ESTIMATES OF SPANS OF A SIMPLE CLOSED CURVE INVOLVING MESH

K.T. HALLENBECK
Communicated by Andrzej Lelek

Abstract

We show that the dual effectively monotone span of a simple closed curve X in the plane does not exceed the infimum of the set of positive numbers m such that a chain with mesh m covers X. We also include a short direct proof of a known inequality $\sigma_{0}(0) \leq \epsilon(X)$, where X is a continuum.

We begin with a brief review of the definitions introduced by A. Lelek in [1] and [2]. Let X be a nonempty connected metric space. The span $\sigma(X)$ of X is the least upper bound of the set of real numbers $r, r \geq 0$, that satisfy the following condition.

There exists a connected space Y and a pair of continuous functions $f, g: Y \rightarrow$ X such that

$$
\begin{equation*}
f(Y)=g(Y) \tag{1}
\end{equation*}
$$

and $\operatorname{dist}[f(y), g(y)] \geq r$ for every $y \in Y$.
Relaxing the requirement posed by equality (1) to the inclusion $f(Y) \subseteq g(Y)$ produces the definition of the semispan $\sigma_{0}(X)$ of X. Requiring that g be onto gives the definitions of the surjective span $\sigma^{*}(X)$ and the surjective semispan $\sigma_{0}^{*}(X)$.

It was pointed out in [2] that

$$
0 \leq \sigma(X) \leq \sigma_{0}(X) \leq \operatorname{diam}(X)
$$

In this paper we concentrate on the case when X is a simple closed curve in the plain. Notice that in this case $\sigma^{*}(X)=\sigma(X)$ and $\sigma_{0}^{*}(X)=\sigma_{0}(X)$. We define the monotone span $\sigma_{m}(X)$ of X as follows.

[^0]Definition 1. If X is a simple closed curve then

$$
\sigma_{m}(X)=\sup _{f, g} \inf _{t \in[0,1]}\|f(t)-g(t)\|
$$

where $f, g:[0,1] \rightarrow X$ are continuous on $[0,1]$, monotone on $[0,1)$, and $f([0,1])=$ $X=g([0,1])$.

Next we define the dual monotone span $\bar{\sigma}_{m}(X)$ of X.
Definition 2. If X is a simple closed curve then

$$
\bar{\sigma}_{m}(X)=\inf _{h, k} \sup _{t \in[0,1]}\|h(t)-t(k)\| ;
$$

where $h, k:[0,1] \rightarrow X$ are continuous on $[0,1]$, monotone on $[0,1), h([0,1])=$ $X=k([0,1]), h(0)=k(0)$, there exists a point $t^{\prime} \in(0,1)$ such that $h\left(\left[0, t^{\prime}\right]\right) \cap$ $k\left(\left[0, t^{\prime}\right]\right)=\{h(0)\}$ and neither $h\left(\left[0, t^{\prime}\right]\right)$ nor $k\left(\left[0, t^{\prime}\right]\right)$ is a singleton.

Finally, we define the dual effectively monotone span $\bar{\sigma}_{e m}(X)$.
Definition 3. If X is a simple closed curve then

$$
\bar{\sigma}_{e m}(X)=\inf _{h, k} \sup _{t \in[0,1]}\|h(t)-k(t)\|
$$

where $h, k:[0,1] \rightarrow X$ are continuous, $h([0,1])=X=k([0,1]), h(0)=k(0)$, there exists a point $t_{0} \in(0,1)$ such that $h\left(t_{0}\right)=k\left(t_{0}\right) \neq h(0)$ and $h\left(\left[0, t_{0}\right]\right) \cap$ $k\left(\left[0, t_{0}\right]\right)=\left\{h(0), h\left(t_{0}\right)\right\}$.

It follows from a more general result of A. Lelek [2, Th.2.1, p. 39] that when X is a continuum then $\sigma_{0}(X) \leq \epsilon(X) .{ }^{1}$ We include this estimate with a different direct proof.

Theorem 1.1. Let X be a continuum and let $\epsilon(X)$ be the infimum of the set of positive numbers m such that a chain with mesh m covers X. Then $\sigma_{0}(X) \leq \epsilon(X)$.

Proof. Let Y be a connected space and let $f, g: Y \rightarrow X$ be continuous functions such that $g(Y) \supset f(Y)$. Let m be a number such that a chain C with mesh m covers X, and let $C_{1}, C_{2}, \ldots, C_{n}$ denote the links in the chain C in their consecutive order. If there exist $y_{0} \in Y$ and $i, 1 \leq i \leq n$, such that $f\left(y_{0}\right), g\left(y_{0}\right) \in$ \bar{C}_{i} then $\operatorname{dist}\left\{f\left(y_{0}\right), g\left(y_{0}\right)\right\} \leq m$. In this case $\sigma_{0}(x) \leq m$, and the arbitrary choice of m implies that $\sigma_{0}(X) \leq \epsilon(X)$.

[^1]Suppose now that for each $i, 1 \leq i \leq n$, and every $y \in Y$, if $f(y) \in \bar{C}_{i}$ then $g(y) \notin \bar{C}_{i}$. This property, along with the continuity of f and g, implies that the sets

$$
A=\left\{y \in Y: f(y) \in C_{i}, g(y) \in C_{j}, i<j\right\}
$$

and

$$
B=\left\{y \in Y: f(y) \in C_{i}, g(y) \in C_{j}, i>j\right\}
$$

are open and disjoint, and $A \cup B=Y$. Furthermore, $A \neq \emptyset$ and $B \neq \emptyset$. Indeed, suppose that $B=\emptyset$ and let k be the smallest number such that $g(Y) \cap C_{k} \neq \emptyset$. Clearly, $k>1$. Let $y_{1} \in Y$ and let $g\left(y_{1}\right) \in C_{k}$. Then $f\left(y_{1}\right) \in C_{i} \cap\left(X \backslash \bar{C}_{k}\right)$ for some $i, i<k$. This contradicts the assumption that $g(Y) \supset f(Y)$. Hence, $B \neq \emptyset$. Similarly, we argue that $A \neq \emptyset$. It follows that, in this case, A and B provide a separation of Y. This contradicts the assumption that Y is connected. Therefore, only the first considered case holds, i.e. there exists $y_{0} \in Y$ and $i, 1 \leq i \leq n$, such that $f\left(y_{0}\right), g\left(y_{0}\right) \in \bar{C}_{i}$ and, hence, $\sigma_{0}(X) \leq \epsilon(X)$.

It turns out that the same bound from above, $\epsilon(X)$, holds for the dual effectively monotone space of a simple closed curve X. For a pair of two distinct points $A, B \in X$ we denote the counterclockwise arc on X from A to B by $A B^{\sim}$.

Theorem 1.2. Let X be a simple closed curve. Then $\bar{\sigma}_{e m}(X) \leq \epsilon(X)$.
Proof. We need only assume that X is a polygon. Let $\left\{C_{j}\right\}_{j=1}^{N}$ be a chain of closed sets with mesh δ such that $X \subseteq \bigcup_{j=1}^{N} C_{j}$. We choose a point $E \in X \cap C_{1}$ and a point $F \in X \cap C_{N}$. Let g be the mapping that defines $X, g:[0,1] \rightarrow X, g(0)=$ $g(1), 1: 1$ on $[0,1)$. Without loss of generality we assume that $g(0)=E$. Let t_{F} be the point in $(0,1)$ such that $g\left(t_{F}\right)=F$. Define two homeomorphisms on $[0,1]$ in the following way:

$$
\begin{aligned}
& g_{1}:=[0,1] \rightarrow E F^{\sim}, \quad g_{1}(t)=g\left(t_{F} t\right) \\
& g_{2}:=[0,1] \rightarrow F E^{\sim}, \quad g_{2}(t)=g\left(1-\left(1-t_{F}\right) t\right)
\end{aligned}
$$

Note that $g_{1}(0)=g_{2}(0)=E, g_{1}(1)=g_{2}(1)=F$.
We shall construct two mappings h, k such that $h:[0,1] \rightarrow E F^{\sim}, k:[0,1] \rightarrow$ $F E^{\sim}$ and $\forall t \in[0,1] \exists j, j \in(1, \ldots, N) \ni h(t), k(t) \in C_{j}$. First we assume, without loss of generality, that ∂C_{j} is a Jordan curve for each link C_{j} in the chain $\left\{C_{j}\right\}_{j=1}^{N}$, and that $C_{j} \cap C_{j+1}=\partial C_{j} \cap \partial C_{j+1}, \ldots, N-1$, while $\operatorname{diam}\left(C_{j} \cap X\right) \leq \delta$. Assume also that $E \in \partial C_{1}$ and there is an arc $L_{0}, \partial C_{1} \supset L_{0}$, such that $L_{0} \cap X=E$. Similarly, $F \in \partial C_{N}$ and there is an arc $L_{N}, \partial C_{N} \supset L_{N}$, such that $L_{N} \cap X=F$. Let $L_{j}=\partial C_{j} \cap \partial C_{j+1}$ for $j=1, \ldots, N-1$, let $i=\sqrt{-1}$, and let $G:[0,1] \times[0, i] \rightarrow$
$\bigcup_{j=1}^{N} C_{j}$ be a homeomorphism, mapping the unit square onto $\bigcup_{j=1}^{N} C_{j}$, with the following properties:

1) $\forall j=0, \ldots N \quad G([0,1] \times\{i j / N\})=L_{j}$
2) $\forall j=1, \ldots N \quad \bigcup_{t \in[(j-1) / N, j / N]} G([0,1] \times\{t i\})=C_{j}$
3) $\forall t, s \in[0,1] \quad t \neq s \Rightarrow G([0,1] \times\{t i\}) \cap G([0,1] \times\{s i\})=\emptyset$.

Define $f_{1}, f_{2}:[0,1] \rightarrow[0,1]$ as follows:

$$
\forall_{t \in[0,1]} f_{1}(t)=\operatorname{Im} G^{-1}\left(g_{1}(t)\right), f_{2}(t)=\operatorname{Im} G^{-1}\left(g_{2}(t)\right)
$$

Notice that $f_{1}(0)=f_{2}(0)=0, f_{1}(1)=f_{2}(1)=1$ and f_{1}, f_{2} are continuous and piecewise weakly monotone. By the early version of the Mountain Climbers Theorem due to Whittaker (see Theorem 3 in [4]) there exist two maps $\bar{f}_{1}, \bar{f}_{2}:[0,1] \rightarrow[0,1]$ such that $\bar{f}_{1}(0)=\bar{f}_{2}(0)=0, \bar{f}_{1}(1)=\bar{f}_{2}(1)=1$, and $f_{1}\left(\bar{f}_{1}(t)\right)=f_{2}\left(\bar{f}_{2}(t)\right)$ for each $t \in[0,1]$. Let H_{1} and H_{2} be two homeomorphisms on $G^{-1}\left(E F^{\sim}\right)$ and $G^{1}\left(F E^{\sim}\right)$, respectively, such that $H_{1}\left(G^{-1}\left(g_{1}(t)\right)\right)=\left(t, f_{1}(t)\right)$ and $H_{2}\left(G^{-1}\left(g_{2}(t)\right)\right)=\left(t, f_{2}(t)\right)$ for each $t \in[0,1]$.

We are now in a position to define the mappings h, k. For each $t \in[0,1]$ put

$$
\begin{aligned}
h(t) & =G\left(H_{1}^{-1}\left(\bar{f}_{1}(t), f_{1}\left(\bar{f}_{1}(t)\right)\right)\right), \\
k(t) & =G\left(H_{2}^{-1}\left(\bar{f}_{2}(t), f_{2}\left(\bar{f}_{2}(t)\right)\right)\right) .
\end{aligned}
$$

Note that $h(0)=k(0)=E$ since $H_{n}^{-1}(0,0)=G^{-1}\left(g_{n}(0)\right)=G^{-1}(E), n=1,2$. Similarly, $h(1)=k(1)=F$ since $H_{n}^{-1}(1,1)=G^{-1}\left(g_{n}(1)\right)=G^{-1}(F), \quad n=1,2$. Furthermore, $h([0,1])=E F^{\sim}, k[(0,1])=F E^{\sim}$, and $\forall t \in[0,1] \exists s \in[0,1] \ni$ $h(t), k(t) \in G([0,1] \times\{s i\})$. Hence, $\forall t \in[0,1] \exists j, j \in\{1, \ldots N\} \ni h(t), k(t) \in C_{j}$.

Finally, we define $h_{1}, k_{1}:[0,1] \rightarrow X$ as follows:

$$
\begin{aligned}
& h_{1}(t)= \begin{cases}h(2 t), & \text { for } t \in[0,1 / 2] \\
h(2-2 t), & \text { for } t \in[1 / 2,1]\end{cases} \\
& k_{2}(t)= \begin{cases}k(2 t), & \text { for } t \in[0,1 / 2] \\
k(2-2 t), & \text { for } t \in[1 / 2,1]\end{cases}
\end{aligned}
$$

It follows that $\forall_{t \in[0,1]} h_{1}(t), k_{1}(t) \in C_{j}$ for the same j. Hence, $\forall_{t \in[0,1]}\left\|h_{1}(t)-k_{1}(t)\right\| \leq \delta$. Since h_{1} and k_{1} satisfy the conditions imposed in the definition of $\bar{\sigma}_{e m}$, this ends the proof of Theorem 1.2.

Note. The span of X is equal to $\epsilon(X)$ when X is the boundary of a convex region (see [3]).

References

[1] A. Lelek, Disjoint mappings and the span of spaces, Fund. Maths. 55 (1964), 199-214.
[2] , On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), 35-45.
[3] K. Tkaczynska, The span and semispan of some simple closed curves, Proc. Amer. Math. Soc., vol.III, no. 1 (1991), 247-253.
[4] J.V. Whittaker, A mountain-climbing problem, Canad. J. Math. 18 (1966), 873-882.
Received February 25, 1997
Revised version received April 18, 2000
Department of Mathematics, Widener University, Chester, Pa 19013
(Current address) 4733 Weatherhill Drive, Wilmington, DE 19808

[^0]: This paper was supported in part by a Mini Grant from Widener University.

[^1]: ${ }^{1}$ Another proof, due to E. Duda, appeared in H. Fernandez's Doctoral Dissertation, U. of Miami, 1998

