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Abstract. Results are obtained about the existence and behavior of hered-

itarily weakly confluent maps of continua onto the unit circle S1. A simple

and useful necessary and sufficient condition is given for a map of a contin-

uum, X, onto S1 to be hereditarily weakly confluent (HWC). It is shown

that when X is arcwise connected, an HWC map of X onto S1 is mono-

tone with arcwise connected fibers. A number of theorems about HWC irre-

ducible maps of X onto S1 are proved; for example, such maps are monotone

with nowhere dense fibers, and a complete determination of the structure

of X is obtained when X admits an HWC irreducible map onto S1 and

X is arcwise connected. Among other results, the arcwise connected semi-

locally-connected continua that admit an HWC map onto S1 are completely

determined, and it is shown how the map must be defined.

1. Introduction

A continuum is a nonempty compact connected metric space. A map is a
continuous function. The symbol S1 denotes the unit circle in the plane; Rn

denotes Euclidean n-space.
Let X and Y be continua. A map f : X → Y is said to be weakly confluent

(WC) provided that every subcontinuum of Y is the image under f of a subcon-
tinuum of X. This type of map has been investigated extensively (e.g., see [M2]).
Note that WC maps are a fundamental type of map to consider since they are
the maps f : X → Y for which the natural induced map f̂ : C(X) → C(Y ) is a
surjection (where C(X) and C(Y ) are the hyperspaces of X and Y [N1]). Now,
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a map f : X → Y is hereditarily weakly confluent (HWC) provided that for every
subcontinuum K of X,

f |K : K → f(K) is WC.

Note that HWC maps are those maps f : X → Y for which the induced map
f̂ : C(X) → C(Y ) is a surjection on C(K) to C(f(K)) for all subcontinua K of
X. HWC maps were first studied in [Wa] under the name pseudo-monotone (see
1.2 of [M1, p. 124]).

In sections 2 and 3, we obtain general results about HWC maps and irreducible
HWC maps of continua onto the unit circle S1; we use the first theorem in each
of these sections throughout most of the rest of the paper. In sections 4 and 5,
we present an extensive study of HWC maps of arcwise connected continua onto
S1. In section 6, as an application, we show that there is no HWC map of the
cartesian product of any two nondegenerate continua onto S1. In section 7 we
prove a preliminary result about cyclic element retractions for use in section 8. In
section 8 we use previous results to investigate HWC maps of arcwise connected
semi-locally-connected continua onto S1; we show that any HWC map of such a
continuum onto S1 has an especially simple form (Theorem 8.4), and we com-
pletely determine which such continua can be mapped onto S1 by an HWC map
(Corollary 8.5). In the final section we mention a problem whose solution would
be a natural sequel to what we have done.

Several of our theorems limit the types of continua that can be mapped onto
S1 by an HWC map (notably, Theorem 6.2 and Corollary 8.5). In contrast, we
point out that every nondegenerate continuum can be mapped onto S1 by a WC
map (see 13.68(c) of [N2, p. 309] ).

We note the following terminology and notation.
A map f : X → S1 is essential provided that f is not homotopic to a constant

map; otherwise, the map f is said to be inessential. Note that a map f : X → S1

is inessential if and only if it has a lift ψ, i.e., ψ is a map of X into the reals R1

such that

f = exp ◦ ψ

where exp: R1 → S1 is given by exp(t) = (cos(2πt), sin(2πt)) for all t ∈ R1

(Theorem 3 of [K, p. 426] ).
We use the notation f : X ° Y to mean f maps X onto Y . We use f |A to

denote the restriction of a map f to A.
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The symbol A denotes the closure of A. For A ⊂ X, Bd(A) denotes the
boundary of A in X, i.e., Bd(A) = A ∩ (X −A). For A ⊂ X, int(A) denotes the
interior of A in X. For spaces X and Y , X × Y denotes the cartesian product of
X and Y .

Let X and Y be continua. A map f : X ° Y is said to be monotone provided
that f−1(y) is a continuum for each y ∈ Y . We note that if f : X ° Y is
monotone, then f−1(C) is a continuum whenever C is a subcontinuum of Y (2.2
of [W, p. 138]).

All spaces in this paper are assumed to be metric spaces. A space is said to be
nondegenerate provided that it consists of more than one point.

Other terminology will be defined at appropriate places or can be found in the
references.

2. A Characterization Theorem for HWC Maps onto S1

We prove Theorem 2.1, which we use often throughout the paper. We include
some simple consequences of Theorem 2.1 here.

Theorem 2.1. Let X be a continuum, and let f : X ° S1 be a map. Then,
f is HWC if and only if for all subcontinua K of X such that f(K) = S1,
f |K : K ° S1 is essential.

Proof. First, assume that there is a subcontinuum K of X such that f(K) = S1

and f |K : K ° S1 is inessential. Then f |K has a lift ψ, i.e., f |K = exp ◦ ψ

(see section 1). Thus, since f(K) = S1, the interval ψ(K) contains a closed
subinterval, J , whose length is exactly 2π. Since ψ : K ° ψ(K) is WC [R, p.
236], there is a subcontinuum, L, of K such that ψ(L) = J . Since the length of
J is exactly 2π, clearly

(*) exp |J : J ° S1 is not WC.

Note that since ψ(L) = J , f |L = (exp|J) ◦ (ψ|L). Hence, it follows from (∗)that
f |L : L ° S1 is not WC. Therefore, f is not HWC. This proves half of Theorem
2.1. The other half follows easily using that essential maps of continua onto S1

are WC (Lemma 6 of [F, p. 6]) and that all maps of continua onto arcs are WC
[R, p. 236].

Corollary 2.2. A map f of a simple closed curve onto S1 is HWC if and only
if f is a homeomorphism.
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Proof. Obviously, homeomorphisms are HWC. Conversely, it is easy to verify
that a map of a simple closed curve onto S1 that is not one-to- one must map an
arc onto S1; hence, such a map can not be HWC by Theorem 2.1.

Our next two corollaries involve the following notions: Let X and Y be con-
tinua. A map f : X ° Y is irreducible provided that there is no proper sub-
continuum, K of X such that f(K) = Y [W, p. 162]. A map f : X → S1 is
irreducibly essential on X provided that f is essential and, for every closed proper
subset K of X, f |K : K → S1 is inessential; equivalently, by 5.51 of [W, p. 223],
provided that (#) f is essential and, for every proper subcontinuum K of X,
f |K : K → S1 is inessential.

For the sake of clarity concerning the definitions just given, we make the fol-
lowing observations: A map f of a continuum onto S1 such that f is both irre-
ducible and essential must be irreducibly essential (use (#) above). However, an
irreducibly essential map of a continuum onto S1 need not be irreducible (e.g.,
f : S1 ° S1 given by f(z) = z2 for each z ∈ S1). Nevertheless, we have the
following consequence of Theorem 2.1:

Corollary 2.3. Let X be a continuum, and let f : X ° S1 be HWC. Then, f is
irreducible if and only if f is irreducibly essential.

Proof. Assume that f is irreducible; then, since f is also essential by Theorem
2.1, f is irreducibly essential by the first observation in the preceding paragraph.
The converse follows immediately from Theorem 2.1.

Corollary 2.4. Let X be a continuum, and let f : X ° S1 be an irreducible map.
Then, (1)-(3) are equivalent: (1) f is WC; (2) f is HWC; (3) f is essential.

Proof. Since f : X ° S1 is irreducible, (2) and (3) are equivalent by Theorem
2.1 and (1) implies (2) using [R, p. 236]. Clearly, (2) implies (1).

We continue our study of irreducible HWC maps onto S1 in sections 3 and 5;
in relation to Corollary 2.4, see Corollary 3.2. As we will see in sections 4 and
8, our theorems about irreducible HWC maps yield theorems about HWC maps
which are not (necessarily) irreducible.

We complete this section with a somewhat general example of HWC maps onto
S1. We use special cases of the example later.

Example 2.5. Let X be a continuum that contains an open subset, U , such that
U is homeomorphic to R1; also, assume that X −U and U −U are continua. Let
Y = X/(X−U) (the quotient space of X obtained by shrinking X − U to a point,
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e.g., 3.14 of [N2, p. 41]); let f : X ° Y be the quotient map. Since Y is obviously
the one-point compactification of R1, Y is homeomorphic to S1. We show that

f : X ° Y is HWC.

To show this, we use Theorem 2.1, as follows: Let K be a subcontinuum of X

such that f(K) = Y . Then, K ⊃ U ; hence, K ⊃ U . Note that any two points of
U separate U into exactly two components; hence, it is easy to apply 12.40 of [N2,
p. 259] to see that f |U : U ° Y is essential. Thus, since K ⊃ U , f |K : K ° Y

is essential. Therefore, by Theorem 2.1, f : X ° Y is HWC.

3. A Theorem about Irreducible HWC Maps onto S1

In the preceding section we proved two results about irreducible HWC maps
onto S1 (Corollary 2.3 and Corollary 2.4). We now prove a theorem which gives
much more insight into the behavior of such maps (Theorem 3.1). We will use the
theorem in other sections; in addition, the theorem leads to the characterization
near the end of this section (Corollary 3.2). With respect to the fact that f is
monotone in Theorem 3.1, see Example 3.4.

Theorem 3.1. Let X be a continuum, and let f : X ° S1 be HWC and ir-
reducible. Then, f is monotone and each point inverse, f−1(z) for z ∈ S1, is
nowhere dense in X. Furthermore, f is constant on any given nowhere dense
subcontinuum of X.

Proof. We divide the proof of Theorem 3.1 into five steps. Throughout the
proof, we assume that f : X ° S1 is as in the hypothesis of Theorem 3.1. For
Steps 1-3, we assume that p, q ∈ S1 with p 6= q, and that α and β are subarcs of
S1 such that S1 = α ∪ β and α ∩ β = {p, q} (as in figure at top of next page).

Step 1. There is a sequence, {En}∞n=1, of subcontinua of X satisfying (1)-(4)
below:

(1) En ⊂ X − f−1(p) for each n;
(2) q ∈ f(En) for each n;
(3) limn→∞En = X, hence ∪∞n=1En is dense in X;
(4) f−1(p) is nowhere dense in X.

Proof. Let {Jn}∞n=1 be a sequence of arcs in S1 such that q ∈ Jn for each n, p /∈
Jn for any n, and limn→∞Jn = S1. Since f is WC, there is, for each n, a
subcontinuum En of X such that f(En) = Jn. Since C(X) is compact [N1,
p. 7], we may assume (by replacing {En}∞n=1 with a convergent subsequence if
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Figure 1. (For Steps 1-3 of Proof of 3.1.)

necessary) that {En}∞n=1 converges to a subcontinuum L of X. Then, using the
uniform continuity of f (compare with 0.49 of [N1, p. 23]),

f(L) = f( lim
n→∞

En) = lim
n→∞

f(En) = lim
n→∞

Jn = S1.

Thus, since f : X ° S1 is irreducible and L is a subcontinuum of X, L = X.
Therefore, since limn→∞En = L, limn→∞En = X. This proves that the continua
En satisfy (3) of Step 1. Since f(En) = Jn and since p /∈ Jn and q ∈ Jn, we see
that (1) and (2) hold. Finally, (4) follows from (3) and (1) since f−1(p) is closed
in X.

Step 2. Let A = f−1(α− {p}) and B = f−1(β − {p}). Then, A ∩B ∩ f−1(p) 6=
∅.

Proof. Fix s ∈ R1 such that exp(s) = p. Let t denote the unique point in [s, s+2π]
such that exp(t) = q. Then, by switching the labeling of α and β if necessary, we
may assume that

exp([s, t]) = α and exp([t, s + 2π]) = β.

Now, define ψA : A → [s, t] and ψB : B → [t, s + 2π] as follows:
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ψA = (exp|[s, t])−1 ◦ (f |A) and ψB = (exp|[t, s + 2π])−1 ◦ (f |B).

Note the following fact:

(a) ψA and ψB are lifts of f |A and f |B, respectively.

Also, note the facts in (b)-(d) below ((b) follows from (4) of Step 1 since α∪β = S1,
(c) follows from the continuity of f using that α∩β = {p, q}, and (d) follows from
the definitions of ψA, ψB , and t):

(b) A ∪B = X;
(c) A ∩B ⊂ f−1(p) ∪ f−1(q);
(d) ψA(x) = t = ψB(x) for all x ∈ f−1(q).

Now, suppose that the conclusion of Step 2 is false. Then, by (c), A ∩ B ⊂
f−1(q). Hence, letting

ψ(x) =

{

ψA(x), if x ∈ A

ψB(x), if x ∈ B

we see from (d) that ψ is a function. Hence, by (a) and (b), ψ is a lift of f ; thus,
f is inessential. Therefore, since f : X ° S1 is HWC, we have a contradiction to
Theorem 2.1.

Step 3. There are subcontinua K(α) and K(β) of X such that f(K(α)) = α,
f(K(β)) = β, and K(α) ∪K(β) = X.

Proof. Let A and B be as in Step 2. Then, by Step 2, there exists x0 ∈ A ∩B ∩
f−1(p). For a given integer i > 0, let Ui be an open neighborhood in X of x0 of
diameter less than 1/i. Let

G = f−1(α− {p, q}), Vi = Ui ∩G, H = f−1(β − {p, q}), Wi = Ui ∩H.

Since x0 ∈ A and Ui − f−1(q) is an open neighborhood of x0, Vi 6= ∅. Similarly,
Wi 6= ∅. Hence, by (3) of Step 1 (Vi and Wi being open in X), there is a positive
integer n = n(i) such that

En ∩ Vi 6= ∅ and En ∩Wi 6= ∅.

Let ai ∈ En ∩ Vi and let bi ∈ En ∩ Wi. Note that ai ∈ En ∩ G and En ∩ G is
open in En; also, since bi ∈ En ∩H and H ∩G = ∅, we know that En ∩G 6= En.
Hence, letting Ai denote the component of En ∩G containing ai, we have by the
Boundary Bumping Theorem in 5.4 of [N2, p. 73] that
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Ai ∩ (En −G) 6= ∅.

Hence, Ai∩f−1({p, q}) 6= ∅. Thus, since Ai ⊂ En, we see from (1) of Step 1 that
Ai ∩ f−1(q) 6= ∅. Therefore, we have produced a subcontinuum Ai of f−1(α)
such that Ai ∩ Ui 6= ∅ and Ai ∩ f−1(q) 6= ∅. Similarly, there is a subcontinuum
Bi of f−1(β) such that Bi ∩ Ui 6= ∅ and Bi ∩ f−1(q) 6= ∅.

Now, having produced Ai and Bi as above for each i = 1, 2, . . . , let K(α), re-
spectively K(β), be the limit of a convergent subsequence of {Ai}∞i=1, respectively
{Bi}∞i=1 [N1, p. 7]. Note (i) − (iv) below. Since K(α) and K(β) are continua
[N1, p. 7], we have that

(i) K(α), and K(β) are subcontinua of f−1(α) and f−1(β), respectively.

Since Ai ∩ Ui 6= ∅ and Bi ∩ Ui 6= ∅ for each i, x0 ∈ K(α) ∩K(β). Hence, by (i),

(ii) K(α) ∪K(β) is a subcontinuum of X

and, since f(x0) = p,

(iii) p ∈ f(K(α)) and p ∈ f(K(β)).

Since Ai ∩ f−1(q) 6= ∅ and Bi ∩ f−1(q) 6= ∅ for each i,

(iv) q ∈ f(K(α)) and q ∈ f(K(β)).

By (i), (iii), and (iv), we see that f(K(α)) = α and f(K(β)) = β. Hence,

f(K(α) ∪K(β)) = α ∪ β = S1.

Therefore, since f is an irreducible map, we see from (ii) that K(α)∪K(β) = X.

Step 4. The map f is monotone.

Proof. Let z ∈ S1. Let {αi}∞i=1 be a sequence of arcs in S1 satisfying (1)- (3)
below:

(1) z ∈ int(αi) for all i;
(2) αi+1 ⊂ int(αi) for all i;
(3) ∩∞i=1αi = {z}.

For each i, let pi and qi denote the end points of αi and let βi be the arc in S1

such that αi ∪ βi = S1 and αi ∩ βi = {pi, qi}. For each i, let K(αi) and K(βi) be
as guaranteed by Step 3, and let Ai = K(αi) and Bi = K(βi); therefore,

(4) Ai and Bi are subcontinua of X;
(5) f(Ai) = αi for all i;
(6) f(Bi) = βi for all i,
(7) Ai ∪Bi = X for all i.
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Now, fix i. Let x ∈ Ai+1. By (5), f(x) ∈ αi+1. Hence, by (2), f(x) ∈ int(αi).
Thus, f(x) /∈ βi. Therefore, by (6) and (7), x ∈ Ai. This proves the following:

(8) Ai+1 ⊂ Ai for all i.

Let L = ∩∞i=1Ai. Then, since each Ai is a continuum (by (4)), we have by (8) and
1.8 of [N2, p. 6] that

(9) L is a continuum.

Next, we prove that L = f−1(z). By (1), z /∈ βi for any i; hence, by (6) and
(7), f−1(z) ⊂ Ai for all i. Thus, f−1(z) ⊂ L. Also, L ⊂ f−1(z) since, using (5)
and then (3) for the last two equalities below,

f(L) = f(∩∞i=1Ai) ⊂ ∩∞i=1f(Ai) = ∩∞i=1αi = {z}.
Now, having proved that L = f−1(z), we have by (9) that f−1(z) is a contin-

uum. Therefore, we have proved that f is monotone.

Step 5. The map f is constant on any given nowhere dense subcontinuum of X.

Proof. Let Y be a proper subcontinuum of X such that f is not constant on Y .
We show that Y has nonempty interior in X. Since f : X ° S1 is an irreducible
map, f(Y ) 6= S1. Thus, since f is not constant on Y , f(Y ) is an arc in S1. Let

γ = S1 − f(Y ).

Note that γ is an arc in S1. By Step 4, f−1(γ) is a subcontinuum of X; also, since
γ ∩ f(Y ) 6= ∅, clearly Y ∩ f−1(γ) 6= ∅. Therefore, Y ∪ f−1(γ) is a subcontinuum
of X. Furthermore,

f(Y ∪ f−1(γ)) = f(Y ) ∪ γ = S1.

Thus, since f is an irreducible map,

Y ∪ f−1(γ) = X.

Hence, X − f−1(γ) ⊂ Y . Therefore, since X − f−1(γ) is a nonempty open subset
of X, Y has nonempty interior in X. This completes the proof of Step 5.

By Steps 4 and 5, and by (4) of Step 1, we have proved Theorem 3.1.

The following corollary to Theorem 3.1 supplements Corollary 2.4:

Corollary 3.2. An irreducible map of a continuum onto S1 is HWC if and only
if it is monotone.
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Proof. The “only if” half is part of Theorem 3.1; the other half follows from
Corollary 2.4 and the fact that a monotone map of a continuum onto S1 is essential
(12.66 of [N2, p. 269]).

Remark 3.3. According to Corollary 2.4, the hypothesis of Theorem 3.1 may
be equivalently stated by saying that f : X ° S1 is essential and irreducible. As
noted above Corollary 2.3, such maps are irreducibly essential, but the converse
is false.

There are two conditions each of which is sufficient for an HWC map f of
a continuum X onto S1 to be monotone: f is irreducible (Theorem 3.1), X is
arcwise connected (Theorem 4.3). The following example shows that HWC maps
of continua onto S1 are not always monotone:

Example 3.4. Let r denote the radial retraction map of R2 − {(0, 0)} onto S1

(i.e., r(z) = z/|z| where |z| = distance from z to (0, 0)). Let H be a half-line in
R2−S1 such that H = H ∪S1 and r(H) 6= S1 (e.g., Figure 2). Let f = r|H. We
show that f is HWC by using Theorem 2.1: Let K be a subcontinuum of H such
that f(K) = S1; then, noting that f(H) 6= S1, it follows easily that K ⊃ S1;
thus, since f |S1 is the identity map, f |K is essential; in view of what we have
shown, we have by Theorem 2.1 that f : H ° S1 is HWC. Clearly, f is not
monotone.

4. Monotoneity of HWC Maps of Arcwise Connected Continua

onto S1

In Example 3.4 we saw that HWC maps of continua onto S1 need not be
monotone. In this section we prove that any HWC map of an arcwise connected
continuum X onto S1 must be monotone (Theorem 4.3) — moreover, each preim-
age of a point is arcwise connected even when the map is restricted to an arcwise
connected subcontinuum of X (Theorem 4.7).

We use the proposition below to obtain the main results in this section and to
prove results in subsequent sections. Since the proposition is not concerned with
arcwise connectivity, the proposition is of interest without regard to the emphasis
in this section.

Proposition 4.1. Let M and N be continua such that M ∩ N is a continuum
that is nowhere dense in M . If f : M ∪N ° S1 is HWC and f |M : M ° S1 is
irreducible, then f |N is a constant map.
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Figure 2. (For Example 3.4.)

Proof. Let p ∈ M ∩N . Note that f |M : M ° S1 is HWC as well as irreducible;
hence, by the last part of Theorem 3.1,

f(M ∩N) = {f(p)}.

Now, contrary to Proposition 4.1, suppose that f |N is not a constant map.
Then, by considering an order arc in the hyperspace C(N) from M ∩ N to N

(1.8 and 1.11 of [N1]), we see that there is a subcontinuum, Z, of N such that
Z ⊃ M ∩N and f(Z) is an arc in S1. Since f(p) ∈ f(Z), there is a subarc, α, of
f(Z) such that f(p) is an end point of α. Let β = S1 − α, and let

B = (f |M)−1(β).

We prove that B∩Z is a continuum. Since B ⊂ M and Z ⊂ N , B∩Z ⊂ M∩N .
The reverse containment also holds: M ∩N ⊂ B since f(M ∩N) = {f(p)} and
f(p) ∈ β, and M ∩N ⊂ Z by the way we chose Z. Hence, we have proved that
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B ∩ Z = M ∩N.

Therefore, since M ∩ N is a continuum (by assumption in Proposition 4.1), we
have that

(1) B ∩ Z is a continuum.

We prove (2)-(4) below (which lead to a contradiction).
Since β is an arc, clearly f |B : B → S1 is inessential; also, since Z was chosen

so that f(Z) is an arc in S1, f |Z : Z → S1 is inessential. Therefore, by (1), we
can apply 5.2 of [W, p. 221] to see that

(2) f |(B ∪ Z) : B ∪ Z → S1 is inessential.

By the way β was defined, β∪α = S1; since f maps M onto S1 (assumption in
Proposition 4.1), f(B) = β; and, by the way α was chosen, f(Z) ⊃ α. Therefore,

(3) f(B ∪ Z) = S1.

From assumptions in Proposition 4.1, f |M : M ° S1 is HWC as well as
irreducible. Thus, by Theorem 3.1, f |M : M ° S1 is monotone. Hence, by the
definition of B, B is a continuum. Thus, since Z was chosen to be a continuum,
we see from (1) that

(4) B ∪ Z is a continuum.

Finally, since f : M ∪ N ° S1 is HWC (by assumption), (2)-(4) contradict
Theorem 2.1. Therefore, it must be that f |N is a constant map.

Corollary 4.2. The result in Proposition 4.1 remains true when the conditions
on M ∩ N are weakened so as only to require that M ∩ N 6= ∅ and M ∩ N is
contained in a nowhere dense subcontinuum, L, of M .

Proof. Apply Proposition 4.1 with N replaced by N ∪ L.

We now prove our first main result of this section. (The result will be su-
perseded by Theorem 4.7, but it is included here for use in the proof of Lemma
4.6.)

Theorem 4.3. Let X be an arcwise connected continuum. If f : X ° S1 is
HWC, then f is monotone.

Proof. There is a subcontinuum, M , of X such that f |M : M ° S1 is irre-
ducible (4.36(b) of [N2, p. 68]). Let q ∈ S1. Let Mq = (f |M)−1(q). Since f

is HWC, f |M : M ° S1 is HWC; hence, by Theorem 3.1, f |M : M ° S1 is
monotone. Therefore,
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(∗) Mq is a continuum.

Now, let x ∈ f−1(q)−Mq. Then, since x /∈ M and X is arcwise connected, there
is an arc, Nx, in X from x to a point y ∈ M such that Nx ∩M = {y}. Hence,
by Proposition 4.1, f |Nx is a constant map. Thus, since x ∈ Nx and f(x) = q,
Nx ⊂ f−1(q). Hence, since y ∈ Nx ∩ M , y ∈ Mq. Thus, we have proved that
any point of f−1(q) − Mq can be joined to a point of Mq by an arc in f−1(q).
Therefore, by (∗), f−1(q) is connected.

The next proposition is concerned with monotone maps that are not necessarily
HWC. Like the Proposition 4.1, does not assume arcwise connectivity.

Proposition 4.4. Let X be a continuum, and let f : X ° S1 be monotone. Let
K and L be disjoint subcontinua of X such that f(K) = f(L) is nondegenerate.
Then there is a subcontinuum, Y , of X such that f |Y : Y ° S1 is inessential.

Proof. First, we show that there are subcontinua, K ′ and L′, of K and L

(respectively) such that f(K ′) = f(L′) is an arc, α, in S1. To prove this, assume
that f(K) = f(L) = S1. Let a ∈ K and b ∈ L such that f(a) = f(b). Consider
order arcs in C(K) and C(L) from {a} and {b} to K and L, respectively (1.8
and 1.11 of [N1]); then we see that there are subcontinua, G and H, of K and
L, respectively, such that f(G) and f(H) are arcs and f(G) ∩ f(H) contains an
arc, α. Hence, by [R, p. 236], there are subcontinua, K ′ and L′, of G and H,
respectively, such that f(K ′) = α and f(L′) = α. Therefore, we have produced
K ′, L′, and α as required.

Next, let p and q denote the end points of α, let r ∈ int(α), and let αp and αq

denote the subarcs of α from p to r and from q to r, respectively. Then, since
f(K ′) = α and f(L′) = α, we have by [R, p. 236] that there are subcontinua, K ′

p

and L′q, of K ′ and L′, respectively, such that f(K ′
p) = αp and f(L′q) = αq. Let

β = (S1 − α) ∪ {p, q}, B = f−1(β), and Y = B ∪K ′
p ∪ L′q.

We show that Y satisfies the conclusion of the proposition.
Since f is monotone, B is a continuum; thus, since B∩K ′

p 6= ∅ and B∩L′q 6= ∅,
Y is a continuum. Since f(B) = β and f(K ′

p ∪ L′q) = α, clearly f(Y ) = S1.
Finally, f |Y : Y ° S1 is inessential, which we prove as follows: Note that

f(B ∪K ′
p) = β ∪ αp, f(B ∪ L′q) = β ∪ αq, and that β ∪ αp and β ∪ αq are arcs;

thus, f |(B ∪ K ′
p) and f |(B ∪ L′q) are inessential as maps into S1. Also, since

K ∩L = ∅, clearly K ′
p∩L′q = ∅ and, hence, (B∪K ′

p)∩ (B∪L′q) = B. Therefore,
since B is a continuum, f |Y : Y ° S1 is inessential by 5.2 of [W, p. 221].
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The corollary below shows what Proposition 4.4 says about HWC maps on
arcwise connected continua. We use the corollary in the proof of Lemma 4.6 and
in later sections.

Corollary 4.5. Let X be an arcwise connected continuum, and let f : X ° S1 be
HWC. Let K and L be subcontinua of X such that f(K) = f(L) is nondegenerate.
Then, K ∩ L 6= ∅.

Proof. By Theorem 4.3, f is monotone. Thus, if K ∩L = ∅, we can then apply
Proposition 4.4 to contradict Theorem 2.1. Therefore, K ∩ L 6= ∅.

For the most general version of Proposition 4.4 for HWC maps, see Remark
4.9.

Lemma 4.6. Let X be an arcwise connected continuum, and let f : X ° S1 be
HWC. Then, f is monotone when restricted to any arc in X.

Proof. Suppose that there is an arc, A, in X such that f |A is not monotone.
Then, obviously, f |A is not a constant map and, by Theorem 2.1, f(A) 6= S1.
Hence, f(A) is an arc, α, in S1. Now, since A and α are arcs and f |A : A ° α is
not monotone, it is evident that there are disjoint subarcs, K and L, of A such
that f(K) = f(L) is a subarc of α. This contradicts Corollary 4.5.

Theorem 4.7. Let X be an arcwise connected continuum, and let f : X ° S1 be
HWC. If Y is an arcwise connected subcontinuum of X, then f |Y is monotone —
moreover, (f |Y )−1(p) is arcwise connected for each p ∈ f(Y ).

Proof. We only need to prove the second part of the conclusion (since it implies
the first part). Let p ∈ f(Y ), and let y, z ∈ (f |Y )−1(p) such that y 6= z.
Then, since Y is arcwise connected, there is an arc, A, in Y from y to z. By
Lemma 4.6, f |A is monotone; thus, since y and z are the end points of A and
f(y) = f(z) = p, it follows easily that f(A) = {p}. Hence, since A ⊂ Y ,
A ⊂ (f |Y )−1(p). Therefore, we have proved that (f |Y )−1(p) is arcwise connected
for each p ∈ f(Y ).

We note two definitions for the corollary that follows. A continuum is hereditar-
ily arcwise connected provided that each of its subcontinua is arcwise connected.
A map f : X → Y , where X and Y are continua, is hereditarily monotone pro-
vided that for every subcontinuum K of X, f |K : K → f(K) is monotone (see
[M1] or [M2, p. 16]).

Corollary 4.8. Let X be a hereditarily arcwise connected continuum, and let
f : X ° S1 be a map. Then, f is HWC if and only if f is hereditarily monotone.
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Proof. If f is HWC, then f is hereditarily monotone by Theorem 4.7. The
converse is evident for maps between continua in general.

Remark 4.9. The proof of Corollary 4.5 shows that the following general version
of Proposition 4.4 for HWC maps is true: Let X be a continuum, and let f : X °
S1 be a monotone HWC map. Let K and L be subcontinua of X such that
f(K) = f(L) is nondegenerate. Then, K ∩ L 6= ∅.

5. Subcontinua On Which HWC Maps of Arcwise Connected

Continua onto S1 Are Irreducible

Any map f : X ° Y , where X and Y are continua, is irreducible on some
subcontinuum, M , of X (4.36(b) of [N2, p. 68]). The results in this section
focus on M when the map f : X ° S1 is HWC and X is arcwise connected:
Theorem 5.2 and Corollary 5.4 show how f behaves on M , Theorem 5.3 exhibits
the structure of M , Theorem 5.6 characterizes M when M = X, and Theorem
5.7 shows that M is unique.

Lemma 5.1. Let X be an arcwise connected continuum, and let f : X ° S1 be
HWC. Let M be a subcontinuum of X such that f |M : M ° S1 is irreducible.
Then, for any points p1, p2 ∈ S1 with p1 6= p2, there is an arc in M from a point
of (f |M)−1(p1) to a point of (f |M)−1(p2).

Proof. Since X is arcwise connected, there is an arc in X from a point of
(f |M)−1(p1) to a point of (f |M)−1(p2). Hence, there is an arc, A, in X with end
points e1 and e2 such that

(1) A ∩ (f |M)−1(pi) = {ei} for each i.

We show that A ⊂ M (which proves the lemma).
Let < denote the simple ordering for A such that e1 < e2.
Now, suppose to the contrary that A 6⊂ M . Then there is a subarc, B, of

A with end points b1, b2 ∈ M such that B ∩ M = {b1, b2} and b1 < b2. Let
b ∈ B −{b1, b2}, and let Bi denote the subarc of B from bi to b for each i. Then,
since f |M : M ° S1 is irreducible, we see from Proposition 4.1 that f |Bi is a
constant map for each i. Therefore, since B = B1 ∪B2 is connected, we see that

(2) f |B is a constant map.

It follows easily from (1) that f(A) is an arc, α, in S1 from p1 to p2. Let
γ = S1 − α, and let Mγ = (f |M)−1(γ). Since f |M : M ° S1 is HWC and
irreducible, f |M is monotone by Theorem 3.1; hence,

(3) Mγ is a continuum.
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Next, we define a continuum K that we will use to obtain a contradiction.
For each i, let Ai be the subarc of A from ei to bi (note: ei 6= bi for each i

since, e.g., if e1 = b1 then, by (2), f(e1) = f(b2) which, since e1 < b2, contradicts
(1)). By (1) and the fact that α ∩ γ = {p1, p2}, we see that

(4) Ai ∩Mγ = {ei} for each i.

Now, let K = A1 ∪A2 ∪Mγ . By (3) and (4), K is a continuum.
We prove that f(K) = S1. Clearly, K ∪B = A ∪Mγ . Hence,

f(K) ∪ f(B) = f(A) ∪ f(Mγ) = α ∪ γ = S1;

also, since bi ∈ K, we see from (2) that f(B) ⊂ f(K). Therefore, f(K) = S1.
We have proved that K is a subcontinuum of X and that f(K) = S1. There-

fore, by Theorem 2.1, f |K : K ° S1 is essential. However, f |K : K ° S1 is
inessential, which we prove as follows: f(Ai) ⊂ α for each i and f(Mγ) = γ;
hence, f |Ai : Ai → S1 (each i) and f |Mγ : Mγ → S1 are inessential; thus, by (4)
and 5.2 of [W, p. 221],

f |(Ai ∪Mγ) : Ai ∪Mγ → S1 is inessential for each i;

therefore, since (A1 ∪Mγ) ∩ (A2 ∪Mγ) = Mγ , we see from (3) and 5.2 of [W, p.
221] that f |K : K ° S1 is inessential.

Therefore, having arrived at the self-contradictory statements in the preceding
paragraph, we can now conclude that A ⊂ M .

Theorem 5.2. Let X be an arcwise connected continuum, and let f : X ° S1

be HWC. Let M be a subcontinuum of X such that f |M : M ° S1 is irreducible.
Then there is at most one point p ∈ S1 such that (f |M)−1(p) is nondegenerate.

Proof. For any three points a, b, c of S1, we write abc to mean the arc in S1

from a to c that contains b (in its interior). We let g = f |M .
Now, let p, q ∈ S1 such that p 6= q. We show that g−1(p) or g−1(q) is degenerate

(which proves the theorem).
Let r, s ∈ S1 such that {r, s} separates p from q in S1. By Lemma 5.1, there

is an arc, A, in M from a point of g−1(r) to a point of g−1(s). Since r, s ∈ g(A),
clearly g(A) ⊃ rps or g(A) ⊃ rqs, say

g(A) ⊃ rqs.

Let L = g−1(rps). By Theorem 3.1, g is monotone. Hence, L is a continuum.
Thus, since A ∩ L 6= ∅, A ∪ L is a continuum; furthermore, g(A ∪ L) = S1 since
g(A) ⊃ rqs and g(L) = rps. Therefore, since g is irreducible, we have that
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A ∪ L = M.

By Theorem 3.1, g−1(q) is a continuum that is nowhere dense in M . By the
definition of L, g−1(q) ⊂ M−L and M−L is open in M ; hence, g−1(q) is nowhere
dense in M − L. Now, recall that A ∪ L = M and, hence, M − L ⊂ A. Thus,
g−1(q) is nowhere dense in the arc A. Therefore, since g−1(q) is a continuum,
g−1(q) must be degenerate.

Our next theorem describes the structure of the continuum M in Theorem 5.2.
The theorem leads to the characterization in Theorem 5.6.

We use the following terminology: An end of a compactification, (Z, e), of R1 is
either one of the sets ∩t>0e([t, +∞)) and ∩t<0e((−∞, t]); the remainder of (Z, e)
is Z − e(R1). It is easy to see that the ends and the remainder do not depend on
the choice of e; thus, we speak of an end of Z and the remainder of Z (without
mentioning e).

Obviously, the remainder is the union of the two ends, and each end is a
continuum (by 1.8 of [N2, p. 6]). As an example, one end of U in Figure 3 is C

and the other end is degenerate (the point at the top of the vertical line segment).

Theorem 5.3. Let X be an arcwise connected continuum, and let f : X ° S1

be HWC. Let M be a subcontinuum of X such that f |M : M ° S1 is irreducible.
Then, M is a compactification of R1 with a continuum as the remainder such that
at least one end of the compactification is degenerate.

Proof. Let g = f |M . Then, by Theorem 5.2, there is a point p ∈ S1 such
that g|(M − g−1(p)) is one-to-one. An easy argument with sequences shows that
g−1|(S1 − {p}) is continuous. Hence, g|(M − g−1(p)) is a homeomorphism of
M − g−1(p) onto S1 − {p}. Thus, M − g−1(p) is homeomorphic to R1. Also, by
Theorem 3.1, M − g−1(p) is dense in M and g−1(p) is a continuum. This proves
that M is a compactification of R1 with the continuum g−1(p) as the remainder.
Finally, by Lemma 5.1, there is an arc in M from a point of M − g−1(p) to a
point of g−1(p); therefore, it follows that at least one end of the compactification
is degenerate.

The proof of Theorem 5.3 shows how the map f |M is related to M as a
compactification of R1. This information is important, so we state it in the
corollary below; we will use the corollary in this section and in section 7.

Corollary 5.4 (to proof Theorem 5.3). Let X be an arcwise connected contin-
uum, and let f : X ° S1 be HWC. Let M be a subcontinuum of X such
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that f |M : M ° S1 is irreducible. Then there is a point p ∈ S1 such that
f |(M−f−1(p)) is a homeomorphism of M−f−1(p) onto S1−{p}, and (f |M)−1(p)
is a nowhere dense continuum in M . Thus, M is a compactification of M−f−1(p)
with remainder (f |M)−1(p), where M − f−1(p) is homeomorphic to R1 and
(f |M)−1(p) is a continuum.

The continuum M in Theorem 5.3 need not be arcwise connected, as the fol-
lowing example shows:

Example 5.5. Let X be the continuum in Figure 3: X consists of the open
subset U homeomorphic to R1, the sin(1/x)-continuum C = U − U , and the arc
A joining two points in different arc components of C. Let M = U = U ∪C. Let
Y and f : X ° Y be as in Example 2.5. Then, by Example 2.5, f : X ° Y is
HWC and Y is homeomorphic to S1; also, it is easy to see that f |M : M ° Y

is irreducible. Therefore, the assumptions in Theorem 5.3 are satisfied; however,
M is not arcwise connected.

We have the following characterization theorem:

Theorem 5.6. Let X be an arcwise connected continuum. Then

(1) there is an HWC, irreducible map of X onto S1

if and only if

(2) X is a compactification of R1 with a continuum as the remainder.

Furthermore, (2) implies (1) without assuming that X is arcwise connected.

Proof. That (1) implies (2) is by Theorem 5.3. Conversely, assume that X

is as in (2) (we do not assume that X is arcwise connected). By (2), there is
an embedded copy, U , of R1 in X such that U is dense in X and X − U is a
continuum. For the purpose of using Example 2.5, note that U is open in X and
that X − U = U − U . Hence, letting Y and f : X ° Y be as in Example 2.5,
we see from Example 2.5 that f is HWC and Y is homeomorphic to S1. Finally,
note from the way f is defined that for each x ∈ U , f−1(f(x)) = {x}; thus, since
U is dense in X, it follows easily that f : X ° Y is irreducible. Therefore, we
have proved that f (when followed by a homeomorphism of Y onto S1) is a map
with the properties in (1).

We have the following uniqueness theorem:

Theorem 5.7. Let X be an arcwise connected continuum, and let f : X ° S1 be
HWC. Then there is only one subcontinuum, M , of X such that f |M : M ° S1

is irreducible.
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U

C

A
Figure 3. (For Example 5.5.)

Proof. There is a subcontinuum, M , of X such that f |M : M ° S1 is irre-
ducible (4.36(b) of [N2, p. 68]). Let M ′ be a subcontinuum of X such that
f |M ′ : M ′ ° S1 is irreducible. We show that M = M ′.

Suppose, to the contrary, that M 6= M ′. Then, since f |M ′ : M ′ ° S1 is
irreducible, M 6⊂ M ′. Hence, M − M ′ is a nonempty open subset of M . Let
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U = M − f−1(p) in Corollary 5.4; by Corollary 5.4, U is a dense open set in
M such that f |U is one-to-one. Since U is a dense open set in M , U −M ′ is a
nonempty open set in M ; hence, there is a nondegenerate subcontinuum, K, of
U −M ′ (5.5 of [N2, p. 74]).

Since f |U is one-to-one, f(K) is nondegenerate. Since f |M ′ : M ′ ° S1 is WC,
there is a subcontinuum, L, of M ′ such that f(L) = f(K). Since K ∩M ′ = ∅,
K ∩ L = ∅. These properties of K and L contradict Corollary 4.5. Therefore,
M = M ′.

The example below shows the necessity of assuming that X is arcwise connected
in Theorem 5.7; in addition, the continuum in the example is rational and has
only three arc components.

Example 5.8. Let H and f : H ° S1 be as in the Example 3.4 (see Figure 2).
Let X0 and X1 denote the copies of H in R2 × R1 given by X0 = H × {0} and
X1 = H × {1}. Let e denote the end point of H, and let A be the line segment
in R2 × R1 from (e, 0) to (e, 1). Let

X = X0 ∪X1 ∪A.

Let π denote the projection map of X onto X0. Now, considering X0 to be the
same as H, let g = f ◦ π. It is easy to check that π is HWC. Therefore, since f

is HWC by Example 3.4, we see that g : X ° S1 is HWC. Clearly, g maps each
of S1 × {0} and S1 × {1} irreducibly onto S1.

6. Nonexistence of HWC Maps of Cartesian Products onto S1

We prove a nonexistence theorem (Theorem 6.2). We also give an example
related to the theorem.

Note the following definition: Let X be a continuum, and let Y be a subcontin-
uum of X. A point, y, in Y is said to be continuumwise accessible from a point,
x, in X − Y provided that there is a subcontinuum, K, of X such that x ∈ K

and K ∩ Y = {y}.
We prove the following general lemma:

Lemma 6.1. Let X be a continuum, and let f : X ° S1 be HWC. If Y is a
proper subcontinuum of X such that f(Y ) = S1, then some point of Y is not
continuumwise accessible from some point of X − Y .

Proof. If int(Y ) 6= ∅, then any point of int(Y ) obviously has the desired prop-
erty. Hence, for the purpose of proof, assume that int(Y ) = ∅. Since f(Y ) = S1,
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there is a subcontinuum, M , of Y such that f |M : M ° S1 is irreducible (4.36(b)
of [N2, p. 68]). We show that any point of M has the desired property.

Let p ∈ M . Since f(M) = S1, there exists q ∈ M such that f(q) 6= f(p).
Hence, by the continuity of f , there is an open subset, V , of X such that q ∈ V

and f(p) /∈ f(V ). Since we have assumed that int(Y ) = ∅, there exists r ∈ V −Y .
Now, suppose there is a subcontinuum, N , of X such that r ∈ N and N ∩Y =

{p}. Then, since p ∈ M ⊂ Y , N ∩ M = {p}. Thus, since r, p ∈ N , we have
by Proposition 4.1 that f(r) = f(p); however, since r ∈ V , f(r) 6= f(p). This
contradiction shows that there is no N with the properties assumed. Therefore,
the point p, which is a point of Y , is not continuumwise accessible from the point
r of X − Y .

Theorem 6.2. There is no HWC map of the cartesian product of any two non-
degenerate continua onto S1.

Proof. Suppose that there are nondegenerate continua, Z1 and Z2, such that
there is an HWC map, f , of their cartesian product, Z1 × Z2 = X, onto S1. By
Theorem 2.1, f : X ° S1 is essential. Hence, by 5.6 of [W, p. 223], there exists
p1 ∈ Z1 or p2 ∈ Z2, say p1 ∈ Z1, such that

f |({p1} × Z2) : {p1} × Z2 → S1 is essential.

Thus, letting Y = {p1} × Z2, we see that f(Y ) = S1. Now, note that any point,
(p1, q2), of Y is continuumwise accessible from any point, (z1, z2), of X − Y (as
is seen by considering the union of {z1} × Z2 and Z1 × {q2}). Therefore, since
f : X ° S1 is HWC and f(Y ) = S1, we have a contradiction to Lemma 6.1.

Regarding Theorem 6.2, it is easy to give examples of HWC maps of continua
of any dimension onto S1. For example, see Example 2.5 or Theorem 8.4; how-
ever, note that the continua in Example 2.5 and Theorem 8.4 are one-dimensional
at some points. As is more pertinent to Theorem 6.2, Wlodzimierz J. Charatonik
and Januasz R. Prajs have constructed n-dimensional Cantor manifolds for each
n ≤ ∞ that admit HWC maps onto S1; their construction is done by replacing the
layers of the Knaster V −Λ continuum [K, p. 191] with a given n-dimensional Can-
tor manifold and making some identifications. (Their construction was done after
a lecture that the second author of this paper gave at Professor J. J. Charatonik’s
seminar at the Instituto de Matemáticas of the Universidad Nacional Autónoma
de Mexico). The following example also shows that there are n-dimensional Can-
tor manifolds for each n ≤ ∞ that admit HWC maps onto S1:
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Example 6.3. Let Y = H∪S1 be as in Figure 2. Let Z be any continuum. Let ∼
denote the following equivalence relation on Y ×Z : (p, z1) ∼ (p, z2) for each point
p ∈ S1, and (y, z) ∼ (y, z) for each (y, z) 6∈ (S1 × Z). Let X denote the quotient
space (Y ×Z)/∼. We define an HWC map f : X ° S1. First, let q : Y ×Z ° X

be the quotient map, and let πY : Y × Z ° Y be the projection map. Note that
πY is constant on each point inverse of q, and let k = πY ◦ q−1 : X ° Y ; k is
continuous by 3.22 of [N2, p. 45]. Now, letting r be as in Example 3.4, we let

f = r ◦ k.

We see that f : X ° S1 is HWC by using Theorem 2.1 as we did in Example
3.4. Furthermore, if Z is a Cantor manifold [HW, p. 93], then X is a Cantor
manifold. Therefore, there are n-dimensional Cantor manifolds for each n ≤ ∞
that admit HWC maps onto S1.

7. The Cyclic Element Retraction

Let X be a semi-locally-connected (slc) continuum [W, p. 19], and let E be a
cyclic element of X. Then (3.31 of [W, p. 69]) the components of X − E form
a null sequence, and if L is one of these components, then Bd(L) consists of a
single point xL (i.e., L ∩ E = {xL}). Thus, on defining r : X ° E by

r(x) =

{

x, if x ∈ E

xL, if x ∈ L = a component of X − E

it follows easily that r is a (continuous) retraction of X onto E (compare with 3.9
of [W, p. 70]). We call r the cyclic element retraction of X onto E. It is unique
in that it is the only retraction of X onto E that is constant on each component
of X − E.

We prove the proposition below for use in the proofs of our main theorems in
the next section.

Proposition 7.1. If X is an slc continuum and E is a cyclic element of X, then
the cyclic element retraction of X onto E is HWC.

Proof. Let r denote the cyclic element retraction of X onto E. Let Y be a
subcontinuum of X. We wish to show that r|Y : Y ° r(Y ) is WC. This is
evident if Y ⊂ X − E (since Y is then contained in some component of X − E

and, hence, r|Y is constant). Therefore, we assume for the rest of the proof that
Y ∩ E 6= ∅. We prove that



HEREDITARILY WEAKLY CONFLUENT MAPPINGS ONTO S1 715

(∗) r(Y ) = Y ∩ E.

Proof (of (∗)). Assume that L is any component of X −E such that Y ∩ L 6= ∅;
then, since Y ∩ E 6= ∅ and Bd(L) = {xL}, we see that xL ∈ Y ; thus, since
r(L) = {xL}, we have that r(Y ∩ L) ⊂ Y ∩ E. Therefore, since L was any
component of X − E such that Y ∩ L 6= ∅, we have proved that

r(Y − E) ⊂ Y ∩ E.

Thus, since r|E is the identity map of E, it follows that

r(Y ) = r(Y − E) ∪ r(Y ∩ E) = Y ∩ E,

which proves (∗).

Now, let B be a subcontinuum of r(Y ). Then, by (∗), B ⊂ Y ∩ E. Therefore,
B is a subcontinuum of Y and r(B) = B (since r|E is the identity map of E).
This proves that r|Y : Y ° r(Y ) is WC.

Remark 7.2. We only used the hypotheses in Proposition 7.1 to guarantee a
retraction as defined preceding Proposition 7.1 (in particular, the proof of Propo-
sition 7.1 did not use that X is slc or that E is a cyclic element of X). Thus,
retractions that are so defined in general are always HWC. It would be of interest
to have other results concerning when retractions are HWC.

8. HWC Maps of Arcwise Connected Semi-locally-connected

Continua onto S1

Recall from the preceding section that semi-locally-connected is abbreviated
slc. We refer the reader to [W] for definitions and basic results about slc continua.
We only mention the following terminology from [W] since failure to do so may
cause confusion: A cut point of a continuum X is a point, p, of X such that
X − {p} is not connected [W, p. 41]; a continuum is said to be cyclic provided
that it has no cut point [W, p. 107]. Thus, the term cut point is what nowadays
is often called a separating point (to avoid confusion with points that weakly cut).

In this section we obtain two definitive results: The first result shows how
any HWC map of an arcwise connected slc continuum onto S1 must be defined
(Theorem 8.4); the second result shows that there is a simple characterization of
the arcwise connected slc continua that admit an HWC map onto S1 (Corollary
8.5).



716 J. F. DAVIS AND SAM B. NADLER, JR.

Lemma 8.1. Let X be an arcwise connected slc cyclic continuum, and let f :
X ° S1 be HWC. Then there is a point p ∈ S1 such that f |(X − f−1(p)) is
one-to-one.

Proof. There is a subcontinuum, M , of X such that f |M : M ° S1 is irre-
ducible (4.36(b) of [N2, p. 68]). By Corollary 5.4, there is a point p ∈ S1 such
that

(1) f |(M − f−1(p)) is a homeomorphism of M − f−1(p) onto S1 − {p}.
We show that the point p just chosen satisfies the conclusion of our lemma.

Suppose, to the contrary, that f |(X − f−1(p)) is not one-to-one. Then, since
f(M) = S1, there is a point m ∈ M − f−1(p) such that f−1(f(m)) is nondegen-
erate. Hence, by (1), there is a point x ∈ f−1(f(m))−M . Thus, by Theorem 4.7,
there is an arc, A, in f−1(f(m)) from x to m such that A ∩M = {m}. Since X

is slc and cyclic, there is an open neighborhood, U , in X of m such that x 6∈ U ,
p 6∈ f(U), and X − U is a continuum (4.14 of [W, p. 50]).

Since U ∩ f−1(p) = ∅, we see from (1) that f |(U ∩M) is an open embedding
of U ∩M in S1. Thus, since m ∈ U ∩M , there is an arc, α, in f(U ∩M) such
that m ∈ int(α). Therefore, since f(x) = f(m), f(x) ∈ int(α). Note that p 6∈ α.

Next, recall that X − U is a continuum, x ∈ X − U , and f−1(p) ⊂ X − U .
Hence, f(X−U) is a subcontinuum of S1 containing the points f(x) and p. Thus,
since f(x) ∈ int(α) and p 6∈ α, we see that f(X −U) must contain a subarc, β, of
α. Therefore, since f is HWC and X−U is a continuum, there is a subcontinuum,
K, of X − U such that f(K) = β.

Let L = [f |(U ∩M)]−1(β). Then, since f |(U ∩M) is an embedding (by (1))
and since β ⊂ α ⊂ f(U∩M), we see that L is an arc in U∩M such that f(L) = β.
Since L ⊂ U , K ∩ L = ∅.

We have shown that K and L are disjoint subcontinua of X such that f(K) =
f(L) = β.
This contradicts Corollary 4.5. Therefore, f |(X − f−1(p)) is one-to-one.

Lemma 8.2. Let X be an arcwise connected slc cyclic continuum, and let f :
X ° S1 be HWC. Let M be a subcontinuum of X such that f |M : M ° S1 is
irreducible. Then, M is a simple closed curve.

Proof. Suppose, to the contrary, that M is not a simple closed curve.
By Theorem 5.3, M is a compactification of R1 with a continuum, L, as the

remainder. If L is degenerate, then M is the one-point compactification of R1

and, therefore, M is a simple closed curve. Hence, by our initial supposition, we
have that
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(1) L is nondegenerate.

Since L is a nowhere dense subcontinuum of M , the last part of Theorem 3.1
gives us that f |L is a constant map, say f(L) = {p}. Moreover, by Corollary 5.4,

(2) L = (f |M)−1(p).

By (1) and (2), we see that the point p in (2) must be the point p guaranteed by
Lemma 8.1. Hence, f |(X − f−1(p)) is one-to-one. Therefore, since f(M) = S1,
it follows easily that

(3) X = M ∪ f−1(p).

Now, fix a point y ∈ L. By (1), y has arbitrarily small neighborhoods in X that
do not contain L. Thus, since X is slc and cyclic, there is an open neighborhood,
U , in X of y such that U 6⊃ L and X − U is a continuum (4.14 of [W, p. 50]).
Now, recall that M is a compactification of R1 with remainder L. Therefore, since
U ∩L 6= ∅ and U 6⊃ L, there is a component, A, of M −U such that A ∩L = ∅.

Since A ∩ L = ∅ and L ∩ (X − U) 6= ∅, clearly A 6= X − U . Hence, A is a
proper subcontinuum of the continuum X − U . Thus, since A ∩ L = ∅, there is
a sequence, {Bi}∞i=1, of subcontinua of (X − U) − L such that A ⊂ Bi 6= A for
each i and ∩∞i=1Bi = A (5.5 of [N2, p. 74]). Since A is a component of M − U ,
clearly Bi 6⊂ M for any i. Hence, by (3), Bi ∩ f−1(p) 6= ∅ for each i. Thus, since
∩∞i=1Bi = A, we have that A ∩ f−1(p) 6= ∅. Hence, by (2), A ∩ L 6= ∅. This
contradicts the fact that A∩L = ∅. Therefore, our supposition at the beginning
of the proof is false; in other words, M is a simple closed curve.

The following theorem is a key step in the proof of our main theorem:

Theorem 8.3. Let X be an arcwise connected slc cyclic continuum, and let f :
X ° S1 be HWC. Then, X is a simple closed curve and f is a homeomorphism.

Proof. There is a subcontinuum, M , of X such that f |M : M ° S1 is irre-
ducible (4.36(b) of [N2, p. 68]). By Lemma 8.2, M is a simple closed curve.
Hence, by Corollary 2.2, f |M : M ° S1 is a homeomorphism. We show that
M = X, which will complete the proof of the theorem.

By Lemma 8.1, there is a point p ∈ S1 such that f |(X − f−1(p)) is one-to-
one. Thus, since f(M) = S1, it follows easily that X = M ∪ f−1(p) and that
M ∩ f−1(p) 6= ∅. Since M ∩ f−1(p) 6= ∅ and since f |M is one-to-one, we have
that M ∩ f−1(p) consists of exactly one point, m. Since X is cyclic, m is not a
cut point of X. Thus, since X = M ∪ f−1(p) and M ∩ f−1(p) = {m}, it follows
that f−1(p) ⊂ M . Therefore, since X = M ∪ f−1(p), we have that X = M .
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We are ready to prove the main theorem of the section. The theorem gives a
formula for any HWC map of an arcwise connected slc continuum onto S1.

Theorem 8.4. Let X be an arcwise connected slc continuum, and let f : X ° S1

be a map. Then

(1) f is HWC

if and only if

(2) there is a simple closed curve, C, in X such that C is a cyclic element of
X and f = h ◦ r, where r is the cyclic element retraction of X onto C

(section 7) and h is a homeomorphism of C onto S1.

Proof. That (2) implies (1) follows easily using Proposition 7.1.
Conversely, assume that (1) holds. Then, by Theorem 2.1, f : X ° S1 is

essential. Hence, there is a cyclic element, C, of X such that f |C : C ° S1 is
essential (5.41 of [W, p. 222]). Since C is a cyclic element of X, it is easy to
see that C has the properties assumed for X in the theorem; namely, C is an
arcwise connected slc continuum. In addition, since X is slc, C is cyclic (1.7 of
[W, p. 66]). Hence, we can apply Theorem 8.3 to C, which gives us that C is
a simple closed curve and that f |C : C ° S1 is a homeomorphism. Now, let
h = f |C, and let r be the cyclic element retraction of X onto C (defined in the
first paragraph of section 7). The proof of our theorem will be finished once we
prove that f = h ◦ r.

To prove that f = h ◦ r, let x ∈ X. Assume first that x ∈ C. Then, r(x) = x;
thus, since h = f |C,

(h ◦ r)(x) = h(x) = f(x).

Therefore, to complete the proof, assume that x 6∈ C. Let L denote the component
of X−C containing x. Recall from the first paragraph of section 7 that r(x) = xL,
where L ∩ C = {xL}. Since L ∩ C = {xL} and f |C : C ° S1 is irreducible, we
have by Proposition 4.1 that f |L is a constant map. Hence, f(x) = f(xL); thus,
since r(x) = xL and h = f |C,

(h ◦ r)(x) = h(xL) = f(xL) = f(x).

This completes the proof that f = h ◦ r. Therefore, we have proved that (1) of
Theorem 8.4 implies (2).

The following simple corollary characterizes all the arcwise connected slc con-
tinua that can be mapped onto S1 by an HWC map:
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Corollary 8.5. Let X be an arcwise connected slc continuum. Then there is an
HWC map of X onto S1 if and only if some simple closed curve in X is a cyclic
element of X.

Proof. Half of the corollary is immediate from the fact that (1) implies (2) in
Theorem 8.4; the other half is due to Proposition 7.1.

Remarks 8.6. (1) Arcwise connectivity is a necessary assumption in Theorem
8.3, Theorem 8.4 and Corollary 8.5: Pierce [P] has constructed an slc cyclic con-
tinuum that is not a simple closed curve and that admits an HWC map onto S1

(in fact, Pierce’s map is even hereditarily monotone). (2) Theorem 8.3, Theorem
8.4 and Corollary 8.5 are true for locally connected continua since locally con-
nected continua are arcwise connected and slc (5.2 of [W, p. 38] and 13.21 of [W,
p. 20], respectively).

9. A Problem

It would be interesting to study HWC maps onto particular continua other
than S1. Perhaps a starting point would be some simple graphs — for example,
a figure eight. The following result may be useful in this connection:

Proposition 9.1. Let X be an arcwise connected continuum, and let f : X ° S1

be HWC. Let M be a subcontinuum of X such that f |M : M ° S1 is irreducible.
If M 6= X and X−M is locally connected, then (f |M)−1(q) separates X for some
q ∈ S1 (in fact, for any q ∈ f(X −M)).

Proof. Since M 6= X, there exists q ∈ f(X −M). Let Mq = (f |M)−1(q), and
let

H = f−1(q)−Mq.

Note that H 6= ∅ (by our choice of q), H is a proper subset of X − Mq (since
M − Mq 6= ∅), and H is closed in X − Mq (since H = f−1(q) ∩ (X − Mq)).
Therefore, once we show that H is open in X − Mq, we will have proved that
Mq separates X. Let x ∈ H. Then, by Theorem 4.7, there is an arc, A, in
f−1(q) from x to a point z ∈ Mq such that A ∩Mq = {z} (note: Mq 6= ∅ since
f(M) = S1). Since x ∈ X−M and since X−M is locally connected and open in
X, there is a connected open subset, U , of X such that x ∈ U and U ⊂ X −M .
Now, let N = A ∪ U . Note that N is a continuum and that M ∩N = {z} (since
M ∩N = M ∩A). Therefore, we can apply Proposition 4.1 to obtain that f |N is
a constant map. Thus, since A ⊂ N and f(A) = {q}, we have that f(N) = {q}.
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Hence, f(U) = {q}. Thus, since U ∩M = ∅, U ⊂ H. Therefore, since x ∈ U , we
have proved that H is open in X −Mq.
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