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Abstract. We describe a method (solenoidalization) of obtaining flows on

κ–solenoids from a given flow on a κ–torus. When we apply this process to

the Denjoy flows on T2, we obtain flows whose minimal sets we call denjoids.

We give a topological classification of these indecomposable, one-dimensional

continua.

1. Introduction

We begin by providing a method (solenoidalization) of obtaining flows on κ–
solenoids from a given flow on a torus of the same dimension. We examine some
general properties of such flows and then examine in detail the solenoidalization
of the aperiodic flows on T2 which are not topologically equivalent to linear flows,
the minimal sets of which we call denjoids. We calculate the C̆ech cohomology of
denjoids and provide a topological classification of these denjoids. This generalizes
the classification of the classical Denjoy continua found in [Fok]. M. Barge and
R. F. Williams, using an entirely different method, have given a complete proof
of the classification of the classical Denjoy continua [BW].

I would like to thank J. Keesling, G. Kozlowski, and especially my advisor K.
Kuperberg for the encouragement and help they have given me while carrying
out this research.

2. The Topological Pullback of Flows

By a flow on a space X we shall always mean a continuous group action of
(R, +) on X mapping R×X → X, and by φx we denote the φ–orbit of x ∈ X.
Throughout we use the terminology of Spanier [S], Chapt 2, and we assume
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that p :
(

˜X, x̃
)

→ (X, x) is a fibration with unique path lifting and that ˜X is
connected and locally path connected. The notion of the pullback p∗φ of φ is
usually considered in the context of differentiable flows (see, e.g., [CN] p. 177),
but we shall give a purely topological construction which makes no requirement
on the differentiability of φ.

We have the following diagram
(

R× ˜X, (0, x̃)
)

99K
(

˜X, x̃
)

(id×p) ↓ ↓p

(R×X, (0, x))
φ→ (X, x)

,

where 99K may be filled in uniquely by a map p∗φ making the diagram commute
provided that

φ# ◦ (id× p)# π1

(

R× ˜X, (0, x̃)
)

⊂ p#π1

(

˜X, x̃
)

,

where π1 (Z, z) denotes the fundamental group of Z based at z. Let
[

ψ :
(

S1, 0
)

→
(

R× ˜X, (0, x̃)
)]

∈ π1

(

R× ˜X, (0, x̃)
)

and let

C :
(

R× ˜X × [0, 1] , {0} × ˜X × [0, 1]
)

→
(

R× ˜X, {0} × ˜X
)

be the strong deformation retraction given by

(t, z, s) 7→ (st, z) .

Then C ◦ ψ provides a homotopy of ψ with a map g :
(

S1, 0
)

→
(

R× ˜X, (0, x̃)
)

whose image is contained in {0}× ˜X. Via the natural homeomorphism {0}× ˜X →
˜X; (0, z) 7→ z we may identify g with a map g′ :

(

S1, 0
)

→
(

˜X, x̃
)

. Then

φ# ◦ (id× p)# [ψ] = φ# ◦ (id× p)# [g] = p# [g′]

since

φ ◦ (id× p) (0, z) = p (z) ,

demonstrating the inclusion needed to obtain p∗φ. It is routine to verify that p∗φ

is in fact a flow.
Notice that in the above X need not be locally path connected.

Lemma 2.1. Let q : ˜Y → ˜X be a fibration with unique path lifting with ˜Y con-
nected and locally path connected. Then q∗ (p∗φ) = (p ◦ q)∗ φ.
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Proof. With x = p ◦ q (ỹ) for a given ỹ ∈ ˜Y , we have

p ◦ q ◦ (q∗ (p∗φ) (t, ỹ)) = p ◦ (p∗φ) (t, q (ỹ)) = φ (t, p ◦ q (ỹ)) = φx (t)

and

(p ◦ q) ◦ (p ◦ q)∗ φ (t, ỹ) = φ (t, p ◦ q (ỹ)) = φx (t) ,

and so q∗ (p∗φ)
ey and (p ◦ q)∗ φ

ey both provide (p ◦ q)–lifts (R, 0) → (˜Y , ỹ) of the
map φx : (R, 0) → (X, x), and so they are equal since this lift is uniquely deter-
mined.

We provide the proof of some basic lemmas that do not seem to appear in the
literature.

Lemma 2.2. If x ∈ X has a periodic φ−orbit and if p is a covering map from a
compact space ˜X, then each point in p−1 (x) has a periodic orbit under the flow
p∗φ.

Proof. Each point of p−1 (x) is a closed and hence compact subset of ˜X con-
sisting of isolated points when p is a covering map, implying that p−1 (x) =
{y1, ..., yk} is a finite set. Let T 6= 0 be such that φ (T, x) = x. Let i ∈ {1, ..., k}
and let ` be any integer, then p ◦ p∗φ (`T, yi) = φ (`T, p (yi)) = φ (`T, x) = x.
Hence, p∗φ (`T, yi) ∈ {y1, ..., yk} for each integer `, and so the orbit of yi is
periodic since it must eventually take on a value it has already taken on.

Notice that the hypothesis that ˜X be compact is needed, as the example φ :
R×S1 → S1; (t, x) → π (t) + x and p = π : R → S1 = R/Z shows. (Throughout,
we shall use π to denote this map.)

Lemma 2.3. If x ∈ X has an aperiodic orbit, then the trajectories of the points
of p−1(x) under the flow p∗φ are pairwise disjoint and aperiodic, and p restricted
to any such trajectory is one–to–one.

Proof. Suppose that for {y, y′} ⊂ p−1 (x) we have that for some T 6= 0 that
p∗φ (T, y) = y′. Then x = p (y′) = p ◦ (p∗φ) (T, y) = φ (T, p (y)) = φ (T, x),
contrary to the hypothesis that x not have a periodic orbit. Hence, the trajectories
of the points of p−1 (x) are pairwise disjoint. Suppose then that p∗φ (T, y) = y

for some T 6= 0. Then x = p (y) = p ◦ (p∗φ) (T, y) = φ (T, p (y)) = φ (T, x), again
a contradiction, and so any y ∈ p−1 (x) is aperiodic. Suppose that p◦p∗φ (T, y) =
p ◦ p∗φ (T ′, y) for T 6= T ′. Then

φ (T, x) = φ (T, p (y)) = p ◦ p∗φ (T, y) = p ◦ p∗φ (T ′, y) = φ (T ′, p (y)) = φ (T ′, x)

contrary to our hypothesis, and so p is one−to−one on the orbit of y .
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3. Solenoidalization

Recall that the κ–solenoid
∑

M is the inverse limit of a sequence of Tκ with the
epimorphic bonding maps f i+1

i represented by matrices Mi : (Rκ,0) → (Rκ,0)
[Cl].

Definition 1. Given a flow φ on Tκ and given a κ-solenoid
∑

M with bonding
maps f j

i , we define the M -solenoidalization of φ :

φM : R×
∑

M
→

∑

M

(

t, (xi)i∈N
)

7−→
(

φ (t,x1) ,
(

f2
1

)∗
φ (t,x2) ,

(

f3
1

)∗
φ (t,x3) , ..

)

.

This is a well-defined flow: since
(

f2
1

)

◦
(

f2
1

)∗
φ (t,x2) = φ

(

t, f2
1 (x2)

)

= φ (t,x1) ,

f3
2 ◦

(

f3
1

)∗
φ (t,x3) = f3

2 ◦
(

(

f3
2

)∗ (

f2
1

)∗
φ
)

(t,x3)

=
(

f2
1

)∗
φ

(

t,
(

f3
2 (x3)

))

=
(

f2
1

)∗
φ (t,x2) , ...,

we have that
(

φ (t,x1) ,
(

f2
1

)∗
φ (t,x2) ,

(

f3
1

)∗
φ (t,x3) , ..

)

∈
∑

M
.

And φM is continuous since the flows (fn
1 )∗ φ are continuous; also: φM

(

0, (xi)i∈N
)

=
(xi)i∈N and

φM

(

s + t, (xi)i∈N
)

=
(

φ (s + t,x1) ,
(

f2
1

)∗
φ (s + t,x2) , ..

)

=
(

φ (s, φ (t,x1)) ,
(

f2
1

)∗
φ (s, f∗1 φ (t,x2)) , ...

)

= φM

(

s, φM

(

t, (xi)i∈N
))

.

Definition 2. Given a flow φ on Tκ and M = φe (R) and given a κ -solenoid
∑

M we define the M−solenoidalization of M , denoted
∑

M (M), to be the
space

φM (R×{eM}) ⊂
∑

M
.

We now try to get some idea of the structure of the solenoidalization of a
minimal set and begin by recording a basic result from [N] that makes it easy to
identify

∑

M (M) as a subset of
∑

M .
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Lemma 3.1. Let
{

Xn, fn+1
n

}

n∈N be an inverse sequence of metric spaces with
inverse limit X∞ and let fn : X∞ → Xn (n ∈ N) be the projection maps. Let
A be a compact subset of X∞. Then,

{

fn (A) , fn+1
n |(fn+1)(A)

}

n∈N is an inverse
sequence with onto bonding maps and

lim
↽

{

fn (A) , fn+1
n |(fn+1)(A)

}

n∈N = A =

[ ∞
∏

n=1

fn (A)

]

∩X∞ [N, p.20].

£

Lemma 3.2. For any n ∈ N, fn (
∑

M (M)) = (fn
1 )∗ φe (R), and in particular

f1

(
∑

M
(M)

)

= M.

Proof. We have for each n ∈ N that fn◦ (φM )
eM

(t) = (fn
1 )∗ φe (t), and so

fn

(

(φM )
eM

(R)
)

= (fn
1 )∗ φe (R) .

The continuity of fn yields that

fn

(
∑

M
(M)

)

= fn

(

(φM )
eM

(R)
)

⊂ fn

(

(φM )
eM

(R)
)

= (fn
1 )∗ φe (R).

But we also have that

fn

(
∑

M
(M)

)

⊃ fn

(

(φM )
eM

(R)
)

= (fn
1 )∗ φe (R) ,

and fn (
∑

M (M)) is closed since
∑

M (M) is compact. Therefore,

fn

(
∑

M
(M)

)

⊃ (fn
1 )∗ φe (R).

While we shall only consider solenoidalization, it should be noted that a similar
construction is possible for any inverse sequence with bonding maps consisting of
covering maps.

4. Denjoids and their Semiconjugate Linear Flows

Given an orientation-preserving homeomorphism f : S1 → S1 with unique lift
F : R → R (with F (0) ∈ [0, 1)), we have the equivalence relation ≈f on R×X

given by

[(s, x) ≈f (t, y)] ⇔
[

there is an n ∈ Z with t = s + n and y = f−n (x)
]
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and we have the space Sh = (R×X) / ≈f . The ≈f class of (s, x) will be denoted
[s, x]f . There is then the flow

σf : R×Sf → Sf ;
(

t, [s, x]f
)

7→ [t + s, x]f .

We refer to both Sf and σf as the suspension of f .

With btc denoting the greatest integer less than or equal to t and ctb def= t−btc,
we have the homeomorphism µf : Sf → T2

[s, π (r)]f
µf7→

〈

π
(

(1− csb)F bsc (r) + csbF bsc+1 (r)
)

, π (s)
〉

,

and the equivalent flow
∑

(f) = µf ◦ σf ◦
(

idR × (µf )−1
)

on T2 given by
∑

(f) : R×T2 → T2

(t, 〈π (r) , π (s)〉) 7→
〈

π
(

(1− ctb)F btc (r) + ctbF btc+1 (r)
)

, π (s + t)
〉

.

Definition 3. Let F be the collection of non-transitive orientation-preserving
circle homeomorphisms f which have an irrational rotation number and which
have π (0) as an endpoint of the minimal Cantor set Mf .

The set Df
def= {

∑

(f) (R, 〈x1, x2〉) | x1 ∈ Mf} consisting of the suspended
trajectories of the minimal set Mf is then a minimal set of the suspension

∑

(f),
see, e.g., [Schw].

Definition 4. We define the generalized Denjoy continua as the collection

{Df | f ∈ F} ,

and we define a flow
∑

(f) for f ∈ F to be a generalized Denjoy flow.

Any aperiodic C1 flow on T2 is topologically equivalent to the suspension of
an orientation-preserving circle diffeomorphism with irrational rotation number,
see, e.g., [KH] 14.2.3, 0.3 and 11.1.4, and so any minimal set occurring in an
aperiodic C1 flow on T2 which is a proper subset of T2 is homeomorphic with
some Df . Gutierrez has shown [G] that any continuous flow on T2 is topologically
equivalent with a C1 flow, and so any minimal set of a continuous aperiodic T2-
flow is homeomorphic with some Df .

Definition 5. We refer to the solenoidalization
∑

M (Df ) of a generalized Denjoy
continuum Df as a denjoid.
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We shall begin to explore the degree to which known facts about Denjoy con-
tinua carry over to denjoids. To do so, we start by seeing how maps of T2 can be
pulled back by epimorphisms.

Lemma 4.1. Suppose g : (
∑

M , eM ) → (
∑

M , eM ) is a map of the κ-solenoid
∑

M and that h :
∑

M →
∑

M is the unique homomorphism homotopic to g, see
[Sch]. If g̃, h̃ : (Rκ,0) → (Rκ,0) are the πM–lifts of g◦πM and h◦πM respectively,
then for all x ∈Rκ and for all k ∈ ker πM we have

g̃ (k + x) = h̃ (k) + g̃ (x) .

Proof. Here, πM : (Rκ,0) →
∑

M denotes the fibration with unique path lifting
onto the arc component of eM as in [Cl], which generalizes the standard fibration

πκ : (Rκ,0) → (Tκ, e) , (ti)
κ
i=1 7→ (π (ti))

κ
i=1 .

Fix x ∈Rκ and k ∈ ker πM and let H : (
∑

M × [0, 1] , eM × [0, 1]) → (
∑

M , eM ) be
a homotopy between h = H ( , 0) and g = H ( , 1) and let ˜H : (Rκ × [0, 1] , (0, 0)) →
(Rκ,0) be the πM–lift of the homotopy

H ◦ (πM × id) : (Rκ × [0, 1] , (0, 0)) →
(
∑

M
, eM

)

,

which then provides a homotopy between h̃ and g̃. Then let

p
def= H ◦ (πM × id) |{x}×[0,1]: [0, 1] →

∑

M

be the path t 7→ H (πM (x) , t) which goes from h (πM (x)) to g (πM (x)). Then p

lifts uniquely to the path

p̃
def= ˜H |{x}×[0,1]: ([0, 1] , 0) →

(

Rκ, h̃ (x)
)

from h̃ (x) to g̃ (x). Since πM (k + x) = πM (x), we have that

p = H ◦ (πM × id) |{x}×[0,1]= H ◦ (πM × id) |{x+k}×[0,1],

and so the path

q
def= ˜H |{x+k}×[0,1]: ([0, 1] , 0) →

(

Rκ, h̃ (k + x)
)

from h̃ (k + x) to g̃ (k + x) provides the unique lift ([0, 1] , 0) →
(

Rκ, h̃ (k + x)
)

of p. But we also have the path p′ (t) def= h̃ (k) + p̃ (t) and

p′ (0) = h̃ (k) + p̃ (0) = h̃ (k) + h̃ (x) = h̃ (k + x) and



668 ALEX CLARK

πM ◦ p′ (t) = πM

(

h̃ (k) + p̃ (t)
)

= πM ◦ h̃ (k) + πM ◦ p̃ (t)

= h (πM (k)) + p (t) = p (t) ,

and so p′ is also a lift of p beginning at h̃ (k + x). By the uniqueness of the
path-lifting of πM , we must have that p′ = q, and so h̃ (k) + g̃ (x) = p′ (1) =
q (1) = g̃ (k + x).

Corollary 4.2. If g : (Tκ, e) → (Tκ, e) is homotopic to idTκ and if g̃ : (Rκ,0) →
(Rκ,0) is the lift of g ◦ πκ and if H : Rκ → Rκ is any automorphism of Rκ which
is the lift of an endomorphism h of Tκ, then H−1 ◦ g̃ ◦ H determines a map
g(H) : (Tκ, e) → (Tκ, e)

x 7−→ πκ ◦H−1 ◦ g̃ ◦H
(

(πκ)−1 (x)
)

,

and g(H) is homotopic to idTκ .

Proof. We need to show that g(H) is well-defined, that it is independent of
the choice of (πκ)−1 (x). If y ∈ (πκ)−1 (x), any element of (πκ)−1 (x) can be
represented as k +y for some k ∈ ker πκ. Since H is a lift of the homomorphism,
say h, we have πκ ◦H (k) = h (πκ (k)) = e and so H (k) ∈ ker πκ. And since g is
homotopic to idTκ , we have by the preceding Lemma:

πκ ◦H−1 ◦ g̃ ◦H (k + y) = πκ ◦H−1 ◦ g̃ (H (k) + H (y))

= πκ ◦H−1 (H (k) + g̃ ◦H (y))

= πκ
(

k+H−1 ◦ g̃ ◦H (y)
)

= πκ ◦H−1 ◦ g̃ ◦H (y)

as desired. And if G : (Tκ × I, {e} × I) → (Tκ, e) is a homotopy between G0 =
G ( , 0) = g and G1 = G ( , 1) = idTκ , then G(H) : (Tκ × I, {e} × I) → ((Tκ, e)) ;

(x, t) 7→ πκ ◦H−1 ◦ G̃t ◦H
(

(πκ)−1 (x)
)

is a homotopy between g(H) and idTκ , where G̃t is the lift (Rκ,0) → (Rκ,0) of
G ( , t) ◦ πκ.

We shall use this for maps of T2, and so we will go through the details of the
construction of g(H) in this case. There are P, Q ∈ GL (Z, 2) such that H = P∆Q

for some diagonal integer matrix ∆ =
(

d1 0
0 d2

)

. And so H−1 induces the

following isomorphisms of lattices
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Z⊕ Z P−1

→ Z⊕ Z ∆−1

→ 1
d1

Z⊕ 1
d2

Z Q−1

→ L,

where L is some lattice in the plane. For (i, j) ∈ {1, ..., d1} × {1, ..., d2}, define
R(i,j) to be the rectangle

[

i−1
d1

, i
d1

]

×
[

j−1
d2

, j
d2

]

and define P(i,j) to be the paral-

lelogram Q−1
(

R(i,j)

)

. Then, since ∪R(i,j) is the unit square and Q−1 is the lift
of a homeomorphism of T2, π2

(

∪P(i,j)

)

= T2. Now

g (H)
(

π2
(

P(i,j)

))

= π2 ◦H−1 ◦ g̃ ◦H
(

P(i,j)

)

= π2 ◦H−1 ◦ g̃ (P ([i− 1, i]× [j − 1, j]))

and since g is homotopic to idT2 and

P ([i− 1, i]× [j − 1, j]) = P ((i− 1, j − 1)) + P ([0, 1]× [0, 1])

and P ((i− 1, j − 1)) ∈ ker π2, we have that g̃ maps

P ([i− 1, i]× [j − 1, j]) → P ([i− 1, i]× [j − 1, j])

just as g̃ maps

P ([0, 1]× [0, 1]) → P ([0, 1]× [0, 1])

(see Lemma 4.1), and P ([0, 1]× [0, 1]) represents T2 since P ∈ GL (2, Z). And
so

g(H)
(

π2
(

P(i,j)

))

= π2 ◦H−1 (P ([i− 1, i]× [j − 1, j])) = π2
(

P(i,j)

)

and g(H) maps the neighborhood π2
(

P(i,j)

)

onto its image π2
(

P(i,j)

)

just as g

maps T2.
For the remainder of this section, f represents an element of F with rotation

number θ. By the Poincaré Classification Theorem (see, e.g., [KH] 11.2.7), there is
a monotone map m : S1 → S1 with m◦f = Rθ ◦m, where Rθ (x) = x+π (θ). We
may then use this m to construct a map g : T2 → T2 providing a semiconjugacy
of

∑

(f) with the linear flow Φ(θ,1) on T2: g ◦
∑

(f) = Φ(θ,1) ◦ (id× g), denoted

g :
∑

(f)
sc
· Φ(θ,1). While g may not map e 7→ e, we can follow g with translation

by−g (e) to obtain a map which still provides the semiconjugacy since translations
equate Φ(θ,1) with itself. Hence, we may assume that g(e) = e, and hereafter we
shall make this assumption. This map g glues together the suspended trajectories
of the endpoints of the minimal Cantor set Mf and is homotopic to idT2 , as can be
seen by beginning the homotopy with idT2 and gradually gluing these trajectories
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together until we arrive at the map g. Thus, our above results apply to this map
g.

So then let h be an epimorphism T2 → T2 which lifts to the automorphism H

of R2. Given any flow ψ on T2, we have the flow ψ̃
def=

(

π2
)∗

ψ on R2. And with
g̃ denoting the π2–lift of g, we have the following commutative diagram:

R× R2 H∗φ̃→ R2

(id×H) ↓ ↓ H

R× R2 φ̃→ R2

(id× g̃) ↓ ↓ g̃

R× R2 Φ̃(θ,1)

→ R2
(

id×H−1
)

↓ ↓ H−1

R× R2
˜Φ(ω1,ω2)

→ R2

, where
(

ω1

ω2

)

= H−1

(

θ

1

)

.

The map g(H) = π2 ◦H−1 ◦ g ◦H ◦
(

π2
)−1 as in Corollary 4.2 then induces the

diagram

R×T2 h∗φ→ T2
(

id× g(H)
)

↓ ↓ g(H)

R×T2 Φ(ω1,ω2)

→ T2

.

We are then led to the following commutative diagram:

(z)
T2 f2

1←− T2 f3
2←− · · ·

fn
n−1←− T2 · · ·

∑

M

g ↓ g(M1) ↓ g(M1◦···◦Mn−1) ↓ Γ ↓

T2 f2
1←− T2 f3

2←− · · ·
fn

n−1←− T2 · · ·
∑

M

.

It can then be seen that the induced map Γ :
∑

M →
∑

M provides the semicon-

jugacy
∑

M (
∑

(f))
sc
· Φ(θ,1)

M
, where Φ(θ,1)

M
is a linear flow on

∑

M [Cl]. Also, the
map Γ is homotopic to the identity of

∑

M : if gt is a homotopy of g with idT2 ,
then

T2 f2
1← T2 f3

2← · · ·
∑

M

gt ↓ g
(M1)
t ↓ Γt ↓

T2 f2
1← T2 f3

2← · · ·
∑

M

provides a homotopy of Γ with the identity. And also Γ (eM ) = eM since g (e) = e.
And since the

∑

(f)–trajectory of eM is dense in Df , Γ is uniquely determined
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on
∑

M (Df ) by the condition that it map eM 7→ eM and that it provides a
semiconjugacy.

Lemma 4.3. If h is a k−to−one epimorphism of Tκ whose lift to Rκ is H and
if g : Tκ → Tκ is a surjection homotopic to the identity, then

[

g−1 (g (x)) = {x}
]

⇒
[

(

g(H)
)−1 (

g(H) (y)
)

= {y} for all y ∈ h−1 (x)
]

.

Proof. We have the following commutative diagram:

Tκ h→ Tκ

g(H) ↓ ↓ g

Tκ h→ Tκ

,

and h is k-to-one. Let x be a point with g−1 (g (x)) = {x} and let

{y1, ..., yk} = h−1 (x) = (g ◦ h)−1 (g (x))

and let {z1, ..., zk} = h−1 (g (x)). Then

{y1, ..., yk} =
(

h ◦ g(H)
)−1

(g (x)) =
(

g(H)
)−1

({z1, ..., zk}) .

Now g(H) is a surjection and
(

g(H)
)−1

({z1, ..., zk}) ⊂ {y1, ..., yk} ,

and so g(H) provides a bijection between {y1, ..., yk} and {z1, ..., zk} and
(

g(H)
)−1 (

g(H) (yi)
)

= yi

for each i = 1, ..., k.

Lemma 4.4. There are points ξ of
∑

M with Γ−1 (Γ (ξ)) = ξ.

Proof. Let X ∈ T2 be a point satisfying g−1 (g (X)) = {X}, as will be the
case with any X = µf

(

[0, x]f
)

, where x is an element of the Cantor set Mf

which is not an endpoint. Then let y ∈
(

π2
)−1 (X). We then have the point

πM (y) def= 〈Xn〉n∈N ∈
∑

M and we claim that Γ−1
(

Γ
(

〈Xn〉n∈N
))

=
{

〈Xn〉n∈N
}

.
Suppose Γ

(

〈Xn〉n∈N
)

= Γ
(

〈zn〉n∈N
)

. Then g (X) = g (X1) = g (z1) and so X1

= z1 by our choice of X. Then for any n ∈ N we have {zn, Xn} ⊂ (fn
1 )−1 (X1)

and g(M1◦···◦Mn) (zn) = g(M1◦···◦Mn) (Xn) and so by the above, zn = Xn. Hence
〈zn〉n∈N = 〈Xn〉n∈N and we have our claim.

It is perhaps worth noting the following corollary of this property of Γ.
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Corollary 4.5. The orbit of any point ξ ∈
∑

M with Γ−1 (Γ (ξ)) = {ξ} as above
is N -almost periodic.

Proof. This follows directly from [LZ] Chapt 7.5, Thm 2, p. 109; see pp. 53-4
for a definition of N -almost periodic.

Nemytskii showed that any space which supports a minimal almost periodic
flow has the structure of a topological group [NS] Chapt V, 8.16 and is thus
homogeneous, meaning that given any two points x and y of the space there is a
homeomorphism of the space sending x to y. We will see later that these denjoids
are not homogeneous and so cannot support a minimal almost periodic flow.

Definition 6. For a given set X ⊂ S1 define DX ⊂ T2 to be the set
{

µf

(

[t, x]f
)

∈ T2 | t ∈ R and x ∈ X
}

.

Lemma 4.6. Let J ⊂ S1−Mf be an interval which is a component of S1−Mf .
Then for any k-to-one epimorphism h : T2 → T2, we have that h−1 (DJ) is the
disjoint union of k open disks, each of which h maps homeomorphically onto DJ .

Proof. For small enough ε > 0 and an adequately large `, we have that the
open set O =

{

µf

(

[s, m]f
)

∈ T2 | s ∈ (`− ε, ` + ε) and m ∈ J
}

is as small in
diameter as needed to ensure that it is evenly covered by the covering map h;
that is, h−1 (O) is the disjoint union of k open sets O1, ...,Ok each of which
is mapped homeomorphically onto O by h. For i ∈ {1, ..., k} and t ∈ R, let
Ot

i = h∗
∑

(f) (t,Oi) and let Ot =
∑

(f) (t,O). Then we have DJ = ∪t∈ROt and
h (Ot

i) = Ot since h ◦ h∗
∑

(f) (t, x) =
∑

(f) (t, h (x)), and so with Di = ∪t∈ROt
i

we have h (Di) = DJ . And if x ∈ h−1 (DJ), we must have that x ∈ h−1 (Ot0) for
some t0 . Hence, h (x) ∈ Ot0 and

h∗
∑

(f) (−t0, x) ∈ h−1
(
∑

(f) (−t0, h (x))
)

⊂ h−1 (O)

and so h∗
∑

(f) (−t0, x) ∈ Oi for some i and x ∈ Ot0
i ⊂ Di and we conclude that

h−1 (DJ) = ∪k
i=1Di.

Suppose that x ∈ Di∩Dj for i 6= j. Then xwould be on the h∗
∑

(f)−trajectory

Ti of a point xi ∈ Oi∩
{

h−1
(

µf

(

[`, m]f
))

| m ∈ J
}

and on the h∗
∑

(f)−trajectory

Tj of a point xj ∈ Oj ∩
{

h−1
(

µf

(

[`, m]f
))

| m ∈ J
}

since Di and Dj are the
union of such trajectories. But any two such trajectories are disjoint: if h (Ti) =
h (Tj), then h (xi) = h (xj) since the trajectories of the points of

{

µf

(

[`, m]f
)

∈ T2 | m ∈ J
}

⊂ O
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are pairwise disjoint and so Ti ∩ Tj is empty by Lemma 2.3, and if h (Ti) 6=
h (Tj), then h (Ti) and h (Tj) are disjoint since h maps h∗

∑

(f)−trajectories
to

∑

(f)− trajectories and distinct trajectories are disjoint, and so h (x) ∈
h (Ti ∩ Tj) ⊂ h (Ti)∩h (Tj) = ∅ − a contradiction. Hence, the sets D1, ..., Dk are
pairwise disjoint.

Since h provides a one-to-one correspondence between

Oi ∩
{

h−1
(

µf

(

[`, m]f
))

| m ∈ J
}

and
{

µf

(

[`, m]f
)

| m ∈ J
}

, h maps each h∗
∑

(f)-trajectory Tx of each point

x ∈ Oi ∩
{

h−1
(

µf

(

[`, m]f
))

| m ∈ J
}

injectively onto the
∑

(f)-trajectory Th(x) of h (x) by Lemma 2.3. The
∑

(f)

-trajectories of distinct points of
{

µf

(

[`, m]f
)

| m ∈ J
}

are distinct, and so for

x, x′ ∈ Oi ∩
{

h−1
(

µf

(

[`, m]f
))

| m ∈ J
}

and x 6= x′, we must have that the
∑

(f) -trajectories Th(x) and Th(x′) are
distinct since h (x) 6= h (x′), implying that the h∗

∑

(f)-trajectories Tx and Tx′

are distinct, for they would otherwise map onto the same
∑

(f)-trajectory. Thus,
h maps the union of all the orbits of all the points of

Oi ∩
{

h−1
(

µf

(

[`, m]f
))

| m ∈ J
}

,

which is Di, injectively and thus homeomorphically onto its image, which is DJ .
And so we may conclude that h maps each Di homeomorphically onto its image
DJ .

Thus, the number of trajectories “blown up” in h∗
∑

(f) is k times the number
of trajectories blown up in

∑

(f). Then one would expect to find countably
infinitely many holes in a denjoid, provided that the bonding maps of

∑

M are
not eventually isomorphisms. And this is indeed what we shall find when we
calculate Ȟ1 (

∑

M (Df )) in the next section.
While we have been dealing with a specific representation of the topological

equivalence class of Df to construct
∑

M (Df ),
∑

M (Df ) is independent of this
choice to a degree, as the following shows.

Lemma 4.7. With g, h and g(H) as above; if g is a homeomorphism, then g(H)

is also a homeomorphism.

Proof. By Lemma 4.3, g(H) will be one-to-one when g is.
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Corollary 4.8. If φ and ψ are flows on Tκ and if g : (Tκ, e) → (Tκ, e) is a

homeomorphism homotopic to the identity with g : φ
top
≈ ψ and if

∑

M is any
κ−solenoid, then

Tκ f2
1←− Tκ f3

2←− · · ·
fn

n−1←− Tκ · · ·
∑

M

g ↓ g(M1) ↓ g(M1◦···◦Mn−1) ↓ Γ ↓

Tκ f2
1←− Tκ f3

2←− · · ·
fn

n−1←− Tκ · · ·
∑

M

maps
∑

M

(

φ0 (R)
)

homeomorphically onto
∑

M

(

ψ0 (R)
)

. £

5. The Čech Cohomology of Denjoids

In the interest of space, we merely sketch the calculation of the Čech coho-
mology (with integer coefficients) of

∑

M (Df). We know that T2 −Df = ∪κ
i=1Di

(κ ≤ ∞), where each Di is a component of T2 − Df and is homeomorphic to
an open disk. We will break the calculation into two cases: (1) κ < ∞ and (2)
κ = ∞.

Case (1): κ < ∞.
For each i ∈ {1, ..., κ} choose D1

i ⊂ Di homeomorphic to an open disk and so
that

(

π2
)−1 (

D1
i

)

∩ [R× Z ∪ Z× R] = ∅.

Then for each i ∈ {1, ..., κ} we represent Di as a union of increasing subsets Dj
i ,

j ∈ N, with each Dj
i homeomorphic to an open disk, chosen so that each Dj

i is a
strong deformation retract of Dj+1

i : Di = ∪∞j=1D
j
i . We then have

Df = ∩∞j=1

[

T2 − ∪κ
i=1D

j
i

]

def= ∩∞j=1Kj .

Using standard CW-complex techniques (see, e.g., [M]) we find that the singu-
lar cohomology of each Kj is isomorphic to ⊕κ+1

i=1 Z, and the continuity of Čech
cohomology leads to the calculation

H̆1 (Df) ∼= ⊕κ+1
i=1 Z.

And we also know that for a d-to-one bonding map h : T2 → T2 in the sequence
defining

∑

M , T2 − h−1 (Df) = ∪dκ
i=1Di, where each Di is a component of T2 −

h−1 (Df) and is mapped homeomorphically by h onto some Dj . Again using the
continuity of Čech cohomology and the above property stated property of h to
calculate its induced map on cohomology, we find that

H̆1
(
∑

M
(Df)

)

∼= H̆1
(
∑

M

)

⊕ (⊕∞i=1Z) ,
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provided that
∑

M is not isomorphic to T2 (if
∑

M
∼= T2, H̆1 (

∑

M (Df)) is

isomorphic to
λ+1
⊕

i=1

Z, where λ is the number of complementary disks).

Case (2): κ = ∞.
In this case we must be careful since we cannot give the torus with infinitely

many holes a CW-complex structure – it would not have the “weak topology”
required for this. However, by punching out the holes one at a time and using
the continuity of Čech cohomology, we again find

H̆1
(
∑

M
(Df)

)

∼= H̆1
(
∑

M

)

⊕ (⊕∞i=1Z)

(even when the bonding maps are eventually isomorphisms).

6. The Classification of Denjoids

With ∼= denoting homeomorphism of spaces, the known classification of the
Denjoy continua

D =
{

Df |
∑

(f) has only one blown up trajectory
}

may be summarized as follows. For Df and Dg in D :

[Df
∼= Dg ] ⇔

[

Φ(α,1) equiv
≈ Φ(β,1)

]

,

where Φω is the ω−linear flow on T2 and where α and β are the rotation numbers
of f and g respectively. We shall show that this result generalizes to denjoids as
specified in Theorem 6.6. But before doing so, we shall first need to establish some
background results using some techniques similar to those Fokkink employed in
his treatment of D [Fok], Chapter 2§2. The above classification providing an
interesting inverse limit representation was proven in [BW]. It should also be
noted that aperiodic flows on T2 have been classified up to topological equivalence,
see [ABZ], 6.1.7.

Definition 7. Two maps φi : R → X (i ∈ {1, 2}) are asymptotic if

lim
t→±∞

d (φ1 (t) , φ2 (t)) = 0.

Lemma 6.1. If φi : R →Ti ⊂ T2 (i ∈ {1, 2}) are asymptotic one-to-one maps
onto trajectories of a flow

∑

(f) on T2, then there exists points x and y in S1 with
µf

(

[R, x]f
)

= T1 and µf

(

[R, y]f
)

= T2 satisfying lim
n→∞

d1 (fn (x) , fn (y)) = 0.
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Proof. Since the sets Ti (i ∈ {1, 2}) are trajectories of the flow
∑

(f), we have
that φi (t) = µf

(

[si (t) , wi]f
)

for points wi ∈ S1 and maps si : R →R, i ∈ {1, 2}.
As the maps φi are asymptotic, there is a T such that

d1 (π2 (φ1 (t)) , π2 (φ2 (t))) = d1 (π (s1 (t)) , π (s2 (t))) <
1
4

for all t with |t| ≥ T , where π2 : T2 → S1; 〈x1, x2〉 7→ x2 (recall that µf “switches
coordinates”). Then for all t ≥ T , we have an integer nt such that s1 (t) =
nt+s2 (t)+ε (t), where ε : [T, +∞) →

(

− 1
4 , 1

4

)

and lim
t→+∞

ε (t) = 0. By continuity,

nt must be constant and so for all t ≥ T , and so s1 (t) = n+s2 (t)+ε (t) for a fixed
integer n. Similarly, there is a fixed integer m such that s1 (t) = m + s2 (t) + ε (t)
for all t ≤ −T , where ε : (−∞,−T ] →

(

− 1
4 , 1

4

)

and lim
t→−∞

ε (t) = 0. Then for all

t ≥ T

φ1 (t) = µf

(

[n + s2 (t) + ε (t) , w1]f
)

= µf

(

[

s2 (t) + ε (t) , f−n (w1)
]

f

)

and for all t ≤ −T

φ1 (t) = µf

(

[

s2 (t) + ε (t) , f−m (w1)
]

f

)

.

Then if (1) s2 reverses orientation, we have s2 ([T, +∞)) contains all but finitely
many elements of−N = {−1,−2, ...}, and if (2) s2 preserves orientation, s2 ((−∞, T ])
contains all but finitely many elements of −N. Then with

x =
{

f−n (w1) in case (1)
f−m (w1) in case (2)

and with y = w2,

we have for all but finitely many elements k of −N

d2 (φ1 (k) , φ2 (k)) = d2

(

µf

(

[

k + ε
(

s−1
2 (k)

)

, x
]

f

)

, µf

(

[k, y]f
))

= d2

(

µf

(

[

ε
(

s−1
2 (k)

)

, f−k (x)
]

f

)

, µf

(

[

0, f−k (y)
]

f

))

and so lim
`→+∞

d1

(

f ` (x) , f ` (y)
)

= lim
k→−∞

d1

(

f−k (x) , f−k (y)
)

= 0 since the φi

are asymptotic and ε (t) → 0.

See also [Fok], 2.2 p. 47.

Definition 8. If φ is a flow on X and if ψ is a flow on Y , then we call a surjective
map g : X → Y a trajectory map, denoted g : φ

traj→ ψ, if gmaps φ–orbits onto
ψ–orbits.
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Corollary 6.2. If φi : R →Ti ⊂ T2 (i ∈ {1, 2}) are asymptotic one-to-one maps
onto trajectories of an aperiodic flow ψ on T2, then given any trajectory map
g : ψ

traj→ Φ(ω1,ω2), we have g (T1) = g (T2).

Proof. : We have (ω̃2 × idT2) : Φ(ω1,ω2)
equiv
≈ Φ(ω1/ω2,1)

equiv
≈

∑ (

R(ω1/ω2)

)

, and
since the translation map R(ω1/ω2) is an isometry, no two distinct trajectories of
Φ(ω1/ω2,1) admit asymptotic parameterizations by the above. But the uniform
continuity of g guarantees that g ◦ φi are asymptotic parameterizations of g (T1)
and g (T2).

Lemma 6.3. Given any generalized Denjoy flow φ =
∑

(f) and given any 2−solenoid
∑

M , the pairs of trajectories of the flow φM contained in
∑

M (Df) admitting as-
ymptotic parameterizations are precisely those pairs (T1, T2) which contain points
pi ∈ Ti whose φM−orbits Oi : (R, 0) → (Ti, pi) are projected by fn onto asymptotic
orbits fn ◦ Oi of the flow (fn

1 )∗ φ for each n ∈ N.

Proof. Clearly, for a pair of trajectories as described the φM−orbits Oi provide
asymptotic parameterizations, since we then have for each n ∈ N

lim
t→±∞

d2 (fn ◦ O1 (t) , fn ◦ O2 (t)) = 0

in this case.
Now suppose that (T1, T2) is any pair of distinct φM−trajectories admitting

asymptotic parameterizations λ1 and λ2. Then f1 (T1) and f1 (T2) are trajectories
of the flow φ which, by uniform continuity, admit the asymptotic parameteriza-
tions f1◦λi. We then have by Lemma 6.1 that f1 (T1) = µf

(

[R, x]f
)

and f1 (T2) =

µf

(

[R, y]f
)

for some points x and y of S1 with lim
n→∞

d1 (fn (x) , fn (y)) = 0.

Adopting the notation of 3 and the diagram (z) contained therein, we have
that for each n ∈ N

id× g(M1◦···◦Mn−1) : (fn
1 )∗ φ

sc
· Φωn

for some linear flow Φωn (the map g(M1◦···◦Mn−1) is understood to be g when
n = 1). The uniform continuity of fn then guarantees that fn ◦λi are asymptotic
parameterizations of the (fn

1 )∗ φ−trajectories fn (T1) and fn (T2). Hence, Corol-
lary 6.2 implies that for each n ∈ N g(M1◦···◦Mn−1) maps fn (T1) and fn (T2) to
the same trajectory Tn of Φωn .

We now proceed to show that f1 (T1) 6= f1 (T2). Suppose to the contrary
z ∈ f1 (T1) ∩ f1 (T2) with (z = x1, x2, ...) ∈ T1 and (z = y1, y2, ...) ∈ T2. Since T1

and T2 are distinct trajectories of the flow φM , they are disjoint, and so there is
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a least n > 1 with xn 6= yn. Now for m < n we have fm (T1) = (fm
1 )∗ φxm (R) =

(fm
1 )∗ φym

(R) = fm (T2). By construction, fn
n−1 (xn) = fn

n−1 (yn) while xn 6= yn,
and so Lemma 2.3 yields that

(

fn
n−1

)∗ (

fn−1
1

)∗
φxn (R) = (fn

1 )∗ φxn (R) = fn (T1)

and
(

fn
n−1

)∗ (

fn−1
1

)∗
φyn (R) = (fn

1 )∗ φyn (R) = fn (T2)

are disjoint. At the same time, fn
1 ◦ fn (T1) = f1 (T1) and fn

1 ◦ fn (T2) = f1 (T2),
and as φ−trajectories with the point z in common, we must have fn

1 ◦ fn (T1) =
fn
1 ◦fn (T2). Suppose fn

1 is k−to−one. Then by Lemma 2.3 (fn
1 )−1 (f1 (T1)) is the

disjoint union of k (fn
1 )∗ φ−trajectories {T1, ..., Tk} (two of which are fn (T1) and

fn (T2)), and (fn
1 )−1 (T1) is the disjoint union of k Φωn−trajectories {τ1, ..., τk}

(one of which is Tn). Under the composition

g ◦ fn
1 = fn

1 ◦ g(M1◦···◦Mn−1),

each Ti is mapped to T1 since

T1 = g (f1 (T1)) = g ◦ fn
1 (Ti) .

Hence, for each i

Ti ⊂
(

g(M1◦···◦Mn−1)
)−1 (

(fn
1 )−1 (T1)

)

,

which is to say that each Ti is the g(M1◦···◦Mn−1)−preimage of some τj . But
g(M1◦···◦Mn−1) maps T2 onto itself and it maps two distinct Ti’s ( fn (T1) and
fn (T2)) onto a single τj (namely, Tn). Hence, there must be a (fn

1 )∗ φ−trajectory
T /∈ {T1, ..., Tk} which g(M1◦···◦Mn−1) maps to some τj . But then

g ◦ fn
1 (T ) = fn

1 ◦ g(M1◦···◦Mn−1) (T ) = fn
1 (τj) = T1,

which is to say that fn
1 (T ) 6= f1 (T1) ⊂ g−1 (T1). This means that there are

the two distinct φ−trajectories fn
1 (T ) and f1 (T1) which g maps to T1. Hence,

there is a disk DJ for some interval J ⊂ S1 which g maps onto T1 and with
g−1 (T1) = DJ ∪ fn

1 (T ) ∪ f1 (T1) (g is one−to−one on

Mf − {suspended trajectories of the endpoints of the Cantor set Mf}).

We have the flow on the plane
(

π2
)∗

φ and
(

π2
)−1 (DJ) is the disjoint union of

strips, each of which is homeomorphic to an open disk and is bordered by asymp-
totic

(

π2
)∗

φ−trajectories which are mapped by π2 to fn
1 (T ) and f1 (T1). In this

sense, fn
1 (T ) and f1 (T1) border DJ . By Lemma 4.6, (fn

1 )−1 (DJ) is the disjoint



SOLENOIDALIZATION AND DENJOIDS 679

union of k disks {D1, ...,Dk}, each of which is mapped homeomorphically by fn
1

onto DJ . We must then have that each Di is bordered by two (fn
1 )∗ φ−trajectories

Li and Ri which are mapped by fn
1 onto fn

1 (T ) and f1 (T1) respectively. We then
have for each i

fn
1 ◦ g(M1◦···◦Mn−1) (Di) = g ◦ fn

1 (Di) = g (DJ) = T1,

which is to say that for each i g(M1◦···◦Mn−1) (Di) ⊂ ∪k
j=1τj . And since g(M1◦···◦Mn−1) (Di)

is arc-connected and contains a Φωn−trajectory since Di contains a (fn
1 )∗ φ−trajectory,

we must have g(M1◦···◦Mn−1) (Di) = τj for some j. Since the preimage of an arc
contained in τj must be a closed subset of T2, we also have g(M1◦···◦Mn−1) (Li ∪Ri) =
g(M1◦···◦Mn−1) (Di) = τj . And for each j we have

(

g(M1◦···◦Mn−1)
)−1

(τj) ⊂ (fn
1 )−1

g−1 (T1) = (fn
1 )−1 (DJ ∪ fn

1 (T ) ∪ f1 (T1)) .

As g(M1◦···◦Mn−1) is onto, for each j we must then have
(

g(M1◦···◦Mn−1)
)−1

(τj) = Di ∪ Li ∪Ri for exactly one i,

and in particular, there is an i with Di ∪Li ∪Ri =
(

g(M1◦···◦Mn−1)
)−1

(Tn). Now
fn (

∑

M (Df))∩Di = ∅ since fn
1 (Di) = DJ ⊂ T2 −Df = T2 − f1 (

∑

M (Df)) (see
Lemma 3.2: if x ∈ fn (

∑

M (Df)) ∩Di, fn
1 (x) ∈ f1 (

∑

M (Df)) ∩DJ = ∅). At the
same time, (fn (T1) ∪ fn (T2)) ⊂ fn (

∑

M (Df)) ∩
(

g(M1◦···◦Mn−1)
)−1

(Tn). Hence,
(fn (T1) ∪ fn (T2)) ⊂ Li ∪ Ri. Since (fn (T1) , fn (T2)) and (Li, Ri) are pairs of
distinct (fn

1 )∗ φ−trajectories, we must have {fn (T1) , fn (T2)} = {Li, Ri}. But Li

and Ri are mapped by fn
1 to the distinct φ−trajectories fn

1 (T ) and f1 (T1), while

fn
1 ◦ fn (T1) = f1 (T1) = f1 (T2) = fn

1 ◦ fn (T2) .

We thus arrive at a contradiction and must therefore have that f1 (T1) and f1 (T2)
are disjoint.

Thus, the points x and y in S1 as above with f1 (T1) = µf

(

[R, x]f
)

and

f1 (T2) = µf

(

[R, y]f
)

must be distinct and are the endpoints of an open interval

J ⊂ S1 with g (DJ) = T1. Since f1 is one-to-one when restricted to any φM− tra-
jectory [the proof of Lemma 2.3 remains valid for φM viewed as the f1−pullback
of φ; f1 ◦ φM (t, x) = φ (t, f1(x)) ], we may choose p1 and p2 to be the points
which f1 maps to x and y respectively. We then let Oi be the φM− orbit of the
point pi. Then by construction we have that f1 ◦ Oi are asymptotic orbits of the
flow φ.
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We now have that f1 (T1) and f1 (T2) border the disk DJ
def= D1 and

g (D1 ∪ f1 (T1) ∪ f1 (T2)) = T1.

Adopting the above notation, for each n ∈ N, fn
1 maps Tn one-to-one onto the

trajectory T1. And since f1 (T1) = fn
1 ◦fn (T1) and f1 (T2) = fn

1 ◦fn (T2), we must
have that fn (T1) and fn (T2) are disjoint for each n ∈ N, while both are mapped
to Tn. Hence, fn (T1)and fn (T2) border an open disk Dn in T2 − fn (Ti) formed
by the blowing up of Tn and Dn is mapped homeomorphically by fn

1 onto D1.
Since f1 ◦Oi are asymptotic orbits of the flow φ for i = 1 and 2, for T sufficiently
large in absolute value there are neighborhoods UT of {f1 ◦ O1 (T ) , f1 ◦ O2 (T )}
which are evenly covered by fn

1 . Now for i = 1 and 2 and T as above, we
have fn

1 ◦ fn ◦ Oi (T ) = f1 ◦ Oi (T ), and so fn ◦ O1 (T ) and fn ◦ O2 (T ) are
contained in a single component of (fn

1 )−1 (UT ) since fn ◦ Oi (R) border Dn,
which is mapped homeomorphically by fn

1 to D1. And for points sufficiently
close, fn

1 increases the distance between points or leaves the distance fixed, and
so the distances d2 (fn ◦ O1 (T ) , fn ◦ O2 (T )) → 0 as T → ±∞ at at least the
same rate as d2 (f1 ◦ O1 (T ) , f1 ◦ O2 (T )) → 0.

With notation as above, fn (T1) and fn (T2) border the open disk Dn for each
n ∈ N with D1 = DJ , and fn

1 maps Dn homeomorphically onto DJ . We then
have that T1 and T2 together with the disk

∆ (T1, T2) = (DJ ×D2 × · · · ×Dn × · · · ) ∩
∑

M

represent a blown up trajectory of Φ(θ,1)

M
in the sense that

Γ (∆ (T1, T2)) = Γ (T1) = Γ (T2) ⊂
∑

M
.

That ∆ (T1, T2) is a disk follows from the fact that fn
1 maps Dn homeomorphically

onto DJ .
These disks ∆ (T1, T2) are easy to see: each arc component C of

∑

M admits a
fibration of the form πM +c : R2 → C and (πM + c)−1 (

∑

M (Df)) is a translation
of

(

π2
)−1 (Df), as can be seen by the following commutative diagram

(3)

(

R2, ˜f1c
)

−ff1c−→
(

R2,0
) πM+c

−→ (
∑

M , c)

↘π2 ↙f1

(

T2, f1c
)

,
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where ˜f1c ∈
(

π2
)−1 (f1c). This follows from

f1 ◦ (πM + c) ◦
(

−˜f1c
)

(x) = f1

(

πM

(

−˜f1c
)

+ πM (x) + c
)

= π2
(

−˜f1c
)

+ π2 (x) + f1 (c) = π2 (x) .

We then have that (f1)
−1 (Df) =

∑

M (Df) [see Lemmas 3.1 and 3.2], and so

(πM + c)−1
(
∑

M
(Df)

)

+ ˜f1c =
(

−˜f1c
)−1

(πM + c)−1
(

(f1)
−1 (Df)

)

=
(

π2
)−1

(Df) .

Notice that this holds for any choice of ˜f1c ∈
(

π2
)−1 (f1c). Setting c = eM , with

k any element of Z2 =
(

π2
)−1 (f1eM ), we have

(

π2
)−1 (Df) + k =

(

π2
)−1 (Df).

Provided that
∑

M is not T2, πM + c maps countably infinitely many of the
strips forming the complement R2 − (πM + c)−1 (

∑

M (Df)) to distinct disks in
∑

M , and πM + c maps the borders of these strips in R2 to asymptotic pairs
(T1, T2). Provided that

∑

M is not T2, there are uncountably many arc compo-
nents of

∑

M , and so there will be uncountably many such disks, with a count-
able infinity in each arc component of

∑

M . In view of Lemmas 3.1 and 3.2,
∑

M −
∑

M (Df) is the union of these disks ∆.

Definition 9. For a given flow φ, a pair of distinct φ−trajectories (T1, T2) is be
asymptotic if there are corresponding φ− orbits for T1 and T2 which are asymp-
totic, and a φ−trajectory is non-asymptotic if it is not asymptotically paired
with any other φ−trajectory (under any parameterization).

Notice that if h :
∑

M (Df) →
∑

M (Df) is a homeomorphism, then h is uni-
formly continuous and so maps asymptotic pairs of trajectories (T1, T2) to as-
ymptotic pairs (T ′1 , T ′2 ). In particular,

∑

M (Df) is not homogeneous since some
trajectories are not paired asymptotically with another trajectory (see also page
670 and [Fok], p. 48).

We now determine a consistent way to choose arcs joining points on distinct as-
ymptotic trajectories T1 and T2, the interiors of which are contained in ∆ (T1, T2) .

Definition 10. For a given orientation-preserving homeomorphism f : S1 → S1,
with lift F : R →R ( F (0) ∈ [0, 1) )

µ̃f :
(

R2,0
)

→
(

R2,0
)

by

(s, t) 7→
(

[1−csb ] F bsc (t) +csbF bsc+1 (t) , s
)
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Definition 11. We define the map

pf : R2 id×π−→ R×S1 → Sf by

(s, t) 7→ (s, π (t)) 7→ [s, π (t)]f .

We then have the following commutative diagram
(

R2,0
)

fµf−→
(

R2,0
)

pf ↓ ↓π2

(

Sf, [0, π (0)]f
)

µf−→
(

T2,0
)

and µ̃f (R×J) ⊂
(

π2
)−1 (DJ).

Lemma 6.4. The map µ̃f is a homeomorphism.

Proof. Suppose that µ̃f ((s, t)) = µ̃f ((s′, t′)). Then we must have that s = s′.
Since f is orientation-preserving, F is monotone increasing, and so if, say, t < t′

we would have

[1−csb ] F bsc (t) +csbF bsc+1 (t) < [1−csb ] F bsc (t′) +csbF bsc+1 (t′) .

Hence we must have that t = t′, implying that µ̃f is one-to-one. By invariance of
domain, µ̃f is an open map. Since µ̃f is clearly onto, µ̃f is a homeomorphism.

Roughly speaking, we now develop a linear structure for
∑

M induced by the
linear structure on R2 and the maps (πM + c). For each c ∈

∑

M making the
definite choice

˜f1c =
(

π2
)−1

(f1 (c)) ∩ [0, 1)× [0, 1),

we have the commutative diagram (3). We now know that two distinct asymp-
totic trajectories T1 and T2 of φM will lie in the same path component C of

∑

M ,
for the disk

∆ (T1, T2) = (DJ ×D2 × · · · ×Dn × · · · ) ∩
∑

M

spans the two trajectories. And so for any c ∈ C we have that the fibration πM +c

maps R2 onto C ⊃ ∆ (T1, T2). The translating factor ˜f1c then puts

(πM + c)−1
(
∑

M
(Df)

)

into the standardized form
(

π2
)−1 (Df).

Now
(

π2
)−1

(DJ) = µ̃f

(

(pf)
−1 (µf)

−1 (DJ)
)
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since π2 ◦ µ̃f = µf ◦ pf and (µf)
−1 (DJ) = [R, J ]f, and so

(

π2
)−1

(DJ) = µ̃f

(

(pf)
−1

(

[R, J ]f
))

= µ̃f

(

⋃

n∈Z

[

R× π−1 (fn (J))
]

)

.

We thus have that
(

π2
)−1 (DJ) is the union of the strips in µ̃f

(

R× π−1 (fn (J))
)

.
For a fixed n , µ̃f

(

R× π−1 (fn (J))
)

contains translates of a strip by (k, 0), with k

any integer. If we agree to let π−1 take on values in a specific range (e.g., [0, 1)) for
choosing the left endpoint of π−1 (fn (J)) on the 0 level, then µ̃f

(

R× π−1 (fn (J))
)

is translation of µ̃f

(

R× π−1 (J)
)

by (0, n).
By the diagram (3) we have

(

−˜f1c
)−1

(πM + c)−1 (x) ⊂
(

π2
)−1

(f1 (x)) ,

and so the preimages
(

−˜f1c
)−1

(πM + c)−1 (x) and
(

−˜f1c
)−1

(πM + c)−1 (y)

are contained in the borders of the strips µ̃f

(

R× π−1
(

fn
(

J
)))

. We then have
the question: to what extent do these preimages depend on our choice of c? And:
what if πM + c is not one-to-one, as happens when

∑

M has an S1 factor? In
general, these preimages depend on the choice of c and there may be countably
infinitely many elements in these sets. But there is something we can say. Since

all elements of
(

−˜f1c
)−1

(πM + c)−1 (x) are mapped by π2 to f1 (x), the possible

candidates for the preimages
(

−˜f1c
)−1

(πM + c)−1 (x) are separated by transla-

tions by elements of Z2. And we have already seen that
(

π2
)−1 (Df) is invariant

under such translations. So while these preimages are not uniquely determined,
the way the π2 preimages of f1 (x) and f1 (y) are “situated” in

(

π2
)−1 (Df) is

determined.
We have that the borders of the strips µ̃f

(

R× π−1
(

fn
(

J
)))

contain the preim-
ages

(

π2
)−1 (f1 (x)) and

(

π2
)−1 (f1 (y)) and these borders are trajectories of the

pullback flow
(

−˜f1c
)∗

(πM + c)∗ φM =
(

π2
)∗

φ

and so are mapped by (πM + c) ◦
(

−˜f1c
)

one-to-one onto φM− trajectories and

by π2 one-to-one onto φ−trajectories (Lemma 2.3). Thus, the sets
(

π2
)−1 (f1 (x))

and
(

π2
)−1 (f1 (y)) are grouped in pairs, with a pair on the borders of each strip in
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µ̃f

(

R× π−1
(

fn
(

J
)))

. Enumerate the set of component strips of µ̃f

(

R× π−1
(

fn
(

J
)))

as {Sm}m∈N. For n ∈ N let xn = (xn
1 , xn

2 ) and yn = (yn
1 , yn

2 ) be the point of Sn in
(

π2
)−1 (f1 (x)) and

(

π2
)−1 (f1 (y)) respectively. There is no extremely simple way

of specifying in a consistent way an arc joining xn and yn: while the sets R×fn
(

J
)

are convex, the map pf distorts distances, and the sets µ̃f

(

R× π−1
(

fn
(

J
)))

are
not convex − but they are “piecewise convex” : they are bent along the lines
R × k, where k is an integer. We shall exploit the piecewise convex structure of
µ̃f

(

R× π−1
(

fn
(

J
)))

to form our arc and begin by forming a (broken) segment
between x0 and y0, A

[

x0, y0
]

.
We assume without loss of generality that x0

1 < y0
1 and x0

2 < y0
2 , the construc-

tion being made in an exactly analogous way in the other cases. If
⌊

x0
2

⌋

=
⌊

y0
2

⌋

or if
⌊

x0
2

⌋

+ 1 = y0
2 , then we take

A
[

x0, y0
]

: [0, 1] → R2 to be

t 7→ (1− t)x0 + ty0,

which is contained in S0 since S0 ∩ R× [
⌊

x0
2

⌋

,
⌊

x0
2

⌋

+ 1] is convex (in fact, a
trapezoid). We assume then that

⌊

y0
2

⌋

=
⌊

x0
2

⌋

+ k with k > 0 and y0
2 6=

⌊

x0
2

⌋

+ 1.
Then for i = 1, ..., k we set `i and ri to be the points on the trajectories of x0

and y0 respectively which meet R×
{⌊

x0
2

⌋

+ i
}

, and we set s = y0
2 − x0

2. We then
define for i = 1, ..., k

pi =

(

y0
2 −

⌊

x0
2

⌋

− i

s

)

`i +

(
⌊

x0
2

⌋

+ i− x0
2

s

)

ri

=

(

y0
2 −

⌊

x0
2

⌋

− i

s

)

`i +

[

1−

(

y0
2 −

⌊

x0
2

⌋

− i

s

)]

ri

and define

A
[

x0, y0
]

: [0, 1] → R2 to be the map

mapping
[

0,
bx0

2c+1

s

]

linearly onto the segment joining x0 and p1,
[

bx0
2c+1

s ,
bx0

2c+2

s

]

linearly onto the segment joining p1 and p2, ...., and
[

bx0
2c+k

s , 1
]

linearly onto the

segment joining pk and y0. We know that each of the segments is contained in S0

since each intersection S0 ∩ R× [m, m + 1] is convex for any integer m. We then
have for any n ∈ N a kn ∈ Z2 with xn = x0 +kn and yn = y0 +kn and we define
the path [0, 1] → R2

A [xn, yn] (t) = A
[

x0, y0
]

(t) + kn.
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Then for any n ∈ N π2 ◦ A [xn, yn] defines the same arc [0, 1] → T2 sending 0
to f1 (x) and 1 to f1 (y), and for each n we have the arc [0, 1] →

∑

M defined

by (πM + c) ◦
(

−˜f1c
)

◦ A [xn, yn]. At least one of these defines an arc joining x

and y which maps (0, 1) into ∆ (T1, T2), but it is possible that (πM + c) is not
one-to-one and so there may be many such arcs. But if we compose two such arcs

(πM + c) ◦
(

−˜f1c
)

◦A [xn, yn] and (πM + c) ◦
(

−˜f1c
)

◦A [xm, ym]

with f1 we get the same arc π2 ◦A
[

x0, y0
]

by (3), and since f1 has unique path
lifting (see [Cl]), we know that the two arcs into

∑

M are the same. Thus, we get
a uniquely determined arc

A [x, y] : ([0, 1] , (0, 1)) →
(
∑

M
, ∆ (T1, T2)

)

with endpoints x and y as desired.

Lemma 6.5. A homeomorphism h :
∑

M (Df) →
∑

N (Dg) can be extended to a
homeomorphism h :

∑

M →
∑

N .

Proof. We let φM =
∑

(f)M and φN =
∑

(g)N and we let

{(T1a , T2a) | a ∈ A} and {(T1b
, T2b

) | b ∈ B}

be the collection of pairs of asymptotic φM− (and φN )−trajectories respectively.
To the pairs (T1a , T2a) and (T1b

, T2b
) there correspond the disks ∆ (T1a , T2a) and

∆ (T1b
, T2b

). We need to define h on
∑

M −
∑

M (Df), which we now know to be
the union of the disks ∆ (T1a , T2a).

Since h maps arc components to arc components and is uniformly continuous,
it maps φM−trajectories to φN−trajectories and an asymptotic pair (T1a , T2a) to
an asymptotic pair (T1b

, T2b
). By Lemma 6.3, there are points p1 and p2 of T1a

and T2a respectively, such that the corresponding φM−orbits Oi are asymptotic.
We extend h to h on ∆ (T1a , T2a) as follows:

for (s, t) ∈ R× [0, 1] , A [O1 (s) ,O2 (s)] (t) 7→ A [h ◦ O1 (s) , h ◦ O2 (s)] (t) .

Since h provides a monotonic (with respect to orbits) correspondence between
O1 (R) and h ◦O1 (R) and between O2 (R) and h ◦O2 (R), by the construction of
the arcs A [x, y] we get that h maps ∆ (T1a , T2a) one-to-one onto ∆ (T1b

, T2b
), and

so h is one-to-one and onto. Since these disks are neither open nor closed, this
does not guarantee the continuity of h, but since these arcs depend continuously
on their endpoints and h is continuous, we get that h is continuous and so a
homeomorphism.
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Given any generalized Denjoy flow
∑

(f) and any 2− solenoid
∑

M , there is
a map Γf : (

∑

M , eM ) → (
∑

M , eM ) homotopic to the identity with (id× Γf) :

φM

sc
· Φ(θ,1)

M
(see page 670), where θ is the rotation number of f. The φM–

trajectories corresponding to asymptotically paired φM−orbits are mapped to
the same Φ(θ,1)

M
–trajectory. Each Φ(θ,1)

M
−trajectory which is not the Γf−image of

asymptotically paired φM− trajectories is the Γf−image of exactly one φM−trajectory.
We shall generalize this slightly.

Definition 12. Given a flow φ on X and a flow ψ on Y and a trajectory map
Γ : φ

traj→ ψ, we define a ψ–trajectory to be a Γ–asymptotic trajectory if it is the
Γ– image of an asymptotic pair of φ–trajectories.

Theorem 6.6. Let Df and Dg be generalized Denjoy continua with

Γf :
(
∑

M
, eM

)

→
(
∑

M
, eM

)

; (id× Γf) : φM

def
=

∑

(f)M

sc
· Φ(α,1)

M

and

Γg :
(
∑

N
, eN

)

→
(
∑

N
, eN

)

; (id× Γg) : φN

def
=

∑

(g)N

sc
· Φ(β,1)

N
.

Then
[
∑

M
(Df) ∼=

∑

N
(Dg)

]

⇔

[There is a translation of an isomorphism j : Φ(α,1)

M

top
≈ Φ(β,1)

N
which provides a

one-to-one correspondence between Γ –asymptotic trajectories and Γg–asymptotic

trajectories, where Γ : φM

traj→ Φ(α,1)

M
is homotopic to idP

M
and is such that the Γ

–preimage of a Γ –asymptotic trajectory contains only two trajectories of
∑

M (Df)
and is such that the Γ –preimage of a trajectory which is not Γ –asymptotic is a
single φM–trajectory. ]

Proof. (⇒) Let h :
∑

M (Df) ∼=
∑

N (Dg) be a homeomorphism. We then have
that h extends to a homeomorphism h :

∑

M →
∑

N . There is an isomorphism
i :

∑

M →
∑

N homotopic to h − h (eM ) which then lifts to an automorphism
i : R2→ R2, see [Sch] and [Cl]. Since Γg is homotopic to idP

N
, we have that

h (eM ) and Γg

(

h (eM )
)

are in the same path component of
∑

N . Hence, h =
(

h− h (eM )
)

+ h (eM ) and j
def
= i + Γg

(

h (eM )
)

are homotopic since translations
by elements of the same path component of

∑

N are isotopic, see [Cl]. Then with
i ((α, 1)) = (η, δ) and with ˜δ multiplication by δ and with γ = η/δ (we know that
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δ 6= 0 since α is irrational), we have
(

˜δ
)

× j : Φ(α,1)

M

equiv
≈ Φ(γ,1)

N

since translations preserve linear flows, see [Cl], Lemma 3.3.
We now set out to show that β = γ. Now the maps h and are j are homotopic,

and Γf and Γg are homotopic to their respective identities, and so Γg ◦ h and
j ◦ Γf are homotopic as maps

∑

M →
∑

N and both map eM 7→ Γg

(

h (eM )
)

since Γf (eM ) = eM . With T the φM−trajectory of eM , we have by construction
that Γg ◦ h (T ) is the Φ(β,1)

N
−trajectory of Γg

(

h (eM )
)

and that j ◦ Γf (T ) is the

Φ(γ,1)

N
−trajectory of Γg

(

h (eM )
)

. We then also have that d = Γg ◦ h − j ◦ Γf is
homotopic to the constant map sending

∑

M to eN . Hence, there is a map ˜d

making the following diagram commute
(

R2,0
)

ed ↗ ↓πN

(
∑

M , eM ) d→ (
∑

N , eN )

since πN is a fibration and the constant map sending
∑

M to eN lifts.
Suppose then that β 6= γ. We then choose a sequence {φM (tn, eM )}

n∈N which
converges in

∑

M , where {tn}n∈N is an unbounded sequence of the reals. We
then arrive at a contradiction just as in the proof of Theorem 3.9 in [Cl] since
{

˜d ◦ φM (tn, eM )
}

n∈N must converge, while
{

˜d ◦ φM (tn, eM )
}

n∈N represents at
the same time the differences of points in the plane which are unbounded in the
plane and which lie on lines which, having different slopes when lifted to R2

via πN + Γg

(

h (eM )
)

, diverge. We then must have that β = γ, and so id × j :

Φ(α,1)

M

equiv
≈ Φ(η,δ)

N
with η/δ = β and j : Φ(α,1)

M

top
≈ Φ(β,1)

N
.

We now define Γ def= j−1 ◦ Γg ◦ h . Since Γg is homotopic to the identity
and h and j are homotopic, we have that Γ is homotopic to the identity. Now
Γg ◦ h : φM

traj→ Φ(β,1)

N
since Γg : φN

traj→ Φ(β,1)

N
and h maps φM− trajectories con-

tained in
∑

M (Df) to φN−trajectories in
∑

N (Dg) and maps the φM−trajectories
of

∑

M −
∑

M (Df) into a disk contained in
∑

N −
∑

N (Dg), which disk is in turn
mapped to a single Φ(β,1)

N
−trajectory by Γg. By the above, we have that j−1 :

Φ(β,1)

N

traj→ Φ(α,1)

M
, and so Γ : φM

traj→ Φ(α,1)

M
. By construction, Γg maps asymptotic

pairs of φN−trajectories to a single Φ(β,1)

M
−trajectory and maps non-asymptotic

φN− trajectories to a Φ(β,1)

M
− trajectory which has a single φN−trajectory as
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its Γg−preimage. And so, since h only maps asymptotic pairs of φM− trajecto-
ries to asymptotic pairs of φN−trajectories and since j−1 provides a one-to-one
correspondence between Φ(β,1)

M
−trajectories and Φ(α,1)

M
−trajectories, Γ maps as-

ymptotic pairs of φM− trajectories to a Φ(α,1)

M
− trajectory having this pair as

its Γ−preimage in
∑

M (Df) and Γ maps non-asymptotic φM−trajectories to a
Φ(α,1)

M
−trajectory which has a single φM−trajectory as its Γ−preimage. Notice

that the following diagram of trajectory maps commutes by construction

∑

M

h→
∑

N

Γ ↓ ↓ Γg
∑

M
j→

∑

N

,

and so a Γ−asymptotic trajectory T with the asymptotic φM−trajectories T and
T ′ contained in Γ−1 (T) ∩

∑

M (Df) is mapped by j to Γ′
(

h (T )
)

= Γ′
(

h (T ′)
)

,
which is then a Γg−asymptotic trajectory. This is what we required.

(⇐) Under the given assumptions we need to find a homeomorphism h :
∑

M (Df) →
∑

N (Dg). Let x ∈
∑

M (Df). There are two possibilities for the
φM−trajectory T of x: (1) T is asymptotically paired with another φM−trajectory
T ′ and (2) T is non-asymptotic.

(1) In this case, since there is exactly one other trajectory T ′ ⊂
∑

M (Df)
with which T is asymptotically paired, we have that Γ−1 (Γ (x)) ∩

∑

M (Df) is a
pair of points {x, x′}, with one point from each of T and T ′. Now j (Γ (x)) is by
assumption a point on a Γg−asymptotic trajectory which will similarly have two
Γg−preimages {y, y′} in

∑

N (Dg), with y ∈ T and y′ ∈ T′, where T and T′ are
asymptotically paired φN−trajectories.

Our analysis of the maps πM +x (see the diagram (3) and the construction of
arcs joining points on the borders of the disks ∆ (T , T ′)) shows that the relative
position of the points

(

−˜f1x
)−1

(πM + x)−1 ({x, x′})

in the plane is determined up to translation by an element of Z2. And so, it
is well-defined to say that one of the pair (T , T ′) lies to the left of the other,
meaning that in any connected strip S = R × J which (πM + x) ◦

(

−˜f1x
)

◦ µ̃f

maps onto ∆ (T , T ′), the so-called left trajectory of the pair (T , T ′) forms the left
border of S (see Definition 11) . Similar considerations hold for the map πN + y

and the pair
(

T, T′
)

. We assume then without loss of generality that T lies to
the left of T ′ and that T lies to the left of T′.
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Since the maps Γ and Γg are homotopic to the respective identities by assump-
tion, we have that (πM + Γ (x))

(

R2
)

⊃ {x, x′} ∪ {Γ (x)} and that

(πN + Γg (y))
(

R2
)

⊃ {y, y′} ∪ {Γg (y)} .

And since R2 is contractible, there is a map j making the following diagram
commute

(

R2,0
) j→

(

R2,0
)

(πM + Γ (x)) ↓ ↓ (πN + Γg (y))

(
∑

M , Γ (x)) j→ (
∑

N , Γg (y))

.

It is a routine matter to show that j is a homeomorphism of R2 by looking at a
similar diagram for j−1 and composing the two diagrams to get an identity on the
bottom row and the composition of the two lifts on the top row, which must then
be the identity by the uniqueness of lifting for path connected spaces. In fact, the
additivity of the maps (πM + Γ (x)), j and (πN + Γg (y)) can be used to show that
j is an automorphism which can be represented by a matrix, but we do not really
need this. We then define h (x) = y and h (x′) = y′ (or h (x) = y′ and h (x′) = y),
according as j preserves (reverses) the orientation of the plane [which could be
determined by examining the sign of the determinant of the matrix representing
j]. In other words, if j preserves orientation the left point is mapped to the left
point, and if j reverses orientation the left point is mapped to the right point.

(2) In this case, there is in some sense no choice. By assumption, j (Γ (x))
is contained in a trajectory which is not Γg−asymptotic trajectory, and so its
Γg−preimage is a single point y. We then define h (x) = y.

To see that the so defined function h is a homeomorphism, first notice that
it is one-to-one and onto since j provides a one-to-one correspondence between
Γ−asymptotic and Γg− asymptotic trajectories and j itself is a homeomorphism.
It then only remains to show that h is continuous. To see this, we examine a
point y ∈

∑

N (Dg) and a neighborhood

(gn)−1 (U) ∩
∑

N
(Dg)

of y, where gn :
∑

N → T2 is the projection onto the nth factor and U is an
open neighborhood of gn (y) in T2 (we use gi

j for the bonding maps of
∑

N ).
Now gn projects the flow φN to the flow (gn

1 )∗
∑

(g), and the neighborhood U

of gn (y) in T2 then contains a “rectangular” neighborhood N of gn (y) which is
homeomorphic to the product of an arc contained in the (gn

1 )∗
∑

(g)− trajectory
of gn (y) and a transverse segment ` ⊂ N containing gn (y) in its interior and
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which is such that the nth factor map of Γg g(N1◦···◦Nn−1) maps N to a set
which is homeomorphic to the product of the image of these two line segments,
the segment of the trajectory being mapped homeomorphically by g(N◦···◦1Nn−1)

while ` is mapped monotonically [here we are using the specific construction
of Γg , see page 670; see page 668 for a description of the action of the map
g(N◦···◦1Nn−1) – the described behaviour of g(N1◦···◦Nn−1)]. And since y is on a
non-asymptotic trajectory, g(N◦···◦1Nn−1) (`) will contain gn (Γg (y)) in its interior

and g(N◦···◦1Nn−1) (N ) is a neighborhoodN ′ of gn (Γg (y)). Thus, Γg

(

(gn)−1 (U)
)

contains the neighborhood V
def= (gn)−1 (N ′) of Γg (y). But then

Γ−1
(

j−1 (V )
)

∩
∑

M
(Df)

is a neighborhood of h−1 (y) which h maps into (gn)−1 (U) by construction.
And if y is on a non-asymptotic trajectory and if (gn)−1 (U) ∩

∑

N (Dg) is a
neighborhood of y, we still have a rectangular neighborhood N ⊂ U of gn (y) as
described above – only now the image of ` under g(Nn−1 ◦ · · · ◦N1) might contain
gn (Γg (y)) as an endpoint. In this case,

V
def= (gn)−1 (g(Nn−1 ◦ · · · ◦N1) (N ))

is a neighborhood and it contains Γg (y), but it might not contain Γg (y) in its
interior. Now j−1 might “flip” V , but our construction takes the possible orien-
tation reversal of j into account and Γ−1

(

j−1 (V )
)

∩
∑

M (Df) is a neighborhood
of h−1 (y) which h maps into (gn)−1 (U) by construction.

Previously we noted that any minimal set occurring in an aperiodic continuous
flow on T2 which is a proper subset of T2 is homeomorphic with some Df . We
are thus led to the following conjecture:

Conjecture. If M is a minimal set occurring in a flow on
∑

M which has
no orbit whose closure is homogeneous, M is homeomorphic with some denjoid
∑

N (Df ).

We cannot require N to be M as it is easy to construct denjoids
∑

N (Df ) ⊂
∑

M which are not realized as a denjoid
∑

M (Dg) and which have corresponding
minimal flows on

∑

M which are the “pullbacks” by the nth (n > 1) projection
maps fn of flows on T2.
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