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Abstract. This paper investigates the topology of the fixed point set Fix(f)

of orientation preserving homeomorphisms f of a connected surface M un-

der the assumptions that M has finitely generated homology, Fix(f) is com-

pact and nonempty with finitely many components, and no component of

M \ Fix(f) is an open cell. This last condition holds if f preserves area,

or nonwandering points are dense, or there is a nowhere dense global at-

tractor. The main conclusion is that the Euler characteristic of Fix(f) for

Čech cohomology is finite and no smaller than the Euler characteristic of M .

Applications are made to attractors, analytic homeomorphisms, homoclinic

points, prime power iterates, and commuting homeomorphisms.

1. Introduction

An enormous amount of research, originally inspired by the search for periodic
solutions to differential equations, has been devoted to proving existence of fixed
points for broad classes of maps. But the topological structure of fixed point sets
has received little attention; notable exceptions include the program initiated by
Smith on homeomorphisms of finite period (Smith [33], Borel et al. [5]) and the
results of Neumann [25] and Carter [10] for area preserving twist maps of the
annulus.

This paper investigates the Čech cohomology of the fixed point set Fix(f) for
several kinds of orientation preserving surface homeomorphisms f . In various
settings we establish the existence of acyclic components of Fix(f). The most
useful assumption is that f preserves area; but many of the results hold in other
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common situations, e.g., every point is nonwandering, or there is a nowhere dense
global attractor.

Our results are especially powerful when f is (real) analytic, for then Fix(f) is
an analytic variety and thus has simple topology. In particular, compact acyclic
components of Fix(f) are isolated fixed points. In some cases the existence of
fixed points with index 1 is proved.

The most important hypothesis, (H0), is that no complementary component of
Fix(f) having compact closure is simply connected. This holds when f preserves
area and in many other cases.

Outline of contents First we use Brouwer’s nonwandering theorem to motivate
our chief assumption, then briefly review other basic results used throughout the
paper. Sufficient conditions for (H0) are given in Proposition 1.1 and Theorem 2.1,
followed by the fundamental Theorem 2.2, which gives inequalities relating the
Euler characteristic of M to Betti numbers of components of Fix(f). Lower bounds
are found for the number of acyclic components of Fix(f), followed by conditions
under which such components have fixed point indices that are positive, or equal
to 1. Many of the technical proofs are postponed to the final section. The basic
results are applied to analytic homeomorphisms, homoclinic points, commuting
homeomorphisms, and fixed points of prime power iterates. Examples 3.9 and
3.15 are simple calculations illustrating some of the theorems.

1.1. Notation, conventions and background. The sets of natural numbers,
positive natural numbers and integers are denoted respectively by N, N+ and Z.
All spaces are endowed with a metric, denoted by d(x, y). Euclidean n-space is
Rn, the unit sphere in R3 is S2, and the closed unit disk is D2. By a disk or
open cell sphere we mean a homeomorph of D2 or R2 respectively. Surfaces are
metrizable; unless otherwise indicated, they are connected and oriented and have
empty boundary. ∅ denotes the empty set.

Both Y and clos(Y ) denote the closure of a subset. The frontier (set-theoretic
boundary) of a subset X ⊂ M is clos(X)∩ clos(M \X), denoted by Ẋ or Fr (X).
If N is a manifold, its boundary is the manifold ∂N . Our manifolds are assumed
to have empty boundary except where the contrary is obvious.

All maps are assumed continuous. A set X is invariant under a map g if it is
nonempty and g(X) = X.

Homeomorphisms, indicated by ≈, are always bijective. Self homeomorphisms
of a manifold are always orientation preserving unless the contrary is indicated.
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• Throughout this paper M denotes a connected, orientable metrizable surface
without boundary, and f is an orientation preserving homeomorphism of
such a surface.

Wandering points A point is wandering for a map h if it has a neighborhood
N disjoint from hn(N) for all n > 0. The set of wandering points is an open
invariant set; its complement, the set of nonwandering points, is a closed invariant
set containing all omega and alpha limit points and all recurrent points.

Chain recurrence We say x chains to y under a map h : X → X if for every ε > 0
there exists m ∈ N+ and points x = x0, . . . , xm = y such that d(xj , h(xj−1)) <

ε, j = 1, . . . m. This notion is independent of the metric d(·, ·) when X is compact.
x chains to every point of its omega limit set, while every point of its alpha limit
set chains to x.

A point that chains to itself is chain recurrent. Nonwandering points are chain
recurrent. R(h) denotes the closed invariant set of chain recurrent points. If
Q ⊂ X is invariant and dense, then R(h|Q) = R(h) ∩ Q. When X is compact,
R(h) = R(hn) for all n ∈ N+.

Chain recurrent points that chain to each other are chain equivalent. All points
in a subset Q ⊂ R(h) are chain equivalent provided Q is connected, or Q is an
alpha or omega limit set. Information on chain recurrence can be found in Akin
[1], Conley [12].

Example. A nontrivial translation of the plane extends to a homeomorphism of
the Riemann sphere for which every point is chain recurrent, but only the point
at infinity is nonwandering.

Attractors An attractor for a homeomorphism h : X ≈ X is a proper, compact
invariant set A that has a neighborhood N such that limn→∞ dist(hnx, A) = 0
uniformly for x ∈ N . The basin B of A is the open invariant set of points whose
omega limit sets are in A. All chain recurrent points of B lie in A. An attractor
is global if its basin is all of X.

Homology When X is a triangulable space (e.g., X is a surface or an analytic
variety), the free part of Ȟi(X) is naturally isomorphic to Hom(Hi(X),Z), and
bi(X) = b̌i(X). If X is a closed subset of a triangulable space S, then Ȟi(X) is
functorially isomorphic to the direct limit of the i’th singular cohomology groups
of neighborhoods of X in S under the inclusion induced homomorphisms.
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If b̌0(X) (respectively, b0(X)) is finite, it equals the number of connected com-
ponents (respectively, path components) of X. When X is compact, Ȟ1(X) is
functorially isomorphic to the group of homotopy classes of maps from X to the
circle (Eilenberg [15], Hu [22]).

Spanier [34] is a thorough survey of basic algebraic topology. For surface
topology, Newman’s elementary approach [26] is recommended.

1.2. Basic tools for surface homeomorphisms. Our point of departure is a
well known corollary of Brouwer’s plane translation theorem:

Brouwer’s Nonwandering Theorem [6] f : R2 ≈ R2 has a fixed point pro-
vided it has a nonwandering point

This is one of the oldest and deepest theorems in topology, and until the
ingenious proof by Franks [17], one of the more difficult. (Even though Brouwer
repudiated his fixed point theorems because the proofs were not constructive, we
accept them.)

On the face of it, Brouwer’s result appears to be merely an existence theorem,
but it can be used to obtain information on the topology and location of the fixed
point set. The basic idea is as follows:

Proposition 1.1. Let W be a component of M \ Fix(f) that contains a nonwan-
dering point. Then W is not simply connected.

Proof. W is invariant by the theorem of Brown and Kister stated below. There-
fore Brouwer’s nonwandering theorem shows that W cannot be simply connected,
because it contains a nonwandering point that is not fixed.

The next result, a useful addendum to Brouwer’s nonwandering theorem, is an
application of Theorem 5.7 of Brown [8], who ascribes it to Brouwer [6]:

Brouwer & Brown’s Index Theorem [8] If f : R2 ≈ R2 has a nonwandering
point that is not fixed, there is a fixed point free Jordan curve bounding a disk D

such that Ind(f, D) = 1.

More information on indices is given in the following result:

Pelikan & Slaminka’s Index Theorem [27] If f preserves area, every isolated
fixed point has index ≤ 1.

For diffeomorphisms this was proved by Simon [31, 32]. Dold [14] can be consulted
on the fixed point index.
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The next theorem is valid in all dimensions:

Brown & Kister’s Invariance Theorem [9] An orientation preserving home-
omorphism of a connected manifold with empty boundary preserves each comple-
mentary component of the fixed point set.

Therefore if K 6= ∅ is a union of components Kα of Fix(f), then M \K is invariant
because it is the intersection of the invariant sets M \Kα.

We will use the following classic to find fixed points in invariant acyclic continua
of surface homeormorphisms:

Cartwright & Littlewood’s Fixed Point Theorem [11] f : R2 ≈ R2 has a
fixed point in every invariant continuum that doesn’t separate the plane

For an elegant proof see Brown [7].

2. Statement of the main theorems

Heret we state our basic hypotheses and theorems, postponing most proofs to
Section 4.

Almost all our results use one or more of the following assumptions:

Hypothesis (H)

(H0): no precompact component of M \ Fix(f) is simply connected
(H1): Fix(f) is compact and nonempty, with only finitely many components
(H2): the singular homology group H1(M) is finitely generated
(H3): f is not the identity map

Note that (H1) holds whenever f is analytic or piecewise linear and Fix(f) is
compact and nonempty.

The key condition is (H0). It is not hard to see that if it holds for f , it also holds
for the restriction of f to any invariant open set. But (H0) is not automatically
inherited by iterates of f . The following theorem gives conditions ensuring that
(H0) holds not only for f , but also for its iterates.

A proper measure is a measure that is positive (possibly infinite) on every
open set and finite on every compact set. We say f preserves (respectively:
reduces) area if there is a proper measure m such that m(f(A)) = m(A) for
every measurable set A (respectively: m(f(A)) < m(A) for every nonempty
precompact open set).
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Theorem 2.1. Suppose f satisfies one of the following conditions:

(a): f preserves area, or reduces area
(b): the set of wandering chain recurrent points with compact orbit closures is

nowhere dense

Then (H0) holds for every iterate fn, n > 0.

These conditions are found in diverse situations. When area is preserved, as
in many mechanical systems, Poincaré’s recurrence theorem implies (H0). When
area is reduced, (H0) is vacuously true.

Condition (b), which is topologically invariant, implies (H0) thanks to Brouwer’s
nonwandering theorem. It is implied by simpler assumptions, including: every
point is nonwandering; and also: chain recurrent points are nowhere dense. In
particular, (b) holds for the restriction of f to the basin of a nowhere dense
attractor or repellor.

Theorem 2.1 is proved in Section 4.

Many of our results are stated in terms of Betti numbers and Euler charac-
teristics. The (singular) Euler characteristic χ(X) of a space X is defined as
usual to be

∑

j(−1)jbj(X) provided this sum is finite, where bj(X) denotes
the rank of the singular homology group Hj(X). The Čech characteristic is
χ̌(X) =

∑

j(−1)j b̌j(X) if this sum is finite, where b̌j(X) denotes the j’th Čech
number, i.e., the rank of the Čech cohomology group Ȟj(X).

When X is a manifold or polyhedron, Čech cohomology is isomorphic to sin-
gular cohomology and χ̌(X) = χ(X). If X is a connected proper subset of a
connected surface, then b̌0(X) = 1, b̌i(X) = 0 for i > 1, and χ̌(X) = 1− b̌1(X).
If X is triangulated as a finite simplicial complex, χ(X) = χ̌(X) =

∑

i(−1)iτi

where τi denotes the number of i-simplices.
A space X is acyclic if it has the same Čech cohomology groups as a point, i.e.,

X is connected and b̌j(X) = 0 for j > 0; this implies χ̌(X) = 1. Conversely, if
X ⊂ M is a continuum (compact, connected, nonempty set) of dimension 1 and
χ̌(X) = 1, then X is acyclic.

When (H1) holds, for each j ∈ Z we define

κj = κj(f) = the number of components K of Fix(f) such that χ̌(K) = j

Hypothesis (H) implies:

• κj = 0 for j ≥ 2
• κ1 is the number of acyclic components of Fix(f)
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The following inequalities are basic:

Theorem 2.2. Assume Hypothesis (H). Then:

(i): b̌1(Fix(f)) < ∞
(ii): χ(M) ≤ χ̌(Fix(f)) < ∞
(iii): κ1(f) ≥ χ(M) +

∑

i>0

i · κ−i(f)

The right hand side of (iii) equals the Čech characteristic of the union of those
components K of Fix(f) such that χ̌(K) ≤ 0, which are the components that are
not acyclic. Thus we have:

Corollary 2.3. Assume Hypothesis (H), and suppose no component of Fix(f) is
acyclic. Then every component K satisfies 0 ≥ χ(K) ≥ χ(M).

Conclusion (iii), above, gives a lower bound for the number of acyclic components
of Fix(K), under Hypothesis (H). We show next that when M = R2 or S2, we can
get some information under the weaker hypothesis (H0), which permits infinitely
many components in Fix(f).

Let K ⊂ R2 be a continuum. Its acyclic hull A(K) is the union of K and the
bounded complementary components of K. The following facts can be verified:

• A(K) is compact and acyclic with its frontier in K, and lies in every acyclic
set containing K. In particular, A(K) is contained in the convex hull of K.

• K is acyclic ⇔ A(K) = K.
• every bounded complementary component of A(K) is an invariant open cell

whose frontier is in K.
• If K and L are disjoint continua, either A(K), A(L) are disjoint, or one of

these sets contains the other.

Now let K be a continuum in an open cell E. The acyclic hull of K in E,
denoted by AE(K), is the union of K and the components of E\K having compact
closure in E. Any homeomorphism h : E ≈ R2 maps AE(K) onto A(h(K)).

Theorem 2.4. Let f satisfy (H0). Let E ⊂ M be an open cell, not necessar-
ily invariant, that contains a compact component K of Fix(f). Then AE(K) is
invariant and contains an acyclic component of Fix(f).

This is proved in Section 4.
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Example. Assumption (H0) cannot be dropped from Theorem 2.4. For a coun-
terexample, take f to be the time one map of a flow in the plane generated by a
vector field that vanishes only on the unit circle.

Theorem 2.5. Let M = R2 or S2 and assume (H0).

(i): Suppose M = R2. If K ⊂ Fix(f) is a compact component that is not
acyclic, A(K) contains a compact acyclic component of Fix(K).

(ii): Suppose M = S2. If f is not the identity map, Fix(f) has two acyclic
components.

Proof. Let M = R2 and consider a component E of A(K) \ K. Then E is
compact by definition of A(K), and E is an open cell (Newman [26], Chapter VI,
Theorem 4.4)). Therefore E contains a compact component of Fix(f) by Axiom
(H0), and Theorem 2.4 completes the proof of (i).

Under the assumptions in part (ii), Fix(f) is nonempty by Lefschetz’s fixed
point theorem. Let K ⊂ Fix(f) be a component. Suppose K is acyclic. Then
S2 \K ≈ R2, therefore the restriction f0 = f |(S2 \K) has a fixed point by (H0).
Every component of Fix(f0) is compact, since it is disjoint from K, hence from
Fr (S2 \ K) ⊂ K. Therefore Fix(f0) has an acyclic component by Theorem 2.4,
which is a second acyclic component of Fix(f).

If K is not acyclic, b̌0(S2 \K) = 1 + b̌1(K) ≥ 2 by Alexander duality (Spanier
[34]), so S2 \ K has at least two components. Each component is an open cell
which is invariant by Brown-Kister, and contains a component of Fix(f) by (H0).
Applying Theorem 2.4 to these components completes the proof.

We can now sharpen conclusion (iii) of Theorem 2.2:

Theorem 2.6. Assume Hypothesis (H). Let X ⊂ Fix(f) be a nonempty union of
components such that χ̌(X) = χ(M)−ν, 1 ≤ ν < ∞. Then there are ν invariant,
precompact open cells that are components of M \X, and each such cell contains
an acyclic component of Fix(f).

Proof. Each component C of M \ X is a connected noncompact surface, so
χ(C) > 0 if and only if C is an open cell and χ(C) = 1. As χ(M \ X) = ν by
Lemma 4.4, among these components are ν open cells Ei, necessarily disjoint,
invariant by the Kister-Brown theorem, and precompact by Lemma 4.1. Each Ei

contains a compact component of Fix(f) by (H0) and (H1); for each i, one such
component is acyclic by Theorem 2.4.

A very strong assumption is that f reduces area:
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Corollary 2.7. Assume Hypothesis (H) and suppose f reduces area. Then χ̌(K) ≥
χ(M) for every component K of Fix(f).

Proof. Otherwise Theorem 2.6 would yield a precompact invariant open set.

Theorem 2.8. Assume M ≈ R2 and f reduces area. Then every invariant
continuum K is acyclic and contains a fixed point.

Proof. Otherwise we reach the contradiction that A(K) has a precompact com-
plementary component, whose area is invariant. Since K is acyclic, it contains a
fixed point by the Cartwright-Littlewood theorem.

2.1. Fixed point indices. A block of fixed points is a nonempty compact set
B ⊂ Fix(f) that is relatively open, that is, B = Fix(f) ∩ U for some open set
U ⊂ M . A connected block is also called an isolated component of Fix(f). A
block of isolated fixed points is the same as a finite subset of Fix(f). The fixed
point index (Dold [14]) of f at B (or U) is denoted by Fix(f, K) = Fix(f, U) ∈ Z.
When K is a singleton {p} we may write its index as Ind(f, p), with the implicit
declaration that p is isolated in Fix(f). If U is invariant and has finitely generated
homology, Ind(f, U) equals the Lefschetz number of f |U .

The key property of the index is that it detects fixed points that persist under
perturbation, in the following sense: If U is as above and Ind(f, U) = n 6= 0, then
every map g sufficiently close to f has a fixed point in U , and Ind(g, U) = n.

Theorem 2.9. Assume f preserves area. If T is an acyclic isolated component
of Fix(f), then Ind(f, T ) ≤ 1.

Proof. T is the intersection of a sequence of disks Dn ⊂ W such that Dn+1 ⊂
Int Dn (Proposition 4.5). It is easy to see that D1 \ T ≈ D2 \ {0}. Therefore the
identification space M/T , obtained by collapsing T to a point pT , is a surface.
f induces a homeomorphism fT of M/T with an isolated fixed point at pT , and
Ind(fT , pT ) = Ind(f, T ).

If m is a proper measure preserved by f , then m|(M \ T ) extends to a unique
proper measure on M/T , preserved by fT . Therefore Ind(f, T ) ≤ 1 by the Pelikan-
Slaminka theorem.

The following is similar to Theorem 2.4, but has stronger hypotheses and con-
clusions. Note that the cell E need not be invariant.

Theorem 2.10. Assume f preserves area. Let E ⊂ M be an open cell such
that Fix(f) ∩ E is compact and Ind(f, E) = n > 0. Then E contains n acyclic
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components of Fix(f). If Fix(f)∩E consists of finitely many acyclic components,
at least n of these components have index 1.

Proof. We first show that Fix(f) ∩ E has an acyclic component. In fact, the
acyclic hull of any component T ⊂ Fix(f) ∩ E contains an acyclic component of
Fix(f) ∩ E. For if T is not acyclic, A(T ) \ T has a precompact component U ,
necessarily an invariant open cell in E. Theorem 2.4, applied to f |U : U → U ,
shows that U contains an acyclic component of Fix(f).

We may assume the number of acyclic components in Fix(f)∩E is m, 1 ≤ m ≤
n. If there are no other components, each acyclic component has index ≤ 1 by
Proposition 2.9, and as their indices sum to that of Fix(f) ∩E, we conclude that
m = n and each component has index 1.

Suppose there exist k ≥ 1 nonacyclic components Ti of Fix(f) ∩ E whose
acyclic hulls AE(Ti) in E are pairwise disjoint. Each AE(Ti) contains an acyclic
component of Fix(f) ∩ E; therefore k ≤ m. Take k as large as possible.

Claim: Fix(f) ∩ E ⊂
⋃

i AE(Ti). For suppose a component L of Fix(f) ∩ E

meets E \
⋃k

i=1 AE(Ti). As L ∩ Ti = ∅, we see that L lies outside
⋃

i AE(Ti)
because the frontier of the latter set is contained in

⋃

Ti. But then AE(L) lies
outside

⋃

i AE(Ti), contradicting maximality of k.
This shows that Ind(f, E) = Ind(f,

⋃

i AE(Ti)) =
∑

i Ind(f,AE(Ti)). By apply-
ing Proposition 2.9 to each AE(Ti) and summing, we find Ind(f, E) = k. This
shows that k = n, and we also have k ≤ m ≤ n, so m = n.

The second part of the theorem follows from Proposition 2.9.

It seems likely that the same conclusion holds even if f is not area preserving,
provided every point is nonwandering; but we can only prove weaker results, based
on the Brouwer-Brown index theorem.

Lemma 2.11. Let E ⊂ M be an open cell. Each of the following conditions
implies E contains an index 1 block of fixed points:

(a): f(E) ⊂ E and some point of E is nonwandering but not fixed
(b): E contains an acyclic attractor

Proof. In treating (a) we may assume f(E) = E, otherwise replacing E by the
invariant open set W = ∪n≥0f

−nE, which is a cell because it is simply connected.
Note that W is the basin of attraction of A. Conclusion (a) is now a consequence of
the Brouwer-Brown index theorem. If A ⊂ E is an acyclic attractor, Proposition
4.5 shows that A has a closed disk neighborhood D in its basin of attraction such
that fm(D) ⊂ Int(D) for a minimal m ≥ 1. Then the component of A in the
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U =
⋂m

i=0 Int(f iD)) is an open cell such that f(U) ⊂ U and Fix(f) ∩ U ⊂ A.
Lefschetz’s fixed point formula now shows Ind(f, A) = Ind(f, U) = 1; this implies
(b).

Theorem 2.12. Let E ⊂ M be an open cell such that:

(a): E ∩ Fix(f) is compact and has only finitely many components,
(b): If U is an invariant open cell with compact closure in E, every point of

U is nonwandering
(c): E contains an index 1 block of fixed points

Then E contains acyclic components of Fix(f) whose indices sum to 1. If f

preserves area, E contains an acyclic component of index 1.

Proof. Let B1 ⊂ Fix(f) ∩ E be an index 1 block. If every component of B1 is
acyclic there is nothing more to prove.

Suppose some component K of B1 is not acyclic; let E1 be a precompact
component of AE(K)\K. Then E1 is an invariant open cell; E1 is compact in E;
every point of E1 is nonwandering, by (b); and E1 ∩ Fix(f) is compact with only
finitely many components by (a). The Brouwer-Brown index theorem shows E1

contains an index 1 block B2. Note that B2 is disjoint from B1.
We repeat this construction recursively, obtaining a sequence of pairwise dis-

tinct, index 1 blocks B1, B2, . . . in Fix(f) ∩ U . By (a) there is a final term
Br, 2 ≤ r < ∞ in the sequence. Every component of Br is acyclic, otherwise the
sequence would continue. The components of Br fulfill the first conclusion of the
theorem, and the second follows from Theorem 2.9.

Theorem 2.13. Assume f : R2 ≈ R2 is such that:

(a): every component of Fix(f) is compact, and each compact set meets at
most finitely many components of Fix(f)

(b): every point with compact orbit closure is nonwandering
(c): some nonwandering point is not fixed

Then there are acyclic components of Fix(f) whose indices sum to 1.

Proof. There is a set of finitely many components of Fix(f) whose indices sum
to 1, by the Brouwer-Brown index theorem. If these components are acyclic there
is nothing more to prove. In the contrary case, let K be a nonacyclic component,
and apply Theorem 2.12 to any precompact component E of A(K) \K.

Theorem 2.14. Assume f : S2 ≈ S2 is not the identity, Fix(f) has only finitely
many components, and every point is nonwandering. Then Fix(f) has two acyclic
components with positive index; these have index 1 if area is preserved.
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Proof. Ind(f,S2) = 2 by Lefschetz’s fixed point formula, so there exists p ∈
Fix(f). After identifying S2 \ {p} with R2 by any homeomorphism, we can apply
Theorem 2.13 to E = S2 \ {p}, obtaining an acyclic component K ⊂ Fix(f) of
positive index. Similarly, S2 \K contains another such component. Use Theorem
2.9 to get the final conclusion of the theorem.

The following is similar to Theorem 2.6:

Theorem 2.15. Assume Hypothesis (H), and let every point with compact orbit
closure be nonwandering. Let X ⊂ Fix(f) be a nonempty union of components
such that χ̌(X) = χ(M) − ν, 1 ≤ ν < ∞. Then there are ν invariant, precom-
pact open cells Ui that are components of M \ X, and each Ui contains acyclic
components of Fix(f) with indices summing to 1. When f preserves area, each Ui

contains an acyclic component of Fix(f) having index 1.

Proof. As in the proof of Theorem 2.6, among the components of M \X are ν

precompact invariant open cells Ei with frontiers in Fix(f), and meeting Fix(f)
in compact sets, necessarily components of Fix(f). Apply Theorem 2.13 to each
Ei.

3. Applications

We apply the preceding results to several dynamical situations.

3.1. Attractors. Let A ⊂ M be an attractor for f : M ≈ M , with basin B.

Proposition 3.1. The Čech numbers b̌j(A) are finite. The inclusion A → B

induces an isomorphism in Čech cohomology.

Proof. A has only a finite number k of components and these are permuted
by f (Hirsch & Hurley [21]). Each component is an attractor under f i for some
i ∈ {1, . . . , k}. Therefore we assume there is only one component, otherwise
replacing f by fk!.

Fix a compact connected surface N such that A ⊂ N ⊂ B and f(N) ⊂ Int(N);
then A =

⋂

n≥0 fn(N). As the compact surfaces N and f(N) are homeomorphic,
the kernel of the homomorphism H1(f(N)) → H1(N) induced by inclusion is gen-
erated by the homology classes of the boundary curves of f(N) that bound disks
in N . By adjoining the preimages of these disks to N , we obtain a compact surface
P having the same properties as N , that is, f(P ) ⊂ Int P and A =

⋂

n≥0 fn(P ),
with additional property that inclusion f(P ) → P induces isomorphisms in sin-
gular homology and Čech cohomology
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The inclusion A → P induces Čech cohomology isomorphisms in dimensions
≥ 2 (the groups are trivial) and dimension 0. Continuity of Čech theory shows
Ȟ1(A) is the direct limit of the sequence of isomorphisms

Ȟ1(P )→Ȟ1(f(P ))→Ȟ1(f2(P )) → · · ·

induced by the inclusions. This proves the first statement of the theorem. The
second follows because

⋃

n≥0 f−n(P ) = B, implying H1(B) is the direct limit of
the sequence of inclusion induced isomorphisms H1(f−n(P )) → H1(f−n−1(P )).

Corollary 3.2. If A is an acyclic attractor, its basin is an invariant open cell.

Theorem 3.3. Assume A is nowhere dense.

(i): χ̌(Fix(f) ∩A) ≥ χ̌(A)
(ii): Assume A is acyclic. Then:

(a): A contains an acyclic component of Fix(f).
(b): Suppose Fix(f) ∩ A has only finitely many components, and every

point of A is nonwandering. Then Fix(f) ∩ A contains acyclic compo-
nents whose indices sum to 1.

Proof. Replacing M by the basin of A, we assume A is a global attractor.
Therefore the set of chain recurrent points is nowhere dense, as it lies in A, so
(H0) holds by Theorem 2.1(ii). Proposition 3.1 implies b̌i(A) = b̌i(M) for all i,
and (i) follows from Theorem 2.2(i).

Suppose A is acyclic. Lefschetz’s formula shows Ind(f, M) = 1 because A is an
attractor, and M is an open cell by Corollary 3.2. Conclusion (ii)(a) now follows
from Theorem 2.10. To prove (ii)(b), apply Theorem 2.12, noting that hypothesis
(a) is vacuously satisfied because A is a nowhere dense set containing all compact
invariant sets.

3.2. Analytic homeomorphisms. In this subsection M has an analytic struc-
ture, and f : M ≈ M denotes an analytic homeomorphism (not necessarily a
diffeomorphism). Fix(f) is an analytic variety, hence triangulable (Lojasiewicz
[23]); therefore every component is isolated, and each compact subset of M meets
at most finitely many components if Fix(f). Evidently dimX ≤ 2, and ≤ 1 if
f is not the identity map. When Fix(f) is compact, it has only finitely many
components and χ̌(F ) = χ(F ) < ∞.

The following result will frequently be used tacitly:
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Proposition 3.4. Let K be a triangulated compact connected analytic variety
embedded as a proper subvariety of a connected analytic surface M without bound-
ary. Then no simplex has dimension > 1, and the number of edges meeting at
any vertex is even. Therefore χ(K) ≤ 1 for each compact component K of Fix(f).
Moreover:

(i): χ(K) = 1 ⇔ K is acyclic ⇔ K is a singleton.
(ii): χ(K) = 0 ⇔ K is a Jordan curve
(iii): χ(K) < 0 ⇔ K if and only if K is a homeomorphic to the connected

union of two or more metric circles in R2.

Proof. The statements about simplices follow from a special case of a theorem
due to Deligne [13] and Sullivan [35]: The intersection of K with the boundary
of any sufficiently small Riemannian disk centered at a point of K has even
cardinality. This implies (i); parts (ii) and (iii) are proved by counting simplices.

Corollary 3.5. A compact acyclic component of Fix(f) is an isolated fixed point.

Theorem 3.6. Suppose f does not have an isolated fixed point.

(i): If (H0) holds, no Jordan curve in Fix(f) is homotopically trivial in M .
(ii): If Hypothesis (H) holds, 0 ≥ χ(K) ≥ χ(M) for every compact component

K of Fix(f).

Proof. (ii) is a consequence of Corollary 2.3. To prove (i), suppose per contra
that J ⊂ Fix(f) is a homotopically trivial Jordan curve. There is an invariant
disk D ⊂ M with ∂D = J ; this can be seen by lifting J to a Jordan curve in
the universal covering. From the the structure of compact 1-dimensional analytic
varieties (Theorem 3.4(iii)), we see that D ∩ Fix(f) contains an invariant disk
D1 ⊂ D such that ∂D1 = J1 and Fix(f) ∩ D1 contains no other Jordan curve.
Therefore the set Fix(f)∩Int(D1), which is nonempty by (H0), consists of isolated
points, contradicting the hypothesis.

Theorem 3.7. Assume Hypothesis (H), and let every point with compact orbit
closure be nonwandering. Let X ⊂ Fix(f) be a nonempty union of components
such that χ̌(X) = χ(M)− ν, 1 ≤ ν < ∞. Then:

(i): M \ X contains ν pairwise disjoint blocks of isolated fixed points, each
block having index 1.

(ii): If f preserves area, M \X contains ν isolated fixed points of index 1.

Proof. There are ν components Ei of M \ X that are invariant, precompact
open cells by Theorem 2.6. Apply Theorem 2.12 to the Ei.
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From Theorem 2.14 we obtain:

Theorem 3.8. Assume f : S2 ≈ S2 is analytic and not the identity, and every
point is nonwandering. Then there are two isolated fixed points of positive index;
when area is preserved, each has index 1.

Theorems 2.10 to 2.13 can be similarly adapted to analytic maps, with acyclic
components of the fixed point set interpreted as isolated fixed points.

Example 3.9. Assume χ(M) ≥ −9. Let f : M ≈ M be analytic and satisfy
Hypothesis (H). Suppose Fix(f) has 3 components, each with Euler characteristic
−1, and 4 components, each with Euler characteristic −2, and perhaps other
components. Then:

(i): there are two isolated fixed points;
(ii): if every point with compact orbit closure is nonwandering, there are two

disjoint blocks (i.e., finite sets) of isolated fixed points, each block having
index 1;

(iii): if f preserves area, there are two isolated index 1 fixed points.

By Theorems 3.7(ii), the number of isolated fixed points is

κ1 ≥ −9 + 1 · κ−1 + 2 · κ−2 ≥ −9 + 1 · 3 + 2 · 4 = 2

which proves (i). The same computation shows that we can take ν = 2 in Theorem
3.7, yielding (ii) and (iii).

3.3. Homoclinic points. Let p ∈ Fix(f) be a saddle: f is C1 in a neighborhood
of p, and the linear operator dfp has eigenvalues λ, µ such that 0 < λ < 1 < µ. A
simple homoclinic loop at p is a Jordan curve J ⊂ M of the form Ju ∪ Js, where
Ju and Js are arcs in the unstable and stable curves at p, respectively, having
common endpoints of which one is p. A homoclinic cell is an open cell whose
boundary is a homoclinic loop.

It is easy to see that Fix(f) ∩ E is compact. It is also nonempty; in fact,
Ind(fn, E) = 1 (respectively, 2) for all n 6= 0 if there is smooth chart at p mapping
a neighborhood of p in E onto a neighborhood of (0, 0) in the first quadrant
(respectively, in the union of three quadrants); see Hirsch [20].

Theorem 3.10. Assume (H0). Let E ⊂ M be a homoclinic cell with Ind(f, E) =
ρ ∈ {1, 2}.

(i): Let ρ = 1. Then E contains a compact acyclic component of Fix(f). If f

is analytic and every point with compact orbit closure in E is nonwandering,
E contains isolated fixed points whose indices sum to 1.
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(ii): If f is analytic and f preserves area, E contains ρ isolated fixed points
of index 1.

Proof. (i) follows from Theorem 2.12, and (ii) from Theorem 2.10.

3.4. Commuting homeomorphisms. Lima [24] showed that any family of
commuting flows on a compact surface with nonzero Euler characteristic have
a common fixed point. A generalization to nilpotent Lie group actions is due to
Plante [28].

There is a common fixed point for any family of commuting holomorphic home-
omorphisms of the open unit disk {z ∈ C : |z| < 1} that extend continuously to
the closed disk (A. Shields [30]). If f1, . . . , fr are analytic homeomorphisms of
R2 that commute under composition, and Fix(f1) is compact and nonempty, then
f1 has a fixed point that is periodic for f2, . . . , fr (Hirsch [19]). It is not known
whether there must be a common fixed point.

Bonatti ([4]) proved there is a neighborhood U of the identity map in the
orientation preserving diffeomorphism group Diff(S2) of the 2-sphere such that
any commuting family in U has a common fixed point. For commuting f, g ∈
Diff(S2), Handel [18] defines an interesting invariant W (f, g) in the fundamental
group of Diff(S2), whose vanishing is equivalent to the existence of a common
fixed point. This is also valid for commuting homeomorphisms with finite fixed
point sets.

In this subsection f : M ≈ M satisfies Hypothesis (H), and g : M → M

denptes a map such that f ◦ g = g ◦ f .

Proposition 3.11. Let K ⊂ Fix(f) be a compact acyclic component invariant g.
Then K contains a fixed point of g.

This is proved in Section 4 as an application of the Cartwright-Littlewood theo-
rem.

Corollary 3.12. Assume g is a homeomorphism. If K is a compact acyclic
component of Fix(f), there exists q ∈ K and n ∈ {1, . . . , κ1(f)} such that gn(q) =
q.

Proof. g induces a permutation σ of the set of acyclic component of Fix(K). As
this set has cardinality κ1(f), there exists n ∈ {1, . . . , κ1(f)} such that σn(K) =
K; now apply Proposition 3.11 to gn.

Corollary 3.13. Let M = R2 or S2 and assume g is a homeomorphism. Then
Fix(gn) ∩ Fix(f) is nonempty for some n ∈ {1, . . . , κ1(f)}, and contains at least
two points when M = S2.
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Proof. This follows from Theorem 2.5 and Corollary 3.12.

This cannot be sharpened to yield a common fixed point when M = S2: Take
f and g to be the rotations defined by the matrices

[

1 0 0
0 −1 0
0 0 −1

]

and
[−1 0 0

0 −1 0
0 0 1

]

.

The full strength of Hypothesis (H) was used in the proof of Corollary 3.12
in order to ensure that Fix(f) has only finitely many acyclic components, but
perhaps this condition is unnecessary. The following seems to be open:

Conjecture. Two commuting, orientation preserving homeomorphisms of R2

have a common fixed point provided one of them has compact nonempty fixed
point set.

3.5. Fixed points of prime power iterates. Given f : M ≈ M , let P denote
the set of primes p for which there exists n = pk, k ∈ N+ such that fn satisfies
Hypothesis (H) and χ̌(Fix(fn)) < 0.

Theorem 3.14. Assume Fix(f) = ∅. Then P is finite. More precisely, if P is
nonempty then

∑

p∈P p ≤ −χ(M).

This is proved in Section 4.

Example 3.15. Assume M is compact with χ(M) ≥ −2. Let f : M ≈ M be
analytic and fixed point free, with every point nonwandering. Then for every odd
prime power n = pk, either fn has an isolated fixed point, or else every component
of Fix(fn) is a Jordan curve.

Hypothesis (H) holds by Theorem 2.1(b) and analyticity. χ(Fix(fn)) ≥ 0, for
otherwise χ(M) ≤ −p ≤ −3 by Theorem 3.14, contradicting the assumption that
χ(M) ≥ −2. If there are no isolated fixed points, every component of Fix(fn) has
Euler characteristic ≤ 0; and as the sum of these characteristics is χ(Fix(fn)) ≥ 0,
every component has characteristic zero, making it a Jordan curve.

For general n ∈ N+ Theorem 3.6 gives a weaker limitation on the topology of
the set of n-periodic points.

4. Proofs

Our next goal is the proof of Theorem 2.1, which gives several conditions ruling
out simply connected complementary components of the fixed point set.

We start with a purely topological fact:
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Lemma 4.1. Let W ⊂ M be an open cell with compact nonempty frontier Ẇ .
Then W is compact and Ẇ is connected.

Proof. Pick a neighborhood N of Ẇ that is a compact surface whose interior
meets both W and M \W . Because W is connected, each of the finitely many
components of ∂N is a Jordan curve in W or S \W . Define K to be the union
of N and the finite, nonempty collection of disks in W whose boundaries are
components of ∂N . Then K is a compact surface whose boundary is the union
of the components of ∂N that are exterior to W . Evidently K meets W and ∂K

is disjoint from Ẇ . As W is connected, this implies W ⊂ K. Therefore W is
compact.

Further analysis of N can be used to prove Ẇ connected. Alternatively, Lef-
schetz’s dualtity theorem (Spanier [34]) implies Ȟ0(W, Ẇ ) = H2(W ) = {0},
whence exactness of the cohomology sequence

Z = Ȟ0(W ) → Ȟ0(Ẇ ) → Ȟ0(W, Ẇ ) = {0}

of the pair (W, Ẇ ) shows Ȟ0(Ẇ ) ≈ Z, equivalent to Ẇ being connected.

We return to the dynamics of f : M ≈ M .

Lemma 4.2. Let V ⊂ M be an invariant open cell set containing no fixed point.
Then:

(i): Every point of V is wandering, with its alpha and omega limit sets con-
tained in V̇

(ii): V ⊂ R(f |V ) provided V̇ is a continuum contained in R(f |V ).

Proof. (i) follows from Brouwer’s Nonwandering Theorem. In (ii), V is compact
and V̇ connected by Lemma 4.1. Therefore the alpha and omega limit sets of every
point in V are nonempty subsets of V̇ by (i). As V̇ is a connected set of chain
recurrent points, all points in V̇ are chain equivalent for f |V ; now (i) implies
x ∈ R(f |V ).

Corollary 4.3. Fix n ≥ 1 and let W be a simply connected complementary com-
ponent of Fix(fn) having nonempty compact frontier. Then W is compact, and
every point of W is wandering and chain recurrent for f , and has compact orbit
closure.

Proof. f(W ) = W by the Brown-Kister theorem. By Lemma 4.2, W is compact
and every point of W is wandering and chain recurrent for fn, which implies the
conclusion of the theorem.
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4.1. Proof of Theorem 2.1. We argue by contradiction. Suppose n ≥ 1 and W

is a simply connected, precompact complementary component of Fix(fn). Then
invariance of W under fn implies f cannot reduce area. If f preserves area, so
does fn; in this case Poincaré’s recurrence theorem provides a dense subset of W

consisting of points with compact orbit closure and recurrent for fn, contradicting
Corollary 4.3. This proves Theorem 2.1 under assumption (a), and assumption
(b) also contradicts Corollary 4.3.

The following result is valid only in even dimensional manifolds; in the odd
dimensional case it is valid modulo 2. We treat only the case of surfaces:

Lemma 4.4. Assume H1(X) is finitely generated. Let X ⊂ M be a compact
subset. Then

χ(M) = χ̌(X) + χ(M \X)

Proof. Represent X as the decreasing intersection of nested family of compact
connected polyhedral surfaces (with boundary) Xα ⊂ M, α ∈ N. Define Yα as the
(possibly noncompact) polyhedral surface clos(M \Xα). Then Xα ∩ Yα, being a
compact 1-dimensional manifold without boundary, has zero Euler characteristic.
Therefore

χ(M) = χ(Xα) + χ(Yα)− χ(Xα ∩ Yα) = χ(Xα) + χ(Yα)

Čech and singular theory are the same for polyhedra, and the inclusion map

M \Xα = Yα \ ∂Yα ↪→ Yα

is a homotopy equivalence. Therefore

χ(M) = χ̌(Xα) + χ̌(M \Xα)

The continuity property for Čech cohomology shows Ȟi(X) is the direct limit of
the sequence of the inclusion induced homomorphisms

Hi(Xα) ια−→ Hi(Xα+1)
ια+1−→ · · ·

Because all these groups are finitely generated, we can pass to a subsequence so
that all the ια are isomorphisms, and the inclusion Xα → X induces isomorphisms
Hi(Xα) ≈ Ȟi(X). This implies χ̌(X) = χ(Xα).

A similar direct limit argument with singular homology proves that Hi(M \
X) ≈ Hi(M \Xα). Therefore χ(M \X) = χ(M \Xα), ergo

χ(M) = χ̌(X) + χ(M \X)
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The preceding proof demonstrates a useful fact:

Proposition 4.5. Let X ⊂ M be a nonempty compact set with finitely generated
Čech cohomology. Then every neighborhood of X contains a smaller neighborhood
N of X such that N is a compact surface, and the inclusion X → N induces an
isomorphism in Čech cohomology. Therefore every acyclic continuum in M is the
intersection of a sequence family of disks {Di} with Di+1 ⊂ Int(Di).

The following theorem is the topological basis for Theorem 2.2:

Theorem 4.6. Assume M has finitely generated homology. Let X ⊂ M be a
compact nonempty set with finitely many components, having no simply connected
complementary component. Then

(i): X has finitely generated Čech cohomology
(ii): M \X has finitely generated singular homology
(iii): χ̌(X) ≥ χ(M)

Proof. We first prove that H1(M \ X) is finitely generated. Consider the ho-
momorphisms

Ȟ0(X) ≈ H2(M, M \X) → H1(M \X) → H1(M)

The first map is a duality isomorphism (Spanier [34], Chap. 6, Sec.2, Theorem 16)
and the other two are part of the exact homology sequence of the pair (M, M \X).
Assumptions (i) and (ii) make all groups in the sequence other than H1(M \X)
finitely generated, so exactness proves the latter is also finitely generated.

Let {Uλ} denote the family of complementary components of X. As each Uλ

is a connected open surface that is not simply connected, H1(Uλ) is a free abelian
group on b1(Uλ) ≥ 1 generators.

Now we show that M \ X has finitely many components, i.e., H0(M \ X) is
finitely generated. For the finitely generated group H1(M \X) is the direct sum
of the nontrivial groups H1(Uλ), so there can be only finitely many Uλ.

The exact homology sequence of (M, M \ X) shows that the singular homol-
ogy of (M, M \ X) is finitely generated. The duality isomorphisms Ȟi(X) ≈
H2−i(M, M \ X) shows that the Čech cohomology of X is finitely generated.
Therefore χ̌(X), χ(M \X) and χ(M \X) are well defined and finite.

To prove χ̌(X) ≥ χ(M), in view of Lemma 4.4 it is enough to prove χ(M \X) ≤
0, or equivalently, b1(Uλ) ≥ 1 for each component Uλ of M\X; and this was shown
above.
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4.2. Proof of Theorem 2.2. Parts (i) and (ii) follow from Theorem 4.6. For
(iii), let C denote be the set of components of Fix(f), and C(j) the subset of
components K such that χ̌(K) = j. Then C is finite, the cardinality of C(j) is
κj(f), and

χ̌(Fix(f)) =
∑

K∈C

χ̌(K)

By Theorem 2.2:

χ(M) ≤
∑

K∈C

χ̌(K) =
∑

j≤1

∑

K∈C(j)

χ̌(K) =
∑

−∞<j≤1

jκj = κ1 −
∑

i>0

iκ−i,

implying (iii).

4.3. Proof of Theorem 2.4. We first prove AE(K) invariant. It suffices to
prove that U is invariant for every component U of E \K with compact closure
U ⊂ E. Note that U̇ ⊂ K ⊂ Fix(f). Let V be a component of U \ Fix(f).
Then V̇ ⊂ U̇ ∪ Fix(f) ⊂ Fix(f). Thus V is a nonempty connected open subset of
M \ Fix(f) with V̇ ⊂ Fix(f), which implies V is a complementary component of
Fix(f). Therefore V is invariant by the Brown-Kister theorem. This implies U is
invariant, for U is the union of the invariant set U ∩ Fix(f) and the components
V of U \ Fix(f), which were proved invariant. This shows AE(K) is invariant.

Denote by C the set of compact components of Fix(f) ∩E. The order relation
¶ on C, defined by L ¶ K ⇔ L ⊂ AE(K), is downward inductive, that is, every
set-theoretically maximal totally ordered subset K ⊂ C has a lower bound.

The nonempty compact set Z =
⋂

K∈C AE(K) is acyclic (by the continuity
axiom for Čech cohomology). Every point z ∈ Fr (Z) is the limit of a sequence of
xn where xn ∈ Fr (AE(Kn)) for some Kn ∈ K. This implies Fr Z is connected. As
xn ∈ Kn ⊂ Fix(f) ∩ E, we have z ∈ Fix(f); and as the xn lie in the compact set
AE(K1) ⊂ E, consequently z ∈ Fix(f) ∩ E.

The component of z in Fix(f)∩E is compact, for Fr (AE(K1)) ⊂ K1, a compact
component of Fix(f)∩E. Thus every point of the connected set Fr (Z) lies in some
element of K. As these elements are disjoint sets, Fr (Z) lies in a unique L ∈ K.

Consequently Z ⊂ AE(L). Moreover, for all n we have Ż ⊂ L ∩ AE(Ln),
consequently L ∩ AE(Kn) 6= ∅. If L meets the frontier of AE(Kn) then L meets
Kn, entailing L = Kn; and otherwise L ⊂ AE(Kn). This proves L ¶ Kn.

I claim L is ¶-minimal in K. For otherwise there exists L1 ∈ K such that
L1 ¶ L, L1 6= L. Then L1 lies in some bounded component U of E \L, implying
Z ⊂ U ; but this yields the contradiction Z ∩ L = ∅.
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As L is ¶-minimal in K, it must be that Z = AE(L). I claim that L, a compact
component of Fix(f), is acyclic. Otherwise L has a bounded complementary
component U . Note that U is simply connected because L is connected, and
U̇ ⊂ L ⊂ Fix(f). Then U contains a point p ∈ Fix(f), for otherwise U is a
simply connected complementary component of Fix(f), in violation of (H0). The
component J ⊂ Fix(f) containing p cannot meet U̇ because U̇ ⊂ L and J is
disjoint from L. Therefore J ⊂ U , whence J is bounded and thus compact. But
this violates ¶-minimality of L. Therefore L is acyclic, completing the proof.

4.4. Proof of Proposition 3.11. Consider first the case that M 6= S2, so that
M has a universal covering space π : R2 → M . Choose any p ∈ K and p̂ ∈ π−1(p).
There is a unique homeomorphism f̂ : R2 ≈ R2 covering f such that p̂ ∈ Fix(f̂).

K lies in a disk D ⊂ M (Proposition 4.5), so p̂ lies in a disk D̂ ⊂ π−1(D)
mapped homeomorphically onto D by π. Therefore π maps the set K̂ = D ∩
π−1(K) homeomorphically onto K. The images of K̂ under deck transformations
T : R2 ≈ R2 are the components of π−1(K).

Let ĝ : R2 ≈ R2 be a lift of g. Then π ◦ ĝn(K̂) = K̂. Therefore ĝ(K̂) is a
component of π−1(K), so there is a deck transformation T such that T ◦ĝ(K̂) = K̂.

Set ĥ = T ◦ ĝ : R2 ≈ R2; then ĥ(K̂) = K̂. I claim ĥ commutes with f̂ . For
there is a deck transformation T1 such that ĥ ◦ f̂ = T1 ◦ f̂ ◦ ĥ. Applied to K̂ these
maps give K̂ = T1(K̂); since deck transformations act totally discontinuously,
this shows T1 is the identity.

As K̂ is acyclic, ĥ has a fixed point q̂ ∈ K̂ by the Cartwright-Littlewood
theorem. For the point q = π(q̂) we therefore have q = f(q) = g(q).

Now let M = S2. By Lefschetz’s fixed point theorem, g has a fixed point q.
If q ∈ K there is nothing more to prove. If q /∈ K, the Cartwright-Littlewood
applied to g|(S2 \ {q}) ≈ R2, establishes a fixed point in K.

4.5. Proof of Theorem 3.14. For ν ≥ 1 and i = 1, . . . , ν, let ni = pki
i be

distinct prime powers such that:

(a): fni satisfies Hypothesis (H).
(b): χ̌(Fix(fni)) < 0

We have to prove
∑

i pi ≤ −χ(M).
Set Fix(fni) = Γi. No complementary component U of the compact set ∪jΓj

is simply connected. For suppose U is simply connected. U̇ is compact, as it
lies in ∪iΓi, so U̇ is connected by Lemma 4.1. The compact sets Γi are pairwise
disjoint, for the intersection of any pair is contained in the empty set of fixed
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points. Therefore U̇ , being connected, lies in some Γj . This implies U is a
complementary component of Γj ; hence U is not simply connected, by (a).

By Theorem 4.6,

χ̌(∪jΓj) ≥ χ(M)

Lemma (4.7) below shows that χ̌(Γi) is divisible by pi. Therefore we may set

χ̌(Γi) = −µipi ≤ −1, µi ∈ N+

whence

−
∑

i

pi ≥ −
∑

i

µipi =
∑

i

χ̌(Γi) = χ̌(∪iΓi) ≥ χ(M)

The following result, an application of Floyd’s theory of finite transformation
groups [16], was used in the preceding proof:

Lemma 4.7. Let Γ be a finite dimensional compact space with finitely generated
Čech cohomology. Let g : Γ ≈ Γ generate a cyclic group G of homeomorphisms
of Γ having prime power order n = pk where p is a prime and k ∈ N+. Then
χ̌(Γ) ≡ χ̌(Fix(g)) (mod p).

Proof. Let Hi
c denote the i’th cohomology functor with compact supports; de-

note the corresponding Euler characteristic by χc. For any compact pair (Y, B)
there are natural isomorphisms Hi

c(Y \ B) ≈ Ȟi(Y, B) (Spanier [34], Chap. 6,
Sec. 6, Lemma 11). Thus

χ̌(Y, B) = χc(Y \B)

We proceed by induction on k. When k = 1 the conclusion follows from [16],
Theorem 4.4. Take k ≥ 2 and assume the conclusion of the lemma holds for
smaller exponents. Set Γ′ = Fix(gn), which contains Fix(g). Then g|Γ′ generates
a group of order pk−1; therefore the inductive hypothesis implies

χ̌(Γ′) ≡ χ̌(Fix(g)) (mod p)

Now g|(Γ \ Γ′) generates a cyclic group of order pk−1 acting freely on Γ \ Γ′.
Corollary 5.3 of [16] implies

χc(Γ \ Γ′) ≡ 0 (mod pk−1)

and hence

χ̌(Γ, Γ′) ≡ 0 (mod p)
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Exactness of the Čech cohomology sequence of the pair (Γ, Γ′) now yields

χ̌(Γ) ≡ χ̌(Γ′) + χ̌(Γ, Γ′) ≡ 0 + 0 (mod p)

References

[1] E. Akin, “The general topology of dynamical systems,” American Mathematical Society,

Providence 1993
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Math. (2) 129 (1989) 61–69

[5] A. Borel, G. Bredon, E. Floyd & R. Palais, “Seminar on Transformation Groups,” Annals

of Mathematics Study No. 46, Princeton University Press, Princeton 1960.

[6] L. Brouwer, Beweis des ebenen Translationenssatzes, Math, Ann. 72 (1912) 37–54

[7] M. Brown, A short short proof of the Cartwright-Littlewood theorem, Proc. Amer. Math.

Soc. 65 (1977) p. 372

[8] M. Brown, Homeomorphisms of two-dimensional manifolds, Houston J. Math. 11 (1985),

455–469

[9] M. Brown & J. Kister, Invariance of complementary domains of a fixed point set, Proc.

Amer. Math. Soc. 91 (1984) 503–504

[10] P. Carter, An improvement of the Poincaré- Birkhoff fixed point theorem, Trans. Amer.
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