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Abstract. This paper consists of three parts: 1) We give some properties

about the virtual cohomological dimension of Coxeter groups over principal

ideal domains. 2) For a right-angled Coxeter group Γ with vcdR Γ = n, we

construct a sequence ΓW0 ⊂ ΓW1 ⊂ · · · ⊂ ΓWn−1 of parabolic subgroups

with vcdR ΓWi
= i. 3) We show that a parabolic subgroup of a right-angled

Coxeter group is of finite index if and only if their boundaries coincide.

1. Introduction and Preliminaries

The purpose of this paper is to study Coxeter groups and their boundaries.
Let V be a finite set and m : V ×V → N∪{∞} a function satisfying the following
conditions:

(1) m(v, w) = m(w, v) for all v, w ∈ V ,
(2) m(v, v) = 1 for all v ∈ V , and
(3) m(v, w) ≥ 2 for all v 6= w ∈ V .

A Coxeter group is a group Γ having the presentation

〈V | (vw)m(v,w) = 1 for v, w ∈ V 〉,

where if m(v, w) = ∞, then the corresponding relation is omitted, and the pair
(Γ, V ) is called a Coxeter system. If m(v, w) = 2 or ∞ for all v 6= w ∈ V , then
(Γ, V ) is said to be right-angled. For a Coxeter system (Γ, V ) and a subset W ⊂ V ,
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ΓW is defined as the subgroup of Γ generated by W . The pair (ΓW , W ) is also a
Coxeter system. ΓW is called a parabolic subgroup.

For a Coxeter system (Γ, V ), the simplicial complex K(Γ, V ) is defined by the
following conditions:

(1) the vertex set of K(Γ, V ) is V , and
(2) for W = {v0, . . . , vk} ⊂ V , {v0, . . . , vk} spans a k-simplex of K(Γ, V ) if and

only if ΓW is finite.

A simplicial complex K is called a flag complex if any finite set of vertices,
which are pairwise joined by edges, spans a simplex of K. For example, the
barycentric subdivision of a simplicial complex is a flag complex.

For any finite flag complex K, there exists a right-angled Coxeter system (Γ, V )
with K(Γ, V ) = K. Namely, let V be the vertex set of K and define m : V ×V →
N ∪ {∞} by

m(v, w) =















1 if v = w,

2 if {v, w} spans an edge in K,

∞ otherwise.

The associated right-angled Coxeter system (Γ, V ) satisfies K(Γ, V ) = K. Con-
versely, if (Γ, V ) is a right-angled Coxeter system, then K(Γ, V ) is a finite flag
complex ([7, Corollary 9.4]).

For a group Γ and a ring R with identity, the cohomological dimension of Γ
over R is defined as

cdR Γ = sup{i |Hi (Γ; M) 6= 0 for some RΓ-module M}.

If R = Z then cdZ Γ is simply called the cohomological dimension of Γ, and
denoted cd Γ. It is obvious that cdR Γ ≤ cd Γ for a ring R with identity. It is
known that cd Γ = ∞ if Γ is not torsion-free ([5, Corollary VIII 2.5]). A group
Γ is said to be virtually torsion-free if Γ has a torsion-free subgroup of finite
index. For a virtually torsion-free group Γ the virtual cohomological dimension
of Γ over a ring R is defined as cdR Γ′, where Γ′ is a torsion-free subgroup of
Γ of finite index, and denoted vcdR Γ. It is a well-defined invariant by Serre’s
Theorem: if G is a torsion-free group and G′ is a subgroup of finite index, then
cdR G′ = cdR G ([5, Theorem VIII 3.1]). If R = Z then vcdZ Γ is simply called the
virtual cohomological dimension of Γ, and denoted vcd Γ. It is known that every
Coxeter group is virtually torsion-free and the virtual cohomological dimension
of each Coxeter group is finite (cf. [6, Corollary 5.2, Proposition 14.1]).
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For a simplicial complex K and a simplex σ of K, the closed star St(σ, K) of σ

in K is the union of all simplexes of K having σ as a face, and the link Lk(σ, K)
of σ in K is the union of all simplexes of K lying in St(σ, K) that are disjoint
from σ.

In [10], Dranishnikov gave the following formula.

Theorem 1.1 (Dranishnikov [10]). Let (Γ, V ) be a Coxeter system and R a prin-
cipal ideal domain. Then there exists the formula

vcdR Γ = lcdR CK = max { lcdR K, cdR K + 1},

where K = K(Γ, V ) and CK is the simplicial cone of K.

Here, for a finite simplicial complex K and an abelian group G, the local
cohomological dimension of K over G is defined as

lcdG K = maxσ∈K{i |Hi(St(σ, K), Lk(σ, K);G) 6= 0},

and the global cohomological dimension of K over G is

cdG K = max{i | H̃i(K; G) 6= 0}.

When H̃i(K; G) = 0 for each i, then we consider cdG K = −1. We note that
Hi(St(σ, K), Lk(σ, K);G) is isomorphic to H̃i−1(Lk(σ, K);G). Hence, we have

lcdG K = maxσ∈K{cdG Lk(σ, K) + 1}.

Remark. We recall Dranishnikov’s remark in [11]. The definition of the local
cohomological dimension in [10] is given by the terminology of the normal star
and link. Since Lk(σ, K) is homeomorphic to the normal link of σ in K, their
definitions are equivalent by the formula above.

Dranishnikov also proved the following theorem as an application of Theorem
1.1.

Theorem 1.2 (Dranishnikov [10]). A Coxeter group Γ has the following proper-
ties:

(a) vcdQ Γ ≤ vcdR Γ for any principal ideal domain R.
(b) vcdZp Γ = vcdQ Γ for almost all primes p.
(c) There exists a prime p such that vcdZp Γ = vcd Γ.
(d) vcd Γ× Γ = 2 vcd Γ.

In Section 2, we extend this theorem to one over principal ideal domain coeffi-
cients.
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Let (Γ, V ) be a Coxeter system and K = K(Γ, V ). Consider the product
space Γ × |CK| of Γ with the discrete topology and the underlying space |CK|
of the cone of K. Define an equivalence relation ∼ on the space as follows:
for (γ1, x1), (γ2, x2) ∈ Γ × |CK|, (γ1, x1) ∼ (γ2, x2) if and only if x1 = x2 and
γ−1
1 γ2 ∈ ΓV (x1), where V (x) = {v ∈ V |x ∈ St(v, β1K)}. Here we consider that
|K| is naturally embedded in |CK| as the base of the cone and β1K denotes the
barycentric subdivision of K. The natural left Γ-action on Γ×|CK| is compatible
with the equivalence relation; hence, it passes to a left action on the quotient
space Γ × |CK|/ ∼. Denote this quotient space by A(Γ, V ). The space A(Γ, V )
is contractible and Γ acts cocompactly and properly discontinuously on the space
([6, Theorem 13.5]).

We can also give the space A(Γ, V ) a structure of a piecewise Euclidean cell
complex with the vertex set Γ × {v0} ([7, §9]). Σ(Γ, V ) denotes this piecewise
Euclidean cell complex. Refer to [7, Definition 2.2] for the definition of a piecewise
Euclidean cell complex. In particular, if (Γ, V ) is right-angled, then each cell of
Σ(Γ, V ) is a cube, hence, Σ(Γ, V ) is a cubical complex. More precisely, for a
right-angled Coxeter system (Γ, V ), we can define the cubical complex Σ(Γ, V ) by
the following conditions:

(1) the vertex set of Σ(Γ, V ) is Γ,
(2) for γ, γ′ ∈ Γ, {γ, γ′} spans an edge in Σ(Γ, V ) if and only if the length

lV (γ−1γ′) = 1, and
(3) for γ ∈ Γ and v0, . . . , vk ∈ V , the edges |γ, γv0|, . . . , |γ, γvk| form a (k+1)-

cube in Σ(Γ, V ) if and only if {v0, . . . , vk} spans a k-simplex in K(Γ, V ).

We note the 1-skeleton of this cell complex is isomorphic to the Cayley graph of
Γ with respect to V . For γ ∈ Γ and a k-simplex σ = |v0, . . . , vk| of K(Γ, V ), let
Cγ,σ be the (k + 1)-cube in Σ(Γ, V ) formed by |γ, γv0|, . . . , |γ, γvk|. Then the
vertex set of Cγ,σ is γΓ{v0,... ,vk}. We note that

γΓ{v0,... ,vk} = {γvε0
0 · · · vεk

k | εi ∈ {0, 1}, i = 0, . . . , k}.

For every Coxeter system (Γ, V ), Σ(Γ, V ) is a CAT(0) geodesic space by a piece-
wise Euclidean metric (cf. [7, Theorem 7.8]). We define the boundary ∂Γ as the
set of geodesic rays in Σ(Γ, V ) emanating from the unit element e ∈ Γ ⊂ Σ(Γ, V )
with the topology of the uniform convergence on compact sets, i.e., ∂Γ is the vi-
sual sphere of Σ(Γ, V ) at the point e ∈ Σ(Γ, V ). In general, for all points x, y in a
CAT(0) space X, the visual spheres of X at points x and y are homeomorphic (cf.
[9, Assertion 1]). This boundary is known to be a finite-dimensional compactum
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(i.e., metrizable compact space). Details of the boundaries of CAT(0) spaces can
be found in [7] and [8].

It is still unknown whether the following conjecture holds.

Rigidity Conjecture (Dranishnikov [12]). Isomorphic Coxeter groups have home-
omorphic boundaries.

We note that there exists a Coxeter group Γ with different Coxeter systems (Γ, V1)
and (Γ, V2).

Let X be a compact metric space and G an abelian group. The cohomological
dimension of X over G is defined as

c-dimG X = sup{i | Ȟi (X, A; G) 6= 0 for some closed set A ⊂ X},

where Ȟi(X, A; G) is the Čech cohomology of (X, A) over G.
In [2], Bestvina-Mess proved the following theorem for hyperbolic groups. An

analogous theorem for Coxeter groups is proved by the same argument (cf. [9]).

Theorem 1.3 (Bestvina-Mess [2]). Let Γ be a Coxeter group and R a ring with
identity. Then there exists the formula

c-dimR ∂Γ = vcdR Γ− 1.

In Section 3, for a right-angled Coxeter group Γ with vcdR Γ = n, where R

is a principal ideal domain, we construct a sequence ΓW0 ⊂ ΓW1 ⊂ · · · ⊂ ΓWn−1

of parabolic subgroups with vcdR ΓWi = i. Then we obtain, by Theorem 1.3,
an analogous property to a theorem in the classical dimension theory (cf. [13,
Theorem 1.5.1]), i.e., there exists a sequence ∂ΓW0 ⊂ ∂ΓW1 ⊂ · · · ⊂ ∂ΓWn−1

of the boundaries of parabolic subgroups with c-dimR ∂ΓWi = i − 1. Since the
boundaries of Coxeter groups are always finite dimensional, we can also establish,
for a right-angled Coxeter group Γ with dim ∂Γ = n, the existence of a sequence
∂ΓW0 ⊂ ∂ΓW1 ⊂ · · · ⊂ ∂ΓWn−1 of the boundaries of parabolic subgroups with
dim ∂ΓWi = i.

In Section 4, we show that, for a right-angled Coxeter system (Γ, V ) and a
subset W ⊂ V , a parabolic subgroup ΓW is of finite index if and only if ∂ΓW = ∂Γ.

Throughout this paper, a ring R means a commutative ring with identity
1R 6= 0. For a brief historical view of Coxeter groups and their boundaries,
we refer the reader to [7]. Details of dimension/cohomological dimension theory
can be found in [13] and [17].
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2. The virtual cohomological dimension of Coxeter groups over

principal ideal domains

In this section, we extend Dranishnikov’s Theorem 1.2 to an analogous theorem
over principal ideal domain coefficients by using an argument similar to one in
[10]. We first prove the following lemma needed later.

Lemma 2.1. Let R be a principal ideal domain. Let t ≥ 2 be an integer. Then

(i) if the tensor product Zt⊗R is trivial, then the tensor product Zt⊗R/I and
the torsion product Tor(Zt, R/I) are trivial for every ideal I in R, and

(ii) if R is not a field and the tensor product Zt ⊗R/I is trivial for every non-
trivial prime ideal I in R, then the tensor product Zt ⊗ R and the torsion
product Tor(Zt, R) are trivial.

Proof. Let rt ∈ R be the t sum 1R + · · ·+ 1R of 1R. Define the homomorphism
ϕ : R → R by ϕ(r) = rtr. Then there exists the following exact sequence:

0 −→ Tor(Zt, R) −→ R
ϕ−→ R −→ Zt ⊗R −→ 0.

Hence the kernel of ϕ is isomorphic to Tor(Zt, R) and the cokernel of ϕ is isomor-
phic to Zt ⊗R.

(i) Suppose that Zt⊗R is trivial. It follows from 0 = Zt⊗R ≈ R/rtR and the
non-triviality of ϕ that rt is a non-zero unit element of R. Since R is a principal
ideal domain, ϕ is a monomorphism. It means that Tor(Zt, R) = 0.

Let I be a non-trivial ideal in R. Consider the following exact sequence:

Tor(Zt, R) → Tor(Zt, R/I) → Zt ⊗ I → Zt ⊗R → Zt ⊗R/I → 0,

which is induced by the natural short exact sequence I ↪→ R → R/I. Then it is
clear that Zt ⊗ R/I = 0. We also see that Tor(Zt, R/I) ≈ Zt ⊗ I = 0, since rt is
a unit element of R.

(ii) We note that there exists a non-trivial prime ideal I in R, because R is not
a field.

Suppose that Zt ⊗R/I is trivial for every non-trivial prime ideal I in R.
First, we show that rt 6= 0 in R. If rt = 0 in R, then for a non-trivial prime

ideal I the homomorphism R/I → R/I defined by r+I 7→ rtr+I is trivial. Hence
Zt ⊗ R/I is isomorphic to R/I 6= 0. It contradicts Zt ⊗ R/I = 0. Therefore, we
have rt 6= 0.

Then ϕ is a monomorphism, because R is an integral domain. Hence Tor(Zt, R)
is trivial.
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Next, we show that rt is a unit. Suppose that rt is not a unit. Since R is
a principal ideal domain, rt is presented as rt = p1 · · · pk by some prime ele-
ments p1, . . . , pk of R. Then I = p1R is a non-trivial prime ideal in R. The
homomorphism R/I → R/I defined by r + I 7→ rtr + I is trivial, because
rtr + I = p1(p2 · · · pkr) + I = I. Hence Zt ⊗ R/I is isomorphic to R/I 6= 0.
It contradicts Zt ⊗R/I = 0. Therefore rt is a unit.

Then ϕ is an epimorphism. It means that Zt ⊗R is trivial.

Theorem 2.2. Let Γ be a Coxeter group and R a principal ideal domain. Then
Γ has the following properties:

(a) vcdQ Γ ≤ vcdR/I Γ ≤ vcdR Γ ≤ vcd Γ for any prime ideal I in R.
(b) vcdR/I Γ = vcdQ Γ for almost all prime ideals I in R, if R is not a field.
(c) There exists a non-trivial prime ideal I in R such that vcdR/I Γ = vcdR Γ,

if R is not a field.
(d) vcdR Γ× Γ = 2 vcdR Γ.

Proof. Let (Γ, V ) be a Coxeter system, R a principal ideal domain, and K =
K(Γ, V ). We note that R/I is a field for every non-trivial prime ideal I in R, and
R has the only trivial prime ideal if R is a field.

(a) For any prime ideal I in R, we have vcdQ Γ ≤ vcdR/I Γ by Theorem 1.2 (a),
and vcdR Γ ≤ vcd Γ. We show vcdR/I Γ ≤ vcdR Γ.

If I is trivial, then it is obvious. We suppose that I is a non-trivial prime ideal
in R. Let vcdR/I Γ = n. Then lcdR/I CK = n by Theorem 1.1. Hence there
exists a simplex σ of CK such that H̃n−1(Lk(σ, CK);R/I) 6= 0. By the universal
coefficient formula, either H̃n−1(Lk(σ, CK))⊗R/I or Tor(H̃n(Lk(σ, CK)), R/I)
is non-trivial. Since H̃n−1(Lk(σ, CK)) and H̃n(Lk(σ, CK)) are finitely generated
abelian groups, we have H̃n−1(Lk(σ, CK)) ⊗ R 6= 0 or H̃n(Lk(σ, CK)) ⊗ R 6= 0
by Lemma 2.1 (i). By the universal coefficient formula, H̃n−1(Lk(σ, CK);R) 6= 0
or H̃n(Lk(σ, CK);R) 6= 0. In both cases, we have vcdR Γ = lcdR CK ≥ n by
Theorem 1.1.

(b) Let vcdQ Γ = n. We define A as the set of non-trivial prime ideals I in R

such that H̃i(Lk(σ, CK))⊗R/I 6= 0 for some simplex σ of CK and integer i ≥ n.
We show that A contains every non-trivial prime ideal I in R with vcdR/I Γ 6= n.

Suppose I is a non-trivial prime ideal in R with vcdR/I Γ 6= n. Then lcdR/I CK =
vcdR/I Γ > n by Theorem 1.1 and Theorem 1.2 (a). Hence there exist a simplex σ

of CK and an integer i ≥ n such that H̃i(Lk(σ, CK);R/I) 6= 0. By the universal
coefficient formula, either H̃i(Lk(σ, CK)) ⊗ R/I or Tor(H̃i+1(Lk(σ, CK)), R/I)
is non-trivial. Here we note that for a field F and an integer t ≥ 2, the tensor
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product Zt ⊗ F is trivial if and only if the torsion product Tor(Zt, F ) is trivial.
Therefore H̃i(Lk(σ, CK))⊗R/I 6= 0 or H̃i+1(Lk(σ, CK))⊗R/I 6= 0 because R/I

is a field. In both cases, I is an element of A. Therefore to prove our desired
property, it is sufficient to show that A is finite.

Let T be the set of all torsion coefficients of H̃i(Lk(σ, CK)) for every sim-
plex σ of CK and integer i ≥ n. Since CK is a finite simplicial complex and
H̃i(Lk(σ, CK)) is a finitely generated torsion group for each simplex σ of CK

and i ≥ n, which is by lcdQ CK = vcdQ Γ = n, we have that T is finite. For each
t ∈ T , we define Bt as the set of non-trivial prime ideals I such that Zt⊗R/I 6= 0.
Then we note that A =

⋃

t∈T Bt.
We show that Bt is finite for each t ∈ T . Let rt ∈ R be the t sum 1R + · · ·+1R

of 1R. Since R is a principal ideal domain, R is a unique factorization domain.
Hence rt is presented as rt = p1 · · · pk by some prime elements p1, . . . , pk. Let
I be a non-trivial prime ideal in R such that Zt ⊗ R/I is non-trivial. For the
homomorphism ϕ̄ : R/I → R/I defined by r + I 7→ rtr + I, the cokernel of ϕ̄ is
isomorphic to Zt⊗R/I. Since R/I is a field, ϕ̄ is trivial. Hence I is a member of
{p1R, . . . , pkR}, because p1, · · · , pk are prime elements. Therefore we have that
the cardinality of Bt is at most k. Hence A is finite, because T is finite.

(c) Let vcdR Γ = n. Then there exists a simplex σ of CK such that
H̃n−1(Lk(σ, CK);R) 6= 0 by Theorem 1.1. By the universal coefficient formula,
either H̃n−1(Lk(σ, CK))⊗R or Tor(H̃n(Lk(σ, CK)), R) is non-trivial.

First, we show that H̃n−1(Lk(σ, CK))⊗R is non-trivial. To show the fact, we
suppose that Tor(H̃n(Lk(σ, CK)), R) is non-trivial. Let the numbers s1, . . . , sl

be the torsion coefficients of H̃n(Lk(σ, CK)). Then there exists a number sj such
that Tor(Zsj , R) 6= 0. By Lemma 2.1 (ii), there exists a non-trivial prime ideal
I in R such that Zsj ⊗ R/I 6= 0. Then H̃n(Lk(σ, CK)) ⊗ R/I is non-trivial.
By the universal coefficient formula, H̃n(Lk(σ, CK);R/I) is non-trivial. Hence
we have vcdR/I Γ = lcdR/I CK ≥ n + 1 by Theorem 1.1. On the other hand,
we have vcdR/I Γ ≤ vcdR Γ = n by Theorem 2.2 (a). This is a contradiction.
Thus Tor(H̃n(Lk(σ, CK)), R) is trivial. Therefore H̃n−1(Lk(σ, CK)) ⊗ R must
be non-trivial.

Next, we show that H̃n−1(Lk(σ, CK))⊗R/I is non-trivial for some non-trivial
prime ideal I in R. Let β be the Betti number and the numbers t1, . . . , tk the
torsion coefficients of H̃n−1(Lk(σ, CK)). If β is non-zero, then it is clear that
H̃n−1(Lk(σ, CK))⊗R/I is non-trivial for any non-trivial prime ideals I in R. If
β is zero, then there exists a number ti such that Zti ⊗R 6= 0. By Lemma 2.1 (ii),
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there exists a non-trivial prime ideal I in R such that Zti ⊗ R/I 6= 0. Then
H̃n−1(Lk(σ, CK))⊗R/I is non-trivial.

By the universal coefficient formula and Theorem 1.1, we have vcdR/I Γ ≥ n.
Hence, vcdR/I Γ = n by Theorem 2.2 (a).

(d) In general, for groups Γ1, Γ2 the inequality vcdR Γ1 × Γ2 ≤ vcdR Γ1 +
vcdR Γ2 holds, where the equality holds, if R is a field ([3, Theorem 4 c)]). Hence,
in our case, the equality vcdR Γ× Γ = 2 vcdR Γ holds, if R is a field. We suppose
that R is not field. Then the inequality vcdR Γ × Γ ≤ 2 vcdR Γ holds. We show
that vcdR Γ × Γ ≥ 2 vcdR Γ. By Theorem 2.2 (c), there exists a non-trivial
prime ideal I in R such that vcdR/I Γ = vcdR Γ. We note that R/I is a field.
Then we have 2 vcdR Γ = 2 vcdR/I Γ = vcdR/I Γ × Γ. Since Γ × Γ is also a
Coxeter group, vcdR/I Γ×Γ ≤ vcdR Γ×Γ by Theorem 2.2 (a). Therefore we have
vcdR Γ× Γ = 2 vcdR Γ.

3. A sequence of parabolic subgroups of a right-angled Coxeter

group

In this section, we prove the following theorem.

Theorem 3.1. Let (Γ, V ) be a right-angled Coxeter system with vcdR Γ = n,
where R is a principal ideal domain. Then there exists a sequence W0 ⊂ W1 ⊂
· · · ⊂ Wn−1 ⊂ V such that vcdR ΓWi = i for i = 0, . . . , n − 1. In particular,
we can obtain a sequence of simplexes τ0 ¿ τ1 ¿ · · · ¿ τn−1 such that Wi is the
vertex set of Lk(τi, K(Γ, V )) and K(ΓWi , Wi) = Lk(τi, K(Γ, V )).

We note that Theorem 3.1 is not always true for general Coxeter groups. In-
deed, there exists the following counter-example.

Example. We consider the Coxeter system (Γ, V ) defined by V = {v1, v2, v3}
and

m(vi, vj) =

{

1 if i = j,

3 if i 6= j.

Then Γ is not right-angled, and K(Γ, V ) is not a flag complex. Indeed, Γ{vi,vj} is
finite for each i, j ∈ {1, 2, 3}, but Γ is infinite (cf. [4, p.98, Proposition 8]). Since
cd K(Γ, V ) = 1 and lcd K(Γ, V ) = 1, we have vcd Γ = 2 by Theorem 1.1. For any
proper subset W ⊂ V , vcd ΓW = 0, because ΓW is a finite group. Hence there
does not exist a subset W ⊂ V such that vcd ΓW = 1.

We first show some lemmas.



800 T. HOSAKA AND K. YOKOI

Lemma 3.2. Let K be a simplicial complex. If τ is a simplex of K and τ ′

is a simplex in the link Lk(τ, K), then the join τ ∗ τ ′ is a simplex of K and
Lk(τ ′, Lk(τ, K)) = Lk(τ ∗ τ ′, K).

Proof. Let τ be a simplex of K and τ ′ in Lk(τ, K). Since τ ′ is in Lk(τ, K),
the join τ ∗ τ ′ is a simplex of K and τ ∩ τ ′ = ∅. For a simplex σ of K, σ is in
Lk(τ ′, Lk(τ, K)) if and only if σ ∗ τ ′ is in Lk(τ, K) and σ ∩ τ ′ = ∅, i.e., σ ∗ τ ′ ∗ τ

is a simplex of K and σ ∩ (τ ∗ τ ′) = ∅. Therefore σ is in Lk(τ ′, Lk(τ, K)) if and
only if σ is in Lk(τ ∗ τ ′, K). Hence we have Lk(τ ′, Lk(τ, K)) = Lk(τ ∗ τ ′, K).

Lemma 3.3. Let K be a simplicial complex and G an abelian group. For a
simplex τ of K, there exists the inequality lcdG Lk(τ, K) ≤ lcdG K.

Proof. Let lcdG Lk(τ, K) = n. Then there exists a simplex τ ′ in Lk(τ, K) such
that H̃n−1(Lk(τ ′, Lk(τ, K)); G) 6= 0. By Lemma 3.2, Lk(τ ′, Lk(τ, K)) = Lk(τ ∗
τ ′, K). Hence we have lcdG K ≥ n.

In [10], Dranishnikov showed the following relation of lcdG K and cdG K.

Theorem 3.4 (Dranishnikov [10]). For every abelian group G and every finite
simplicial complex K, there exists the inequality lcdG K ≥ cdG K.

Using this theorem and the lemmas above, we show the following key lemma.

Lemma 3.5. Let (Γ, V ) be a right-angled Coxeter system with vcdR Γ = n, where
V is nonempty and R is a principal ideal domain. Then there exists a proper
subset W of V such that vcdR ΓW = n or n − 1. In particular, we can obtain
a simplex σ of K(Γ, V ) such that W is the vertex set of Lk(σ, K(Γ, V )) and
K(ΓW , W ) = Lk(σ, K(Γ, V )).

Proof. Since vcdR Γ = n, we have lcdR K(Γ, V ) = n or cdR K(Γ, V ) = n − 1
by Theorem 1.1. If lcdR K(Γ, V ) ≤ n − 1, then cdR K(Γ, V ) = n − 1, and
lcdR K(Γ, V ) = n− 1 by Theorem 3.4. Therefore lcdR K(Γ, V ) = n or n− 1.

We set m := lcdR K(Γ, V ). Then there exists a simplex σ of K(Γ, V ) such
that H̃m−1(Lk(σ, K(Γ, V )); R) 6= 0 and H̃i(Lk(σ, K(Γ, V )); R) = 0 for any i ≥
m. Hence we have cdR Lk(σ, K(Γ, V )) = m − 1. Let W be the vertex set of
Lk(σ, K(Γ, V )). We note that W is a proper subset of V .

Then we show that

K(ΓW , W ) = Lk(σ, K(Γ, V )).(1)

It is clear that the vertex set of K(ΓW , W ) is the vertex set of Lk(σ, K(Γ, V )).
Let {v0, . . . , vk} be a subset of W which spans a simplex of K(ΓW , W ). Since
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{v0, . . . , vk} generates a finite subgroup of ΓW ⊂ Γ, {v0, . . . , vk} spans a simplex
of K(Γ, V ). It follows from vi ∈ W = Lk(σ, K(Γ, V ))(0) that the join vi ∗ σ forms
a simplex of K(Γ, V ) and vi 6∈ σ for each i = 0, . . . , k. We note that K(Γ, V )
is a flag complex, since Γ is right-angled. Hence the join |v0, . . . , vk| ∗ σ forms
a simplex of K(Γ, V ) and |v0, . . . , vk| ∩ σ = ∅, i.e., |v0, . . . , vk| is a simplex in
Lk(σ, K(Γ, V )). Conversely, let {v0, . . . , vk} be a subset of W which spans a
simplex in Lk(σ, K(Γ, V )). Then {v0, . . . , vk} generates a finite subgroup of Γ.
Since {v0, . . . , vk} ⊂ W , {v0, . . . , vk} generates a finite subgroup of ΓW . Hence
{v0, . . . , vk} spans a simplex of K(ΓW , W ). Thus it follows that K(ΓW , W ) =
Lk(σ, K(Γ, V )).

We note that cdR K(ΓW , W ) = m − 1, and lcdR K(ΓW , W ) ≤ m by (1) and
Lemma 3.3. Hence vcdR ΓW = m by Theorem 1.1. Thus we have vcdR ΓW = n

or n− 1.

Using this lemma, we prove Theorem 3.1.

Proof of Theorem 3.1. Let (Γ, V ) be a right-angled Coxeter system with
vcdR Γ = n, where R is a principal ideal domain.

By Lemma 3.5, we can obtain subsets {Vi}i of V and simplexes {σi}i of K(Γ, V )
satisfying the following conditions:

(1) V0 = V ,
(2) Vi+1 is a proper subset of Vi,
(3) K(ΓVi+1 , Vi+1) = Lk(σi+1, K(ΓVi , Vi)), and
(4) vcdR ΓVi+1 = vcdR ΓVi or vcdR ΓVi − 1.

Then we note, by conditions (1), (3) and Lemma 3.2, that

K(ΓVi , Vi) = Lk(σi, K(ΓVi−1 , Vi−1))

= Lk(σi, Lk(σi−1, K(ΓVi−2 , Vi−2)))

= Lk(σi−1 ∗ σi, K(ΓVi−2 , Vi−2))

= · · ·
= Lk(σ1 ∗ · · · ∗ σi, K(ΓV0 , V0))

= Lk(σ1 ∗ · · · ∗ σi, K(Γ, V )).

Since V is finite, there exists a number m such that Vm is the empty set by
condition (2). Then vcdR ΓVm = 0, because ΓVm is the trivial group. Hence we
can have a subsequence {Vij}j of {Vi}i such that vcdR ΓVij

= n − j for each
j = 1, . . . , n by condition (4).
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We set Wj := Vin−j and τj := σ1 ∗ · · · ∗ σin−j for j = 0, . . . , n − 1. Then we
have Wj ⊂ Wj+1, τj ¿ τj+1, vcdR ΓWj

= j and K(ΓWj
, Wj) = Lk(τj , K(Γ, V ))

for each j by our construction.

By Theorem 1.3, we can obtain the following corollary.

Corollary 3.6. For a right-angled Coxeter system (Γ, V ) with c-dimR ∂Γ = n,
where R is a principal ideal domain, there exists a sequence ∂ΓW0 ⊂ ∂ΓW1 ⊂ · · · ⊂
∂ΓWn−1 of the boundaries of parabolic subgroups of (Γ, V ) such that c-dimR ∂ΓWi =
i for each i = 0, 1, . . . , n− 1.

In general, for a finite dimensional compactum X, the equality c-dimZ X =
dimX holds ([17, §2, Remark 4]). Since the boundaries of Coxeter groups are
always finite dimensional, we obtain the following corollary.

Corollary 3.7. For a right-angled Coxeter system (Γ, V ) with dim ∂Γ = n, there
exists a sequence ∂ΓW0 ⊂ ∂ΓW1 ⊂ · · · ⊂ ∂ΓWn−1 of the boundaries of parabolic
subgroups of (Γ, V ) such that dim ∂ΓWi

= i for each i = 0, 1, . . . , n− 1.

4. The boundaries of parabolic subgroups of a right-angled

Coxeter group

In this section, we show that a parabolic subgroup of a right-angled Coxeter
group is of finite index if and only if their boundaries coincide.

If X and Y are topological spaces, let us define X ∗Y to be the quotient space
of X × Y × [0, 1] obtained by identifying each set x× Y × 0 to a point and each
set X × y × 1 to a point.

The following proposition is known.

Proposition 4.1 (Dranishnikov [10]). Let (Γ1, V1) and (Γ2, V2) be Coxeter sys-
tems. Then we have

∂(Γ1 × Γ2) = ∂Γ1 ∗ ∂Γ2.

Sketch of proof. We give a proof only if Γ1 and Γ2 are right-angled.
We recall the construction of the cubical complex Σ(Γ, V ) in Section 1. A cube

of Σ(Γ1, V1) has a form of Cγ,σ for some γ ∈ Γ1 and simplex σ of K(Γ1, V1), where
Cγ,σ is the cube defined by γ ∈ Γ1 and σ ∈ K(Γ1, V1). In the same way, let Dδ,τ

and Eε,υ be the cubes of Σ(Γ2, V2) and Σ(Γ1×Γ2, V1 ∪V2) defined by δ ∈ Γ2 and
τ ∈ K(Γ2, V2), and ε ∈ Γ1 × Γ2 and υ ∈ K(Γ1 × Γ2, V1 ∪ V2), respectively.

Then
ϕ : Σ(Γ1, V1)× Σ(Γ2, V2) → Σ(Γ1 × Γ2, V1 ∪ V2)
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defined by ϕ(Cγ,σ × Dδ,τ ) = E(γ,δ),σ∗τ is the natural isomorphism of cubical
complexes, where γ ∈ Γ1, δ ∈ Γ2, σ ∈ K(Γ1, V1) and τ ∈ K(Γ2, V2). Here we note
that K(Γ1 × Γ2, V1 ∪ V2) = K(Γ1, V1) ∗K(Γ2, V2). Hence we have

Σ(Γ1 × Γ2, V1 ∪ V2) = Σ(Γ1, V1)× Σ(Γ2, V2).

Then the natural identification

ψ : ∂Γ1 ∗ ∂Γ2 → ∂(Γ1 × Γ2)

is defined by ψ([ξ1, ξ2, θ]) = (θξ1, θξ2), where

(θξ1, θξ2)(t) = (ξ1(t cos(θπ/2)), ξ2(t sin(θπ/2)))

for t ≥ 0. Thus we have

∂(Γ1 × Γ2) = ∂Γ1 ∗ ∂Γ2.

This formula for every Coxeter group is also proved by the same argument. In
this case, Cγ,σ, Dδ,τ , and Eε,υ play cells of the piecewise Euclidean cell complexes
Σ(Γ1, V1), Σ(Γ2, V2), and Σ(Γ1 × Γ2, V1 ∪ V2), respectively.

Theorem 4.2. Let (Γ, V ) be a right-angled Coxeter system and W a subset of
V . Then the following conditions are equivalent:

(1) The parabolic subgroup ΓW ⊂ Γ is of finite index.
(2) {v, v′} spans an edge of K(Γ, V ) for any v ∈ V \W and v′ ∈ V .
(3) Γ = ΓW × ΓV \W and ΓV \W ≈ Z|V \W |

2 .
(4) ∂Γ = ∂ΓW .

Proof. (1) ⇒ (2): Suppose that there exist v ∈ V \ W and v′ ∈ V such that
{v, v′} does not span an edge of K(Γ, V ). Since Γ{v,v′} is infinite, Γ{v,v′} is the
free product Γ{v} ∗ Γ{v′}. For each integer t, let γt = (vv′)t. If s 6= t, then
γ−1

t γs = (vv′)s−t 6∈ ΓW , since v 6∈ W . Hence {γtΓW |t = 1, 2, . . . } is infinite, and
{γΓW |γ ∈ Γ} is infinite. Therefore ΓW is not a subgroup of finite index.

(2) ⇒ (3): Suppose (2) holds. Since (Γ, V ) is right-angled, {v, v′} spans an
edge of K(Γ, V ) if and only if vv′ = v′v. Hence we have that Γ = ΓW × ΓV \W

and ΓV \W ≈ Z|V \W |
2 .

(3) ⇒ (1): Suppose (3) holds. Then

[Γ : ΓW ] = [ΓW × ΓV \W : ΓW ] = |ΓV \W | = |Z|V \W |
2 | = 2|V \W |.

(3) ⇒ (4): Suppose (3) holds. Since ΓV \W ≈ Z|V \W |
2 is finite, the boundary

∂ΓV \W is empty. Hence ∂Γ = ∂ΓW by Proposition 4.1.
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(4) ⇒ (2): Suppose that there exist v ∈ V \W and v′ ∈ V such that {v, v′}
does not span an edge of K(Γ, V ). Then Γ{v,v′} = Γ{v} ∗ Γ{v′}. Consider the
geodesic ray ξ : [0,∞) → Σ(Γ{v,v′}, {v, v′}) ⊂ Σ(Γ, V ) such that

ξ(t) =

{

(vv′)t/2 if t = 0, 2, 4, . . .

(vv′)(t−1)/2v if t = 1, 3, 5, . . .

Then ξ ∈ ∂Γ, but ξ 6∈ ∂ΓW , because v ∈ V \W . Thus we have ∂Γ 6= ∂ΓW .
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