ESTIMATES OF SPANS OF A SIMPLE CLOSED CURVE INVOLVING MESH

K.T. HALLENBECK Communicated by Andrzej Lelek

ABSTRACT. We show that the dual effectively monotone span of a simple closed curve X in the plane does not exceed the infimum of the set of positive numbers m such that a chain with mesh m covers X. We also include a short direct proof of a known inequality $\sigma_0(0) \leq \epsilon(X)$, where X is a continuum.

We begin with a brief review of the definitions introduced by A. Lelek in [1] and [2]. Let X be a nonempty connected metric space. The span $\sigma(X)$ of X is the least upper bound of the set of real numbers $r, r \geq 0$, that satisfy the following condition.

There exists a connected space Y and a pair of continuous functions $f,g:Y \to X$ such that

(1)
$$f(Y) = g(Y)$$

and $\operatorname{dist}[f(y), g(y)] \ge r$ for every $y \in Y$.

Relaxing the requirement posed by equality (1) to the inclusion $f(Y) \subseteq g(Y)$ produces the definition of the semispan $\sigma_0(X)$ of X. Requiring that g be onto gives the definitions of the surjective span $\sigma^*(X)$ and the surjective semispan $\sigma_0^*(X)$.

It was pointed out in [2] that

 $0 \le \sigma(X) \le \sigma_0(X) \le \operatorname{diam}(X).$

In this paper we concentrate on the case when X is a simple closed curve in the plain. Notice that in this case $\sigma^*(X) = \sigma(X)$ and $\sigma^*_0(X) = \sigma_0(X)$. We define the monotone span $\sigma_m(X)$ of X as follows.

This paper was supported in part by a Mini Grant from Widener University.

Definition 1. If X is a simple closed curve then

$$\sigma_m(X) = \sup_{f,g} \inf_{t \in [0,1]} \|f(t) - g(t)\|,$$

where $f, g: [0, 1] \to X$ are continuous on [0, 1], monotone on [0, 1), and f([0, 1]) = X = g([0, 1]).

Next we define the dual monotone span $\bar{\sigma}_m(X)$ of X.

Definition 2. If X is a simple closed curve then

$$\bar{\sigma}_m(X) = \inf_{h,k} \sup_{t \in [0,1]} \|h(t) - t(k)\|;$$

where $h, k : [0, 1] \to X$ are continuous on [0, 1], monotone on [0, 1), h([0, 1]) = X = k([0, 1]), h(0) = k(0), there exists a point $t' \in (0, 1)$ such that $h([0, t']) \cap k([0, t']) = \{h(0)\}$ and neither h([0, t']) nor k([0, t']) is a singleton.

Finally, we define the dual effectively monotone span $\bar{\sigma}_{em}(X)$.

Definition 3. If X is a simple closed curve then

$$\overline{\sigma}_{em}(X) = \inf_{h,k} \sup_{t \in [0,1]} \left\| h(t) - k(t) \right\|,$$

where $h, k : [0,1] \to X$ are continuous, h([0,1]) = X = k([0,1]), h(0) = k(0),there exists a point $t_0 \in (0,1)$ such that $h(t_0) = k(t_0) \neq h(0)$ and $h([0,t_0]) \cap k([0,t_0]) = \{h(0), h(t_0)\}.$

It follows from a more general result of A. Lelek [2, Th.2.1, p. 39] that when X is a continuum then $\sigma_0(X) \leq \epsilon(X)$.¹ We include this estimate with a different direct proof.

Theorem 1.1. Let X be a continuum and let $\epsilon(X)$ be the infimum of the set of positive numbers m such that a chain with mesh m covers X. Then $\sigma_0(X) \leq \epsilon(X)$.

PROOF. Let Y be a connected space and let $f, g: Y \to X$ be continuous functions such that $g(Y) \supset f(Y)$. Let m be a number such that a chain C with mesh m covers X, and let C_1, C_2, \ldots, C_n denote the links in the chain C in their consecutive order. If there exist $y_0 \in Y$ and $i, 1 \leq i \leq n$, such that $f(y_0), g(y_0) \in \overline{C_i}$ then dist $\{f(y_0), g(y_0)\} \leq m$. In this case $\sigma_0(x) \leq m$, and the arbitrary choice of m implies that $\sigma_0(X) \leq \epsilon(X)$.

742

 $^{^1\}mathrm{Another}$ proof, due to E. Duda, appeared in H. Fernandez's Doctoral Dissertation, U. of Miami, 1998

Suppose now that for each $i, 1 \leq i \leq n$, and every $y \in Y$, if $f(y) \in \overline{C}_i$ then $g(y) \notin \overline{C}_i$. This property, along with the continuity of f and g, implies that the sets

$$A = \{ y \in Y : f(y) \in C_i, \ g(y) \in C_j, \ i < j \}$$

and

$$B = \{ y \in Y : f(y) \in C_i, \ g(y) \in C_j, i > j \}$$

are open and disjoint, and $A \cup B = Y$. Furthermore, $A \neq \emptyset$ and $B \neq \emptyset$. Indeed, suppose that $B = \emptyset$ and let k be the smallest number such that $g(Y) \cap C_k \neq \emptyset$. Clearly, k > 1. Let $y_1 \in Y$ and let $g(y_1) \in C_k$. Then $f(y_1) \in C_i \cap (X \setminus \overline{C_k})$ for some i, i < k. This contradicts the assumption that $g(Y) \supset f(Y)$. Hence, $B \neq \emptyset$. Similarly, we argue that $A \neq \emptyset$. It follows that, in this case, A and B provide a separation of Y. This contradicts the assumption that Y is connected. Therefore, only the first considered case holds, i.e. there exists $y_0 \in Y$ and $i, 1 \leq i \leq n$, such that $f(y_0), g(y_0) \in \overline{C_i}$ and, hence, $\sigma_0(X) \leq \epsilon(X)$.

It turns out that the same bound from above, $\epsilon(X)$, holds for the dual effectively monotone space of a simple closed curve X. For a pair of two distinct points $A, B \in X$ we denote the counterclockwise arc on X from A to B by AB^{\sim} .

Theorem 1.2. Let X be a simple closed curve. Then $\bar{\sigma}_{em}(X) \leq \epsilon(X)$.

PROOF. We need only assume that X is a polygon. Let $\{C_j\}_{j=1}^N$ be a chain of closed sets with mesh δ such that $X \subseteq \bigcup_{j=1}^N C_j$. We choose a point $E \in X \cap C_1$ and a point $F \in X \cap C_N$. Let g be the mapping that defines X, $g: [0,1] \to X, g(0) = g(1), 1:1$ on [0,1). Without loss of generality we assume that g(0) = E. Let t_F be the point in (0,1) such that $g(t_F) = F$. Define two homeomorphisms on [0,1] in the following way:

$$g_1: = [0,1] \to EF^{\sim}, \quad g_1(t) = g(t_F t),$$

$$g_2: = [0,1] \to FE^{\sim}, \quad g_2(t) = g(1 - (1 - t_F)t).$$

Note that $g_1(0) = g_2(0) = E$, $g_1(1) = g_2(1) = F$.

We shall construct two mappings h, k such that $h: [0,1] \to EF^{\sim}$, $k: [0,1] \to FE^{\sim}$ and $\forall t \in [0,1] \exists j, j \in (1, \ldots, N) \ni h(t)$, $k(t) \in C_j$. First we assume, without loss of generality, that ∂C_j is a Jordan curve for each link C_j in the chain $\{C_j\}_{j=1}^N$, and that $C_j \cap C_{j+1} = \partial C_j \cap \partial C_{j+1}, \ldots, N-1$, while diam $(C_j \cap X) \leq \delta$. Assume also that $E \in \partial C_1$ and there is an arc L_0 , $\partial C_1 \supset L_0$, such that $L_0 \cap X = E$. Similarly, $F \in \partial C_N$ and there is an arc $L_N, \partial C_N \supset L_N$, such that $L_N \cap X = F$. Let $L_j = \partial C_j \cap \partial C_{j+1}$ for $j = 1, \ldots, N-1$, let $i = \sqrt{-1}$, and let $G: [0,1] \times [0,i] \to C_N$.

 $\bigcup_{j=1}^{N} C_j$ be a homeomorphism, mapping the unit square onto $\bigcup_{j=1}^{N} C_j$, with the following properties:

1)
$$\forall j = 0, ... N$$
 $G([0,1] \times \{ij/N\}) = L_j$
2) $\forall j = 1, ... N$ $\bigcup_{t \in [(j-1)/N, j/N]} G([0,1] \times \{ti\}) = C_j$

3)
$$\forall t, s \in [0,1]$$
 $t \neq s \Rightarrow G([0,1] \times \{ti\}) \cap G([0,1] \times \{si\}) = \emptyset$

Define $f_1, f_2 : [0, 1] \rightarrow [0, 1]$ as follows:

$$\forall_{t \in [0,1]} f_1(t) = \operatorname{Im} G^{-1}(g_1(t)), f_2(t) = \operatorname{Im} G^{-1}(g_2(t))$$

Notice that $f_1(0) = f_2(0) = 0$, $f_1(1) = f_2(1) = 1$ and f_1, f_2 are continuous and piecewise weakly monotone. By the early version of the Mountain Climbers Theorem due to Whittaker (see Theorem 3 in [4]) there exist two maps $\overline{f}_1, \overline{f}_2 : [0,1] \rightarrow [0,1]$ such that $\overline{f}_1(0) = \overline{f}_2(0) = 0$, $\overline{f}_1(1) = \overline{f}_2(1) = 1$, and $f_1(\overline{f}_1(t)) = f_2(\overline{f}_2(t))$ for each $t \in [0,1]$. Let H_1 and H_2 be two homeomorphisms on $G^{-1}(EF^{\sim})$ and $G^1(FE^{\sim})$, respectively, such that $H_1(G^{-1}(g_1(t))) = (t, f_1(t))$ and $H_2(G^{-1}(g_2(t))) = (t, f_2(t))$ for each $t \in [0,1]$.

We are now in a position to define the mappings h, k. For each $t \in [0, 1]$ put

$$\begin{aligned} h(t) &= G(H_1^{-1}(f_1(t), f_1(f_1(t)))) \\ k(t) &= G(H_2^{-1}(\bar{f}_2(t), f_2(\bar{f}_2(t)))) \end{aligned}$$

Note that h(0) = k(0) = E since $H_n^{-1}(0,0) = G^{-1}(g_n(0)) = G^{-1}(E), n = 1, 2$. Similarly, h(1) = k(1) = F since $H_n^{-1}(1,1) = G^{-1}(g_n(1)) = G^{-1}(F), n = 1, 2$. Furthermore, $h([0,1]) = EF^{\sim}, k[(0,1]) = FE^{\sim}, \text{ and } \forall t \in [0,1] \exists s \in [0,1] \Rightarrow h(t), k(t) \in G([0,1] \times \{si\})$. Hence, $\forall t \in [0,1] \exists j, j \in \{1, \dots N\} \Rightarrow h(t), k(t) \in C_j$.

Finally, we define $h_1, k_1 : [0, 1] \to X$ as follows:

$$h_1(t) = \begin{cases} h(2t), & \text{for } t \in [0, 1/2] \\ h(2-2t), & \text{for } t \in [1/2, 1] \end{cases}$$
$$k_2(t) = \begin{cases} k(2t), & \text{for } t \in [0, 1/2] \\ k(2-2t), & \text{for } t \in [1/2, 1]. \end{cases}$$

It follows that $\forall_{t \in [0,1]} h_1(t)$, $k_1(t) \in C_j$ for the same j. Hence, $\forall_{t \in [0,1]} \|h_1(t) - k_1(t)\| \leq \delta$. Since h_1 and k_1 satisfy the conditions imposed in the definition of $\overline{\sigma}_{em}$, this ends the proof of Theorem 1.2.

Note. The span of X is equal to $\epsilon(X)$ when X is the boundary of a convex region (see [3]).

References

- [1] A. Lelek, Disjoint mappings and the span of spaces, Fund. Maths. 55 (1964), 199-214.
- [2] _____, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), 35-45.
- [3] K. Tkaczynska, The span and semispan of some simple closed curves, Proc. Amer. Math. Soc., vol.III, no.1 (1991), 247-253.
- [4] J.V. Whittaker, A mountain-climbing problem, Canad. J. Math. 18 (1966), 873-882.

Received February 25, 1997

Revised version received April 18, 2000

DEPARTMENT OF MATHEMATICS, WIDENER UNIVERSITY, CHESTER, PA 19013

(Current address) 4733 WEATHERHILL DRIVE, WILMINGTON, DE 19808