - S)-l(I - P)(gl(w + a) - gl(vz + ~2>111 

5 clll(r - m71(m + z2) - 92(v2 + z2)11 

L 
b 

cl-ll(fJl + Zl) - (u2 + z2)ll 2 

5 c~q(ll~I - v2ll + 1121 - z211) 

5 
b 

G-(1 + C)JlVl - 0211 
2 

for some Cl > 0. Hence we have 

(16) Illa - zzlll I CZlll~l - vzlll 

for some Cz > 0. This shows that 19(v, s) satisfies a uniform Lipschitz condition 
in w with respect to the norm ((1 ((I. 

Let 21 E V and z = ~(v,s). If w E W then from 14 we see that 

(17) 
s 

[AZ. AUI - CVZ . VW - (I - P)[b(v + z)+ + s]] . wdx = 0. 
n 

Since 

s 
Au. Aw = 0 and 

s 
vu. VW = 0, 

n R 
we have 

(13) DF(v + c?(v, s), S)(W) = 0 for w E W. 

Prom Proposition 3.5, fi(v, s) has a continuous Frechet derivative Dp, and 

(1% D&v, s)(h) = DF(v + d(v, s), s)(h), h E V. 
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Suppose that for some fixed s > 0 , there exists wc E V such that Dp(vo, s) = 0. 
Then it follows 19 that 

DF(vo + ~(TJO, s), s)(u) = 0 for all 2, E V. 

Since 18 holds for all w E W and H is the direct sum of V and W, it follows that 

DF(wo + 19(wo, s), s) = 0 in H. 

Therefore u = wo + ~(vo, s) is a solution of 9. 
Conversely, our reasoning shows that if u is a solution of 9 and u = Pu, then 

DF(v, s) = 0 in V. 0 

Let X1 < C < X2, b < X1(X1 - c),&(& - c) < 0 < Xl~+r(Xl~+r - c) and s > 0. 
Prom lemma 3.4, we see that 9 has a positive solution ur(z). Prom lemma 3.6, 
ur(z) is of the form ur(x) = wr + 0(wr, s). 

Lemma 3.7. Let X1 < c < AZ, b < X1(X1 - c) and s > 0. Then there exists a 
small open neighborhood B of w1 in V such that w = w1 is a strict local point of 
minimum of F. 

PROOF. Let s > 0. Then equation 9 has a positive solution ur(z) which is of the 
form ~~(5) = w1 + e( wl, s) > 0, B(wr, s) E W. Since I + 0, where I is an identity 
map on V, is continuous on V, there exists a small open neighborhood B of wr in 
V such that if w E B, then w + e(w, s) > 0. Therefore, if z = e(w, s), z1 = B(wr, s) 
and w + z = (wr + zr) + (V + Z), then we have 

F(w,s) = F(w + z,s) 

=s $4 + z)12 - ;lv(w + z)12 - ;lw + z12 - s(w + z)]dx 

=s &% + ZI) + A(6 + ?)I” - ;lV(wr + zr) + v(v + z)I” 

-$(2:, + ~1) + (6 + Z)I” - S{(WI + ZI) + (6 + z)}]dx 

= 
J’ 

I,l;14, + z1)12 - @VI + ZI)~” - ;\WI + 211~ - s(w1 + zl)]dx 

+ 
s 

OIA(w, + zr) . A(6 + 2) - cV(wr + zr) . V(V + 2) 

-b(wr + zr) (ij + 2) - s(zI $ f)]dx 

+ 
J’ 

n[;lA(li + Z)I” - ;lV(V + ?)I” - $6 + Z12]dx. 
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Here 

s 
$A(o1+ zi)12 - @(vi + zi)12 - ;]wl + zi12 - s(wi + zi)]ds 

= F(wl + zl, s) = &, s) 

and 

s [A(w, + zi) A(ti + 5) - cV(vi + zi) V(5 + 5) 
Cl 

-b(Q + z1) . (V + 5) - s(G + ,q]da: 

= 
s 

n[A2(vl + zi) + cA(wi + zi) - b(wl + ~1) - s] . (6 + .+a: = 0, 

since VI+ zi is a positive solution of 9. Since ii + Z can be expressed by V + 2 = 
el& + es& + . . . , we have 

qw, s) - F(Wl, s) = s &A@ + 2)]’ - ;]V(S + Z)]” - ;]ij + #]da: 

= i{[Xi(Xi - c) - b]eS + [X,(X, - c) - b]ei + . . > 0, 

since b < Xi(Xi - c) and Xi < c < X 2. Therefore v = wi is a strict local point of 
minimum of fl. This proves the lemma. 0 

We now define the functional on H 

F*(u) = F(u,O) = &Au12 - ;JVu12 - ;l~+1~]dz. s 
Then the critical points of F*(u) coincide with solutions of the equation 

(20) A2u + CAU = bu+ in H. 

If Xi < c < X2 and b < Xi(Xi - c), then 20 has only the trivial solution and hence 
F*(u) has only one critical point u = 0. Given w E V, let e*(v) = 6(u,O) E W be 
the unique solution of the equation 

A2z + cAz - (I- P)[b(w + z)+] = 0 in IX 

Let us define the reduced functional F*(w) on V, by F*(w + 6*(w)). We note 
that we can obtain the same result as lemma 3.6 when we replace 0(w, s) and 
F(w,B(w,s)) by 0*(w) and F*(w). W e a so 1 note that p;*(w) has only one critical 

point w = 0. 

Lemma 3.8. Ford > 0 and w E V, F*(dw) = d2F*(w). 



746 Q-HEUNG CHOI AND TACKSUN JUNG 

PROOF. If 2, E V satisfy 

A2z + cAz - (I - P)(b(w + f?*(u))+) = 0 in IV, 

then for d > 0, 

A2(dz) + cA(dz) - (I- P)(b(dw + de*(w))+) = 0 in W 

Therefore Q*(dw) = de*(w) for d > 0. From the definition of F*(u) we see that 

F*(du) = d2F*(u) for u E H and d > 0. 

Hence, for 2, E V and d > 0, 

F*(dw) = F*(dw + 6’*(dw)) = d2F*(w + e*(w)) = d2@(w). 

0 

Now we remember the notation Fb, which was defined in equation 13. Until 
now, the notations F, F” and F’ denote Fb, Fb+ and Fl respectively. In the 
following lemma we use the latter notations. 

Lemma 3.9. Let Xi < c < X2 and b < X1(X1 - 
V such that @(WI) > 0 and Fi(w2) < 0. 

PROOF. First, we choose w1 E V such that w1 
0(wi, 0) = 0. Hence 01 + z = dlq5, and we have 

F,*(Wl) = I 1 C 
I-lA(v +z)12 - -Iv(wl+ 

cl2 2 

b 
z)12 - -[(WI + z)+12]dx 

2 

= I ra[;lA(w~ + 41” - @WI + z)12 - $wl + zj2]dx 

=s 
&A2 + cA)(w~ + z) . (WI + z) - ;(wl + z) (WI + z)]dx 

= ;[{Xl(& - c) - b}d:] > 0. 

Next, we choose w2 E V such that w2 + 0(w2, 0) < 0. In this case z = 8(w2, 0) = 0. 
Hence if we write 212 + z = ei&, then we have 

c). Then there exist w1 and 212 in 

+ f?(wi,O) > 0. In this case z = 

@(w2) = JI, [+(w2 +z)12 - 37(w2 +z)12] dx 

= s, [;(A2 + cA)(v, + z) (~12 + z)] dx 

= i[X1(x1 - c)eT] < 0, 
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since b < X1(X1 - c) < 0 < X2(X2 - c). 0 

Lemma 3.10. Let X1 < c < X2 and b < X1(X1 - c) and s > 0. Then Fb(v,s) is 
neither bounded above nor below on V. 

PROOF. From lemma 3.9, p,‘(v) h as negative (positive) value. Suppose that 

F,‘(v) assumes negative values and that Fb(v, s) is bounded below. Let wo denote 
a fixed point in V with llzloll = 1. Let zn. = n~o + C?(nvo, S) and let zz = wo + 
e(nz7s) _ vo + WA. Since 0 is Lipschitzian, the sequence {z:}? is bounded in 
L2(0). We have DF(z,, s)(y) = 0 for all n and arbitrary y E W. Dividing this 

equation by n gives 

(21) 
s 

[AZ;. Ay - CVZ; 
n 

Vy - bz;+y - ;y]dx = 0. 

Setting y = z, we know that {z~}~=~ is bounded in L2(0). Hence {wi}y is 
bounded in L2(sZ) so we may assume that it converges weakly to an element 
w* E W. If z* = w* + 00 and we let n + co, in 21 we obtain 

(22) 
s 

[AZ* . Ay - cVz* . Vy - bz*+y]dx = 0 
n 

for arbitrary y E W. Hence w* = e(vo,O). If we set y = w, in (21) and dividing 
by n, then we have 

(23) 
s R 

[lAw;I” - c\VW;\~ - (b)z;+) + ;)w;]dx = 0. 

Letting n --t oc, in 23, we obtain 

=J’ b/z*+ lw*dx 
R 

=s [AZ* Au* - cVz* . Vw*]dx 
R 

= 
s 

[lAw*I” - c(Vw* 12]dx, 
n 

where we have used 22. Hence 

lim /[[AZ;/” - [Vz;12]dz = l[lAz*12 - clVz*12]dx. 
n+co $j 

The assumption that fi(v, s) is bounded below implies the existence of a constant 

M such that 
Fb(nzIo, s)/n2 2 M/n2. 
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Letting n + co, our previous reasoning shows that 

Since vo was an arbitrary member of V with ((we\\ = 1 and Fb(kw,O) = k2pb(w,0), 
this contradicts the assumption F,*(v) is negative for some value of ‘u E V. Hence 
Fb(v,s) cannot be bounded below. The proof that pb(z),s) cannot be bounded 
above if F,*(w) assumes positive values is essentially the same. 0 

PROOF OF THEOREM 2.1. Let Xi < c < X2, b < X1(X1 - c) and s > 0. By 
Lemma 3.4, 9 has a positive solution ui(z) = wr + 6(q, s). By Lemma 3.7, there 
exists a small open neighborhood B of vi in V such that 21 = 211 is a strict local 
point of minimum of pb. Since Fa(v, s) is not bounded below, there exits a point 
us E V with 211 # Vz and flb(wi,s) = p ( b 712, s). The Rolle’s theorem and the fact 
that Fb(u, s) has a continuous Frechet derivative imply that there exists a strict 
local point of maximum Fb. Thus E;b has at least two critical points. Therefore 9 
has at least two solutions. 0 

Next, we investigate the multiplicity of solutions of 9 under the Condition (2), 
Condition(2) : c < X1 (in this case 0 < X,(X,-c)), Xk(Xk-C) < b < Xk+l(Xk+l-C) 
(k = 1,2,. . ) and s < 0. 

Theorem 3.11. Assume that c < X1, 0 < X1(X1 - c), Xk(XI, - c) < b < 

&c+l(&c+l - c), (k L 0) and s < 0. Then the problem 9 has at least two so- 
lutions. 

One solution is a negative solution and the existence of another solution will 
be shown by critical point theory. 
To prove Theorem 3.11, we need several lemmas. 

Lemma 3.12. Let c < X1, b 2 0 and b # X1(X1 - c). Then the problem 

(24) A2u+cAu = bu+ in H 

has only the trivial solution. 

PROOF. For c < X1, 0 < Xr(Xr - c) < b, the result follows from Theorem 2.6 (ii). 
We prove the lemma for the case 0 5 b < X1(X1 - c). From 9 we have 

(25) X1(X1 - c)llu11” 5 / lAu12 - cl&l2 = b/ u+ . u 5 blluj12, 

where II II is the L2 norm is di It follows from 25 t:at bl(uJ12 > X~(/\I - c)llul12 
which yields IL = 0. d 
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Now, we investigate the existence of the negative solution of 9 under Condi- 
tion(2). 

Lemma 3.13. Assume that c < X1, &(Xk -c) < b < Xk+l(&+l- c)(k 2 1) and 
s < 0. Then the problem 9 has a negative solution Q(X). 

PROOF. If u is a smooth function satisfying 

A2u+cAu>0 in R, 

u = 0, Au = 0 on dR 

and c < Xi, then u > 0 in 0 or u = 0. This immediately follows by first 
applying standard (strong) maximum principle to w = Au and consequently to 
u. Subsequently, for c < Xr and s < 0, it follows that if us is the unique solution 
for 

(26) A2u2 + cAu2 = s in 0, 

212 = 0, Au2 = 0 on Xl, 

then u2 < 0 in 0. The unique negative solution 212 solution of 26 is also a negative 
solution of 9. 0 

Now, we investigate the existence of the other solution of the problem 9 under 
the condition c < X1, Xk(Xk - c) < b < X k+l(Xk+l - c)(k > 1) and s < 0 will be 
shown by critical point theory. Now we consider the functional 

Fb(u,s) = $Au12 - ;~VU~~ - $Iu+12 - su]dx, 
J 

which is well defined in H x R, continuous and Frechet differentiable in H (by 
Proposition 3.5). 

Let V be the k-dimensional subspace of H spanned by eigenfunctions &,42, . . . , &. 
Let W be the orthogonal compliment of V in H. We note that Lemma 3.6 holds 
under Condition (2). From Lemma 3.13, we see that 9 has a negative solution 
Us. By Lemma 3.6, u2 is of the form ‘1~2 = us + B(vs, s). 

Lemma 3.14. Let c < X1, Xlc(Xk - c) < b < Xk+l(Xk+l - c)(k 2 1) and s < 0. 
Then there exists a small open neighborhood D of 7~2 in V such that v = 29 is a 
strict local point of minimum of Fb. 

PROOF. Let s < 0. Then the problem 9 has a negative solution 74(z) which 
is of the form UP(X) = v2 + Q( ~12, s) < 0. Since I + 0, where I is an identity 

map on V, is continuous, there exists a small open neighborhood D of 212 in V 
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such that if ZI E D, ZI + e(w,s) < 0. Therefore if z = e(v,s), 22 = O(w2,s) and 
u + z = (~2 + ~2) + (G + Z), then we have 

Fb(?-‘,s) = Fb(W + 2,s) 

=I o[;~A(v2 + 22) + A(6 + 2)12 - @a + ~2) + V(v + Z)I” 

-s{(‘u2 + z2) + (V + z)}]dz 

= 
s 

&~2 + z2)12 - ;lV(vz + z2)12 - 4~2 + tz)]da: 

+ 
s 

0[A(w2 + z2) . A(6 + 2) - cV(w2 + z2) V(6 + z) - s(fi + z)]dz 

+ $A(6 + 2)12 - ;jV(S + Z)j2]dz. 
s 

Here 

J &w2 + z2)12 - ;IV(vz + z2)12 - 4~2 + z2)]dz 

= Fb(W2 +zZ,s) = Fb(W2,s) 

and 

J [A(w, + z2) A(G + 2) - cV(w2 + z2) V(a + 5) - s(‘u + Z)]ds 
R 

= J n[A2(w, + z2) + cA(wa + z2) - s] . (6 + .Z)ds = 0, 

since w2 + z2 is a negative solution of 9. Since, V + Z can be expressed by V -+- Z = 

we have 

Fb(W, s) - Fb(W2, s) J 1 
= $A@ + 2)12 - ;lV(C + Z)12]dz 

= i{XI(XI - c)eT +X2(X2 - c)ez + ...} > 0, 

since 0 < x1(x1 - c). Therefore Fb(u, s) has a strict local minimum at w = 112. 
This proves the lemma. 0 

Lemma 3.15. Let c < x1, &(& - c) < b < &+l(&+l - c)(k >_ 1). Then there 
exist wp and wq in V such that Fb*(uup) < 0 and Fb*(uq) > 0. 
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PROOF. First, we choose up E V such that up + e(v,,O) > 0 and B(v,,O) = 0. 

If VP + z = 5 f&5%, where B(v,,O) = 0, then we have 
a=1 

F&$) = 
s 

&A(vp + z)12 - ;iV(v, + z)I” - ;/(q, + z)+12]dx 

s 

1 b = ni+12 - ;IW2 - $J,I~I~~ 

I 
1 = r2[2(A2 + cA)v, . up - ;1v,/2]dx 

= ;{[&@I - c) - b]f; +. . + [X/J& - c) - b]f;} < 0. 

Next, we choose vq E V such that vq + e(v,,O) < 0. Let z = e(v,,O). If vq + z = 

%glyi4%, then we have 

Fb*(vq) = 

since 0 < &(X1 - c). 

I 1 
12[21A(2rp + z)12 - ;lv(v, + z)12]dz 

s &A2 + cA)(q + .z) . (vq + z)]dz 

;Mx, - 4s; + “. + ‘\k(XI, - c)gZ] > 0, 

0 

Lemma 3.16. Let c < Xi, Xk(Xk - c) < b < Xk+l(Xlc+~ - c)(k 2 1) and s < 0. 
Then E-;b(u, s) is neither bounded above GOT below on V. 

The proof of the lemma is the same as that of Lemma 3.10. 

Lemma 3.17. Let c < X1, Xk(Xk - c) < b < Xk+l(Xk+l - c), k = 1,2, ... 
and s < 0. Then the functional Fb(v, s), defined on V, satisfies the Palais- 
Smale condition : Any sequence {vn} c V for which fib(v,, s) is bounded and 
DFb(v,, s) + 0 possesses a convergent subsequence. 

PROOF. Suppose that Fb(vn, s) is bounded and DFb(v,, s) -+ 0 in V, where {v~} 
is a sequence in V. Since V is k-dimensional subspace spanned by 41, . . . , &, we 

have, with u, = v, + B(v,, s) 

A2u, + CAU, - bu,f = s + DFb(u,, s). 
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Assuming [P.S.] condition does not hold, that is ])v,]) + cc (]]]u~]]] + oo), we see 
that ]]un]] + co. Dividing by ]]u~]] and taking 2u, = ]]u,]]-~u, we have 

(27) A2w, t cAw, - bw,+ = ~~~,~~-~(s + D&(u,, s)). 

Since DFb(u,,s) + 0 as n + cc and ]]u~]] -+ co. Moreover 27 shows that 
IlA’w, + cAwJ is bounded. Since (A2 + CA)-1 is a compact operator, passing 
to a subsequence we get that 20~ -+ wc. Since ]]wn]] = 1 for all n = 1,2, ... it 
follows that ]]ws]] = 1. Taking the limit of both sides of 27, we find 

A2wo + cAwo - bw,f = 0 

with ((wo(( # 0. This contradicts to the fact that the equation 

A2u + cAu = bu+ 

has only the trivial solution. 0 

PROOF OF THEOREM 2.2. By Lemma 3.13, 9 has a negative solution us(z) = 
212 + B(u~, s). By Lemma 3.14, there exists a small open neighborhood D of us in 
V such that u = us is a strict local point of minimum of fib. Also pb E C’(V, R) 
satisfies the Palais-Smale condition. Since F~(zI, s) is neither bounded above nor 
below on V (Lemma 3.16)) we can choose 213 E V\D such that 

Let P be the set of all paths in V joining vs and 712. The Mountain Pass Theorem 
implies that 

is a critical value of 8’b. Thus Fb has at least two critical values. Thus 9 has at 
least two solutions. 0 

4. MULTIPLICITY OF SOLUTIONS AND SOURCE TERMS 

We let Lu = A2u + cAu. We investigate relations between multiplicity of 
solutions and source terms f(z) of the fourth order nonlinear elliptic boundary 
value problem, under the condition : X1 < c < X2, b < X1(X1 - c) 

(28) Lu - bu+ = f in H, 

where we assume that f = cl& + ~242 (cl, c:! E R). 

Theorem 4.1. If cl < 0, then 28 has no solution. 
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PROOF. We rewrite 28 as 
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(L - p1)u + (-b + 0 
+ 

- p1u- = Cl41 + c242 in H. 

Multiply across by $1 and integrate over R. Since L is self-adjoint and (L - 
PI)& = 0 , ((L - ~1)u,&u1) = 0. Thus we have 

s 
$-b + ,0+ - ~lu-}+l = (Cl&, 41) = cl. 

We know that (-b + pl)u+ - plu- 2 0 for all real valued function u. Also ~$1 > 0 
in 0. Therefore s,{ (-b + pl)u+ - plu-}& > 0. Hence there is no solution of 28 
if cl < 0. 0 

Let V be the subspace of H spanned by {c#Q,&?} and W be the orthogonal 
complement of V in H. Let P be the orthogonal projection of H onto V. Then 
every u E H can be written as u = v + w, where v = Pu and w = (I - P)u. 
Hence equation 28 is equivalent to a system 

(29) Lw + (I - P)(-b(v + W)+) = 0, 

(30) Lv + P(-b(v + W)f) = Cl& + c&2. 

Now we have a uniqueness theorem, which proof is similar 
Lemma 3.6. 

to that of (i) of 

Lemma 4.2. For a jixed u E V, 29 has a unique solution w = O(v). Furthermore, 
0(v) is Lipschitz continuous in v. 

By Lemma 4.2, the study of the multiplicity of solutions of 28 is reduced to 
that of an equivalent problem 

(31) Lv + P(-qv + e(v))+) = Cl& + c242 

defined on V. 

Proposition 4.3. Ifv > 0 or w 2 0, then e(u) = 0. 

PROOF. Let v >_ 0. Then e(v) = 0 and equation 29 is reduced to 

LO + (I - P)(-bv+) = 0 

because v+ = v,v- = 0 and (I - P)v = 0. Similarly if 21 5 0, then e(v) = 0. 0 
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Since V = span{q5~,&} and 4 i is a positive eigenfunction, there exists a cone 
Cr defined by 

Cl = {u = Cl& + c2$2 I Cl > 0, lczl 5 w 

for some k > 0 so that u >_ 0 for all u E Cl, and a cone C’s defined by 

c3 = {u = Cl& + c2552 I Cl F O,lc2I 5 WI 

so that w < 0 for all w E Cs. Thus f?(w) G 0 for w E Cr U Cs. 
Now we set 

c2 = {w = Cl& + c2cb2 I c2 > 0, qc11 F c2) 

c4 = {w = Cl& + c2$2 Ic2 5 0,ell 5 lc21). 

Then the union of Cl, C2, C’s, and Cb is the space V. 
We define a map Q : V -+ V by 

Q(w) = Lw + P(-b(w +0(w))+), w E K 

Then Q is continuous on V and we have the following lemma. 

Lemma 4.4. Q(cw) = c@(w) for c 2 0 and w E V. 

PROOF. Let c 2 0. Ifw satisfies LB(w)+ (I - P)(-b(w + 19(w))+) = 0, then 

L(c6J(w))+(I - P)(-b(cw+ce(w))+) = 0 

and hence e(cw) = co(v). Therefore 

G(W) = L(~~) + P(~X + e(cv))+) 

= L(CW) + P(~(cw +ce(w))+) 

= CD(w) 

We investigate the image of the cones Ci, C’s under a. First, we consider the 
image of Cr. If 21 = cl& + ~242 2 0, 

qw) = L~+P(-~(~+ e(w))+) 

= c1p1h + c2p2$2 - b(Cl$l + c242) 

= (-b + p.l)c1$1 + (-b + p2)c242. 

Thus the images of the rays cl& f kcr&(cr 2 0) are 

(-b + Pl)C1$1 f (-b + c12k$2 (Cl > 0). 

Therefore @ maps Cr onto the cone 
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Second, we consider the image of Cs. If ‘u = -cl& + c242 I 0 (Cl > 0, lczl I 

h), 

a?(?J) = Lw + P(-b(u + e(v))+) 

= -w1h + c2p242. 

Thus the images of the rays -cl& f crk&(cr 2 0) are 

-w141 f Cl&242 (Cl > 0). 

Therefore Q maps Ca onto the cone 

dl& + d&2 dl > 0, Id21 5 Ekdl 
IPII 

We have three possibilities that RI is a proper subset of Rs, or Rs is a proper 
subset of RI, or RI = Rs. RI is a proper subset of RS if and only if the nonlinearity 
-bu+ satisfies fi > s. R3 is a proper subset of RI if and only if the 

nonlinearity - bu+ satisfies fi < s. The relation RI = R3 holds if and only 

if the nonlinearity -bu+ satisfies 3 = $$$. 
We investigate the multiplicity of solutions of 28 under the condition that RI 

is a proper subset of RJ, that is, fi > =. 
We consider the restrictions @I,,(1 5 i < 4) of @ to the cones Ci. Let 

Q’z = @lc,, i.e., Qi : C, -+ V. Then it follows from Lemma 4.4 and the above 
calculations that Qr : Cl + RI and @s : C’s 4 113 are bijective. 

Now we investigate the images of the cones C2,C4 under a. By Theorem 4.1 
and Lemma 4.2, the image of C2 under Q is a cone containing 

and the image of Cb under Q is a cone containing 

We note that @i(C;) contains Ri, for i = 2,4, respectively. 0 

Lemma 4.5. For i = 2,4, let y be any simple path in R, with end points on 8Ri, 
where each ray in R, (starting from the origin) intersects only one point of y. 
Then the inverse image @i’(r) of y is also a simple path in Ci with end points 

on aCi, where any ray in Ci (starting from the origin) intersects only one point 

of this path. 
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The proof of Lemma 4.5 is similar to that of Lemma 3.2 of [4]. From Lemma 
4.5 we have Theorem 4.6 which implies our last and main result of this section. 

Theorem 4.6. For 1 5 i 5 4, the restriction @i maps Ci onto Ri. Therefore, Q 
maps V onto RY. In particular, @I and G.3 are bijective. 

Theorem 4.7. Suppose b < ,~1 < 0 < p2 and fi > *. Let f = cl& + 
~242 E V. Then we have : 
(1) If f E IntR, then 28 has exactly two solutions, one of which is positive and 
the other is negative. 
(2) If f E IntRz U IntR4, then 28 has a negative solution and at least one sign 
changing solution. 
(3) If f E dR3, then 28 has a negative solution. 
(4) If f E Rz, then 28 has no solution. 

REFERENCES 

[l] H. Amann , Saddle points and multiple solz~tions of &&ential equation, Math. Z., (1979), 
127-166. 

[2] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and 
applications, J. Funct. Analysis, 14 (1973), 349-381. 

[3] Q.H. Choi and T. Jung, An application of a variational reduction method to a nonlinear 

wave equation, J. Differential Equations, 117 (1995), 390-410. 
[4] Q.H. Choi and T. Jung, The multiplicity of sol&ions and geometry of a nonlinear elliptic 

equation, Studia Math., 120 (1996), 259-270. 
[5] D. Gilbarg and N.S. Trudinger, Elliptic partial diflerential equations of second order, 

Springer-Verlag, New York/Berlin, (1983). 
[6] A.C. Lazer and P.J. McKenna, Critical point theory and boundary value problems with 

nonlinearities crossing multiple eigenvolues II, Comm. Partial Differential Equations, 11 
(1986), 1653~1676. 

[7] A.C. Lazer and P.J. McKenna, Large amplitude periodic oscillations in suspension bridges 
: Some new connections with nonlinear analysis, SIAM Review, 32 (1990), 537~578. 

[8] P.J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Archive for 

rational mechanics and Analysis, 98 (1987), 167-177. 
[9] M. Protter and H. Weinberger, MazimzLm principles in d#erential equations, Springer- 

Verlag, (1984). 
[lo] G. Tarantello, A note on a semilinear elliptic problem, Differential and Integral Equations, 

5 (1992), 561-566. 

Received June 21. 1996 

(Choi) DEPARTMENT OF MATHEMATICS, INHA UNIVERSITY, INCHEON 402-751, KOREA 

(Jung) DEPARTMENT OF MATHEMATICS, KUNSAN NATIONAL UNIVERSITY, KUNSAN 573-701, 
KOREA 


