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Abstract. We study fibrewise retracts and extensions. In section 2, we

introduce notions of absolute (nbd) retracts (or extensor) over B relative

to a fibrewise class QB . In section 3, we introduce a notion of fibrewise

adjunction spaces and study the relations of fibrewise ANR and ANE. In

sections 4 and 5, we study fibrewise contractibility and fibrewise ANE.

1. Preliminaries

Fibrewise General Topology or General Topology of Continuous Maps is con-
cerned most of all in extending the main notions and results concerning spaces to
continuous maps. Most of the results obtained so far in this field can be found in
[2],[3],[4],[9],[10], [11] and [12], where one can also find an extensive bibliography
on the subject.

Unless otherwise stated, B is a fixed topological space with topology τ . The
collection of all neighborhoods (nbd(s)) of a point b ∈ B is denoted by N(b). For
continuous maps f : X → B and g : Y → B, a continuous map λ : X → Y

satisfying the property f = g ◦ λ, is called a morphism of f into g and is denoted
by λ : f → g. These are the morphisms in the category TopB , the objects of which
are continuous maps into the space B. A morphism λ : f → g is called surjective,
closed, perfect, etc, if respectively, such is the map λ : X → Y . If [λX]= Y

then the morphism λ is said to be dense and if λ : X → Y is a homeomorphism
then the morphism λ is said to be an isomorphism. Here by [•] or [•]X we mean
the closure operator in the respective space. We note that this situation is a
generalization of the category Top (of topological spaces and continuous maps as
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morphisms), since the category Top is isomorphic to the particular case of TopB

in which the space B is a singleton set.
In this paper, we assume that all maps are continuous and all spaces are topo-

logical spaces. We use the following terminology and notations: B is the fixed
base space, a map f : X → B is said to be a projection, X is said to be a fibrewise
space over B and we denote it by (X, f). A morphism λ : X → Y is said to be a
fibrewise map. N is the set of all positive integers and I the closed unit interval
[0, 1].

We now give some definitions concerning maps. For more details one can
consult [10] and [12].

Definition 1.1. A map f : X → B is called a Ti-map, i = 0, 1, 2, if for all
x, x

′ ∈ X such that x 6= x
′
, fx = fx

′
the following condition is respectively

satisfied:
i = 0: at least one of the points x, x

′
has a nbd in X not containing the other

point;
i = 1: each of the points x, x

′
has a nbd in X not containing the other point;

i = 2: the points x and x
′
have disjoint nbds in X.

A T2-map is also called Hausdorff. We note that for i = 0, 1 the property for a
map f : X → B to be a Ti-map, is equivalent to the property that all the fibres
f−1b, b ∈ B, are Ti-spaces. This is not the case for T2-maps.

Definition 1.2. The subsets M and N of the space X are said to be respectively:
(a) nbd separated in U ⊂ X,
(b) functionally separated in U ⊂ X,
if the sets M ∩ U and N ∩ U

(a) have disjoint nbds in U,
(b) are functionally separated in U (i.e. there is a map φ : U → I such that

M ∩ U ⊂ φ−1(0) and N ∩ U ⊂ φ−1(1)).

Definition 1.3. (a) A map f : X → B is called functionally Hausdorff, if for
every two points x and x′ in X such that x 6= x′, fx = fx′, there is a nbd
O ∈ N(fx), such that the sets {x} and {x′} are functionally separated in f−1O.

(b) A map f : X → B is called completely regular (resp. regular), if for
every point x ∈ X and every closed set F in X such that x 6∈ F , there is a
nbd O ∈ N(fx), such that the sets x and F are functionally separated (resp.
nbd separated) in f−1O. A completely regular (resp. regular) T0-map is called
Tychonoff or T3 1

2
-(resp. T3-)map.
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It can be easily verified that every Tj-map is a Ti-map for j, i =0,1,2,3,3 1
2 and

i ≤ j. We also have that every Tychonoff map is functionally Hausdorff, and
every functionally Hausdorff map is Hausdorff. In Example 5.1, we shall give an
example of a normal compact map which is not functionally Hausdorff.

Definition 1.4. A map f : X → B is called functionally prenormal (resp.
prenormal) if for every b ∈ B and every two disjoint, closed sets F and H in X,
there is O ∈ N(b) such that F and H are functionally separated (resp. nbd sepa-
rated) in f−1O. If for every O ∈ τ , the map f |f−1O : f−1O → O is functionally
prenormal(resp. prenormal) then f is called functionally normal(resp.normal). A
normal T3-map is called a T4-map.

Definition 1.5. By a compact map is meant a perfect (i.e. continuous, closed
and fibrewise compact) T2-map.

Definition 1.6. Let f : X → B be a map.
(1) For b ∈ B, a collection of subsets of X is said to be b-locally finite if for

every x ∈ f−1b, there is a nbd Ox of x in X, such that Ox meets finitely many
elements of the collection. A T2-map f : X → B is said to be paracompact if for
every point b ∈ B and every open (in X) cover U={Uα : α ∈ Λ} of the fibre f−1b

(i.e. f−1b ⊂ ∪{Uα : α ∈ Λ}), there is a nbd Ob of b such that f−1Ob is covered
by U and (f−1Ob ∧ U) has an open (in X) locally finite refinement in f−1Ob.

(2) For b ∈ B, let U be an open cover of f−1b. A collection V of subsets
of X is said to be a star refinement of U if V ∩ f−1b 6= ∅ for every V ∈ V,
f−1b ⊂ ∪{V : V ∈ V} and there is a nbd Ob of b such that U covers f−1Ob and
{St(V,V)|V ∈ V} refines f−1Ob ∧ U .

Note that in Definitions 1.5 and 1.6, we assume that compact (and paracom-
pact) maps are T2, which is different from that in [9](and [2]). Some charac-
terizations of paracompact maps can be found in [2] and [3]. Note that if f is
paracompact then it is a closed map. The following is used in the later.

Theorem 1.1. ([2;Theorem 3.12])For a T1-map f : X → B, the following are
equivalent.

(1) The map f is paracompact.
(2) For every b ∈ B and every open (in X) cover U of the fibre f−1b, there is

an open star refinement V of U .

The following Definitions 1.7 and 1.8 can be seen in [2] and [4] respectively.
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Definition 1.7. A map f : X → B is finally compact if f is closed and for every
b ∈ B the fibre f−1b is finally compact. A finally compact T3-map is called a
Lindelöf map.

Definition 1.8. Let f : X → B be a T1-map.
(1) f is said to be collectionwise prenormal if for every discrete collection

{Fα : α ∈ Λ} of closed subsets of X and for every b ∈ B, there are Ob ∈ N(b) and
a collection of open subsets {Uα : α ∈ Λ}, such that Fα ∩ f−1Ob ⊂ Uα and {Uα}
are discrete in f−1Ob. The map f is said to be collectionwise normal if for every
open set O of B, f |f−1O : f−1O → O is collectionwise prenormal.

(2) The sequence W1,W2, . . . of open (in X) covers of f−1b, b ∈ B, is said to
be a b-development if for every x ∈ f−1b and every U(x) of x in X, there exist
i < ω and O ∈ N(b) such that x ∈ St(x,Wi) ∩ f−1O ⊂ U(x). The map f is said
to have an f-development if it has a b-development for every b ∈ B.

(3) The map f is metrizable type (abbreviated MT) if it is closed and collec-
tionwise normal and has an f -development.

If f is collectionwise normal, it is easy to see that f is regular, therefore f is
normal. Thus f is T4. We use the following theorem in the later.

Proposition 1.2. ([4;Proposition 2.7])Every paracompact map is collectionwise
normal.

Definition 1.9. For a fibrewise space (X, f), a collection Bb of open sets of X is
said to be a base at b for the map f, b ∈ B, if for every x ∈ f−1b and every open
nbd U(x) of x there are O ∈ N(b) and V ∈ Bb such that x ∈ V ∩ f−1O ⊂ U(x).
One can assume that for every V ∈ Bb we have V ∩ f−1b 6= ∅.

Thus Bf = ∪{Bb|b ∈ B}, where Bb is a base at b for f , will give a base for the
map f . Conversely, if Bf is a base for f , by taking Bf (b) = {V ∈ Bf |V ∩f−1b 6= ∅}
one gets a base at b ∈ B for the map f .

Definition 1.10. Let f : X → B be a map and b ∈ B. A collection U of subsets
of X is said to be b-discrete if there is a nbd Ob ∈ N(b) such that U ∧ f−1Ob is
discrete in f−1Ob. Further U is said to be b-σ-discrete if U = ∪{Un|n ∈ N} and
each Un is b-discrete for each n ∈ N.

The following is used in the later.

Theorem 1.3. ([4;Theorem 2.12]) For a map f : X → B, the following are
equivalent:

(1) f is an MT-map.
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(2) f is a closed T3-map with a b-σ-discrete b-base for every b ∈ B.

Definition 1.11. A compact map f : X → B is compact metrizable type (abbre-
viated MT-)map if it is compact and MT-map.

For CMT-map, we have the following:

Theorem 1.4. ([4;Theorem 2.18]) A compact map f : X → B is a MT-map if
and only if it has a countable b-base for every b ∈ B.

Definition 1.12. For the collection of maps fα : Xα → B, α ∈ Λ, the subspace
X = {x = {xα} ∈

∏

{Xα : α ∈ Λ} : fαxα = fβxβ ,∀α, β ∈ Λ} of the Tychonoff
product

∏

=
∏

{Xα : α ∈ Λ} is called the fan product of the spaces Xα with
respect to the maps fα, α ∈ Λ and is denoted by {Xαrelfα : α ∈ Λ}.

For the projection prα :
∏

→ Xα, the restriction πα on X is called the pro-
jection of the fan product onto the factor Xα, α ∈ Λ. From the definition of fan
product we have that, fα ◦ πα = fβ ◦ πβ for every α and β in Λ. Thus one can
define a map f : X → B, called the projection of the fan product, by

f = fα ◦ πα, α ∈ Λ

Obviously, the projections f and πα, α ∈ Λ, are continuous.
The projection f is also called the fibrewise product of the maps fα, α ∈ Λ

(since for every point b ∈ B, the inverse image f−1b is homeomorphic to the
Tychonoff product of the fibres f−1

α b, α ∈ Λ). The fact that f is the fibrewise
product of the maps fα, α ∈ Λ, will be denoted by f =

∏

{fα : α ∈ Λ}.
In particular the fan product P of the spaces X and Y with respect to the

maps f : X → B and g : Y → B will be denoted by Xf×gY and the projections
πα by πX and πY .

2. Fibrewise absolute (nbd) retracts and extensors

In this section, we shall introduce the fundamental notions in fibrewise retract
theory; i.e., fibrewise retraction, fibrewise (nbd) retraction of maps, fibrewise
(nbd) extension of maps, mapping class QB of fibrewise maps with the property
Q over a base space B, fibrewise absolute (nbd) retract for a class QB and fibrewise
absolute (nbd) extensor for a class QB . Further we will study of some properties
of these notions. For retract theory in general topology, one can consult [1],[8]
and [6].

We shall begin with the following definitions.
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Definition 2.1. Let X be a space and A a subspace of X. Let (X, f) and (A, g)
be two fibrewise spaces.

(1) A map r : X → A is said to be a fibrewise retraction of f to g if it is a
retraction and a fibrewise map i.e., f = g ◦ r. In this case, g is said to be a retract
of f .

(2) If there are a nbd Y of A in X and a fibrewise retraction r : Y → A, g is
said to be a nbd retract of f .

Definition 2.2. Let X be a fibrewise space over B. A fibrewise map e : X → X

is said to be fibrewise idempotent if e ◦ e = e.

Proposition 2.1. Let X be a fibrewise space over B, A a subspace of X and
r : X → A a fibrewise retraction. For the inclusion h : A → X, the composition
e = h ◦ r : X → X is fibrewise idempotent.

Proof. Since r and h are fibrewise maps, e is obviously a fibrewise map. Since
r is a fibrewise retraction, the composed map r ◦ h is the identity map i on A.
Hence, we have

e ◦ e = (h ◦ r) ◦ (h ◦ r) = h ◦ (r ◦ h) ◦ r = h ◦ i ◦ r = h ◦ r = e.
This proves that e is idempotent.

Conversely, we have the following.

Proposition 2.2. Let (X, f) be a fibrewise space, e : X → X a fibrewise idem-
potent, e(X) = A and r : X → A a map defined by r(x) = e(x). Then r is a
fibrewise retraction of f to f |A.

Proof. Since the given map e is fibrewise idempotent, we have e = e ◦ e and r

is a fibrewise map. Let a be an arbitrary point of A. Since A = e(X), there is a
point x ∈ X with a = e(x). Hence we have

r(a) = e(a) = e(e(x)) = (e ◦ e)(x) = e(x) = a.

This proves that r is a retraction.

Proposition 2.3. Let X be a space and A a subspace of X. For two fibrewise
spaces (X, f) and (A, g), if f is a Hausdorff map and g is a retract of f , A is
closed in X.

Proof. Let r : X → A be a fibrewise retraction. We shall prove that the
complement M = X −A is an open set of X. Let x be an arbitrary point in M .
Then r(x) is a point in A. Since r is fibrewise, g(r(x)) = f(x). Denote a = r(x)
and b = g(a) = f(x). Since a ∈ A, x ∈ M and f(x) = f(a), we have a 6= x and
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a ∈ f−1b, x ∈ f−1b. Since f is a Hausdorff map, there are two open set U and
V of X such that a ∈ U, x ∈ V, U ∩ V = ∅. By the continuity of r, r−1(U ∩ A)
is an open set containing the point x. It follows that W = r−1U ∩ V is an open
set containing x. It remains to prove that W ⊂ M . For this purpose, let z be an
arbitrary point in W . Then z ∈ V and z ∈ r−1U . The latter implies r(z) ∈ U .
Since U and V are disjoint, it follows that r(z) 6= z. Hence z ∈ M . This proves
W ⊂ M .

Definition 2.3. Let (X, f), (A, g) and (Z, h) be fibrewise spaces, A ⊂ X and
g = f |A. For fibrewise maps ψ : X → Z and ϕ : A → Z,

(1) ψ is called to be a fibrewise extension of ϕ if ψ|A = ϕ.
(2) ψ is called to be a fibrewise nbd extension of ϕ if there is a nbd U of A in

X with ψ|U = ϕ.

Proposition 2.4. Let (X, f) and (A, g) be fibrewise spaces and A ⊂ X, g = f |A.
Then g is a retract of f if and only if, for every fibrewise space (Z, h) and every
fibrewise map ϕ : A → Z, ϕ has a fibrewise extension of X to Z.

Proof. “Only if” part: Since g is a retract of f , there is a fibrewise retraction
r : X → A. Then it is easy to see that ϕ ◦ r is a fibrewise extension of ϕ.

“If” part: Since the identity i of A is a fibrewise map for (A, g), then by taking
(Z, h) to be (A, g), i has a fibrewise extension r from the condition. Therefore r

is a fibrewise retraction of f to g.

Let QB be a class of projections f : X → B satisfying a topological property
Q; i.e. QB={(X, f)|f : X → B is a projection satisfying Q}. We call QB is
a fibrewise class satisfying Q. For example, we consider as Q, perfect maps,
paracompact maps, normal maps, metrizable type (MT -)maps, etc. Further, we
require that “If (X, f) ∈ QB and A is a closed subset of X, then (A, f |A) ∈ QB”.
For (X, f) ∈ QB and a closed subset A of X, a pair ((X, f), (A, f |A)) will be
called a QB-pair. In this case, we will simply write that (X, A) is a QB-pair.

Definition 2.4. Let (X, f) be a fibrewise space. (X, f) is said to be an absolute
(resp. nbd) retract over B relative to a fibrewise class QB if, for every (Z, h) ∈ QB

satisfying (Z, X) is a QB-pair, f is a (resp. nbd) retract of h. By ARB(QB) (resp.
ANRB(QB)) we denote all absolute (resp. nbd) retracts over B relative to QB .

Definition 2.5. Let (Z, h) be a fibrewise space. (Z, h) is said to be an absolute
(resp. nbd) extensor over B relative to a fibrewise class QB if, for every fibrewise
map ϕ : A → Z, where A is a closed subspace of X with (X, f) ∈ QB , ϕ has a
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fibrewise (resp. nbd) extension to X(resp. a nbd U of A). By AEB(QB) (resp.
ANEB(QB)) we denote all absolute (resp. nbd) extensor over B relative to QB .

We shall prove the following propositions for any fibrewise class QB . The first
two propositions are obvious.

Proposition 2.5. Every (X, f) ∈ ARB(QB) is also in ANRB(QB).

Proposition 2.6. Every (E, g) ∈ AEB(QB) is also in ANEB(QB).

Proposition 2.7. Let (E, g) ∈ QB. If (E, g) is in AEB(QB), then it is also in
ARB(QB). If it is in ANEB(QB), then it is also in ANRB(QB).

Proof. For any (X, f) ∈ QB such that (X, E) is a QB-pair, since (E, g) is in
AEB(QB), the identity i : E → E has a fibrewise extension ϕ of i to X. Since ϕ is
also a fibrewise retraction of f to g, g is a retract of f . Hence (E, g) ∈ ARB(QB).
The case ANEB(QB) follows by the same steps.

The following two propositions are obvious.

Proposition 2.8. Let QB and Q
′

B be fibrewise classes such that QB ⊂ Q
′

B.
If (E, g) ∈ AEB(Q

′

B) (resp. ANEB(Q
′

B)), then it is also in AEB(QB) (resp.
ANEB(QB)).

Proposition 2.9. Let QB and Q
′

B be fibrewise classes such that QB ⊂ Q
′

B.
If (X, f) ∈ ARB(Q

′

B) (resp. ANRB(Q
′

B)) and it is in QB, then it is also in
ARB(QB) (resp. ANRB(QB)).

Proposition 2.10. Let (E, f) ∈ AEB(QB) (resp. ANEB(QB)). If, for a fibre-
wise space (Y, g), g is a retract (resp. nbd retract) of f , then (Y, g) is in AEB(QB)
(resp. ANEB(QB)).

Proof. For any (X, h) ∈ QB and any closed subset A of X, let ϕ : A → Y be a
fibrewise map. The map ϕ can also be considered as a map of A into E. Since
(E, f) ∈ AEB(QB), ϕ has an extension ψ : X → E. On the other hand, since g

is a retract of f , there is a fibrewise retraction r : E → Y . Then it is easily seen
that r ◦ ψ : X → Y is a fibrewise extension of ϕ. Hence, (Y, g) is in AEB(QB).
The case ANEB(QB) can be similarly proved.

Proposition 2.11. Let (E, g) ∈ ANEB(QB). If O is an open set of E, (O, g|O)
is in ANEB(QB).
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Proof. Let (X.f) ∈ QB and A a closed subset of X. For a fibrewise map
ϕ : A → O, this ϕ can also be considered as a map of A into E. Since (E, g) is
in ANEB(QB), there are a nbd U of A in X and a map ψ : U → X which is a
fibrewise extension of ϕ : A → E. Then ψ|ψ−1(O) : ψ−1(O) → O is a fibrewise
extension of ϕ, which shows that (O, g|O) is in ANEB(QB).

Proposition 2.12. Any fan product of AEB(QB) is in AEB(QB).

Proof. Let (Xα, fα) ∈ AEB(QB), α ∈ A, X the fan product of the spaces Xα,
α ∈ A, and f the projection of X to B. For any (Z, h) ∈ QB and any closed
subset A of Z, let ϕ : A → X be a fibrewise map. Since (Xα, fα) ∈ AEB(QB),
for each α ∈ A, πα ◦ϕ : A → Xα has a fibrewise extension ψα : Z → Xα of πα ◦ϕ.
We define ψ : Z → X by ψ(z) =

∏

ψα(z). Then it is easily verified that ψ is a
fibrewise extension of ϕ.

The following proposition can be proved by the same steps as in the above.

Proposition 2.13. Any fan product of a finite number of ANEB(QB) is in
ANEB(QB).

3. Fibrewise adjunction spaces

In this section, we define the concept of fibrewise adjunction spaces, and con-
sider some properties of this concept. We shall prove that some fibrewise classes
are preserved under the fibrewise adjunction operation, and for such a class QB ,
a fibrewise space in QB is in AEB(QB) (resp. ANEB(QB)) if and only if it is in
ARB(QB) (resp. ANRB(QB)).

Definition 3.1. Let (X, f) and (Y, g) be fibrewise spaces, A a closed subspace of
X, ϕ : A → Y a fibrewise map with g ◦ϕ = f |A and X ∪ϕ Y (= Z) the adjunction
space. A map h : Z → B defined by

h(x) =
{

f(x) (x ∈ X −A)
g(x) (x ∈ Y )

is a fibrewise map. Then (Z, h) is called a fibrewise adjunction space determined
by (X, f), (Y, g) and ϕ, and h an adjunction map determined by f, g and ϕ, which
is denoted by f ∪ϕ g.

In this definition, there are three natural maps j : X → Z, k : Y → Z and
p : X ∪ Y → Z. We use these j, k and p in this section, and X − A and Y are
identified with p(X −A) and p(Y ), respectively.
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The fibrewise retraction problem, as defined in the previous section, is a special
case of the fibrewise extension problem. Also, we can see from Proposition 2.4
that the notion of retracts of maps gives a necessary and sufficient condition for
the fibrewise extension problem to be trivial. On the other hand, the fibrewise
extension problem for a given map ϕ : A → Y , defined on a closed subspace
A of a fibrewise space X into another fibrewise space Y can be reduced to a
fibrewise retraction problem by means of the fibrewise adjunction space. We have
the following proposition.

Proposition 3.1. Using the notation of Definition 3.1, g is a retract of h if and
only if ϕ has a fibrewise extension to a map of X to Y .

Proof. “Only if” part: Let r : Z → Y be a fibrewise retraction. Define a map
ψ : X → Y be taking ψ(x) = r(p(x)) for every point x ∈ X. For each x ∈ A,
we have f(x) = r(p(x)) = r(ϕ(x)) = ϕ(x). This proves that ψ is a fibrewise
extension of ϕ.

“If” part: Let ψ : X → Y be a fibrewise extension of the given map ϕ. Define
a function r : Z → Y as follows. Let z be an arbitrary point of Z. If z ∈ Y , let
r(z) = z. If z 6∈ Y , then there is a unique point x in X −A with p(x) = z. Define
r(z) = ψ(x). Let s = r ◦ p : X ∪ Y → Y . It follows that s|X = ψ and that s|Y
is the identity map. Therefore s is continuous. Since p is the natural projection,
it follows that r is continuous. Since r|Y is the identity map by definition and
g ◦ r = h, we conclude that r is a fibrewise retraction.

We use the following notations of fibrewise classes in this paper.
NB = All fibrewise spaces with normal T3 maps
FNB = All fibrewise spaces with functionally normal maps
CNB = All fibrewise spaces with collectionwise normal maps
PB = All fibrewise spaces with paracompact maps
LB = All fibrewise spaces with Lindelöf maps
CB = All fibrewise spaces with compact maps
MB = All fibrewise spaces with MT-maps
CMB = All fibrewise spaces with CMT-maps
We shall show in the following propositions that each of NB , CNB , PB , LB ,

CB and CMB is closed under the fibrewise adjunction operation.

Proposition 3.2. Let (X, f) and (Y, g) be in NB, A a closed subspace of X and
ϕ : A → Y a fibrewise map. Then the fibrewise adjunction space (X ∪ϕ Y ,f ∪ϕ g)
is in NB.
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Proof. Let X ∪ϕ Y =Z and f ∪ϕ g=h. First, we shall show that h is a T0-map.
For all z, z′ ∈ Z such that z 6= z′, hz = hz′, we must consider three cases: (a)
z, z′ ∈ Y , (b) z ∈ X − A, z′ ∈ Y , and (c) z, z′ ∈ X − A. For the case (a), since g

is a T0-map, there is a nbd U of z in Y with z′ /∈ U . Then U ∪ (X −A) is a nbd
of z in Z which does not contain z′. For the other cases (b) and (c), since f is a
T0-map and X − A is open in Z, it is easy to see that at least one of the points
z, z′ has a nbd in Z not containing the other point. Thus, h is a T0-map.

Next, we shall show that h is a regular map. For a point z ∈ Z and a closed
set F of Z such that z /∈ F , we must consider two cases: (1) z ∈ X − A, and (2)
z ∈ Y . For the case (1), since f is regular, there is O ∈ N(fz)(= N(hz)) such
that the sets z and A ∪ j−1F have disjoint nbds U and V in f−1O, respectively.
Then U ∩ (X − A) ∩ h−1O and p(V ∪ Y ) ∩ h−1O are disjoint nbds of z and
F ∩ h−1O in h−1O, respectively. For the case (2), since g is a regular map,
there is O ∈ N(gz)(= N(hz)) such that the sets z and k−1F ∩ g−1O have nbds
U and V in g−1O, respectively, with [U ]Y ∩ [V ]Y ∩ g−1O = ∅. For disjoint
closed (in f−1O) sets ϕ−1[U ]Y ∩ f−1O and (j−1F ∪ ϕ−1[V ]Y ) ∩ f−1O, since f

is normal, there is O1 ∈ N(hz) such that O1 ⊂ O and there are disjoint nbds
U1 and V1 in f−1O1 of the above sets, respectively. Then we shall show that
(j(U1∩(X−A))∪kU)∩h−1O1 = U

′
and (j(V1∩(X−A))∪kV )∩h−1O1 = V

′
are

disjoint nbds of the sets z and F ∩h−1O1, respectively. Since it is easy to see that
z ∈ U

′
, F ∩h−1O1 ⊂ V

′
and U

′ ∩V
′
= ∅, we show that U

′
and V

′
are open in Z.

For U
′
, it is sufficient to show that j−1U

′
is open in X because k−1U

′
= U∩g−1O1

is open in Y . Since ϕ−1(U ∩ g−1O1) is open in A, there is an open set W of X

such that W ∩A = ϕ−1(U ∩ g−1O1). Since U1 ∩ ((X −A) ∪W ) = j−1U
′
, j−1U

′

is open in X. For V
′
, we can prove in a similar way. Thus h is a regular map.

Finally, we shall show that h is a normal map. It is enough to show that h is
prenormal, because it is easy to see, in the same way, that h|h−1O is prenormal
for every open set O of Z. For every b ∈ B and any two disjoint closed sets F

and H of Z, since g is normal, there is O1 ∈ N(b) such that F ∩ Y and H ∩ Y

are separated in g−1O1. Therefore, there are two open sets U1 and U2 of Y such
that k−1F ∩ g−1O1 ⊂ U1, k

−1H ∩ g−1O1 ⊂ U2 and [U1]Y ∩ [U2]Y ∩ g−1O1 = ∅.
Since ϕ−1([U1]Y ∩ g−1O1)∪ (j−1F ∩ (X−A)∩f−1O1) and ϕ−1([U2]Y ∩ g−1O1)∪
(j−1H∩(X−A)∩f−1O1) are disjoint closed sets of f−1O1 and f is normal, there
is O2 ∈ N(b) with O2 ⊂ O1 such that the above disjoint closed sets have disjoint
nbds V1 and V2 in f−1O2, respectively. Then j(V1∩(X−A))∪k(U1∩g−1O2) and
j(V2 ∩ (X −A)) ∪ k(U2 ∩ g−1O2) are disjoint nbds of F ∩ h−1O2 and H ∩ h−1O2

in h−1O2. Thus h is prenormal.
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Proposition 3.3. Let (X, f) and (Y, g) be in CNB, A a closed subspace of X and
ϕ : A → Y a fibrewise map. Then the fibrewise adjunction space (X ∪ϕ Y ,f ∪ϕ g)
is in CNB.

Proof. Let f ∪ϕ g=h. Since (X, f) and (Y, g) are in NB , note by Proposition
3.2 that h is a T4-map. Further, it is easy to see by the same steps in the proof
of Proposition 3.2 that h is collectionwise normal.

Proposition 3.4. Let (X, f) and (Y, g) be in PB, A a closed subspace of X and
ϕ : A → Y a fibrewise map. Then the fibrewise adjunction space (X ∪ϕ Y ,f ∪ϕ g)
is in PB.

To prove this proposition, we need the following lemma. Let X ∪ϕ Y =Z and
f ∪ϕ g=h.

Lemma 3.5. Under the same conditions of Proposition 3.4, for a point b ∈ B

and any nbd Ob ∈ N(b), let {Uλ} be any b-locally finite (in Y ) cover of g−1b.
Then there are a nbd O

′

b ∈ N(b) and an open (in Z) locally finite collection {Wλ}
in h−1O

′

b such that O
′

b ⊂ Ob and Uλ ∩ g−1O
′

b = Wλ ∩ g−1O
′

b for each λ.

Proof. Let U={Uλ}. For U , since (Y, g) is in PB , there is an open (in Y ) cover
U ′ = {U ′

µ} of g−1b such that any U
′

µ ∈ U ′ meets only a finite number of elements
of U . We may assume that U ′ is locally finite in g−1O

′

b for some O
′

b ∈ N(b)
with O

′

b ⊂ Ob because (Y, g) is in PB . Further, there is an open (in Y ) cover
U” = {U”

ν } of g−1O
′

b such that each U”
ν meets only a finite number of elements of

U ′. Since ϕ−1Y = A, we have that {ϕ−1Uλ}, {ϕ−1U
′

µ} and {ϕ−1U”
ν } are open (in

A) covers of ϕ−1g−1O
′

b. Put V
′

µ = ϕ−1U
′

µ ∪ (X −A) for each µ. Then V ′ = {V ′

µ}
is an open (in X) cover of f−1b. Since f is paracompact, there is O”

b ∈ N(b) such
that O”

b ⊂ O
′

b and V ′ ∧ f−1O”
b has an open (in X) star refinement G = {Gκ}. For

each λ, let

Vλ = (ϕ−1Uλ ∪ (St(ϕ−1Uλ,G)−A)) ∩ f−1O”
b .

Then Vλ is open in f−1O”
b . Next, for each λ, let

Wλ = (Uλ ∪ pVλ) ∩ h−1O”
b ,

which is open in h−1O”
b and Uλ ∩ g−1O”

b = Wλ ∩ Y . We shall show that {Wλ}
is locally finite in h−1O”

b . For an arbitrary point z ∈ h−1O”
b , we consider the

following two cases: (1) z ∈ Z − Y , and (2) z ∈ Y .
Case (1): It is enough to show that {Vλ} is locally finite in f−1O”

b . If Gκ∩Vλ 6=
∅, then Gκ ∩ St(ϕ−1Uλ,G) 6= ∅. So St(Gκ,G) ∩ ϕ−1Uλ 6= ∅. Therefore, there is
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V
′

µ ∈ V ′ such that St(Gκ,G) ⊂ V
′

µ. From this we have ϕ−1Uλ ∩ (ϕ−1U
′

µ ∪ (X −
A)) 6= ∅, so that ϕ−1Uλ ∩ ϕ−1U

′

µ 6= ∅. But for fixed µ, this is possible only for
a finite number of λ’s. Hence, since {Gκ} covers f−1O”

b , {Vλ} is locally finite at
z ∈ j(X −A) = Z − Y .

Case (2): We construct a nbd of z in h−1O”
b as follows. Starting with some U”

ν

containing z, we put

V ”
ν = (ϕ−1U”

ν ∪ (St(ϕ−1U”
ν ,G)−A)) ∩ f−1O”

b ,

and

W ”
ν = (pV ”

ν ∪ U”
ν ) ∩ h−1O”

b .

Then it is easy to see that W ”
ν is a nbd of z in Z. Now let W ”

ν ∩Wλ 6= ∅.
If W ”

ν ∩Wλ ⊂ Y , we have U”
ν ∩ Uλ 6= ∅. But U”

ν only meets a finite number of
sets U

′

µ, each meeting only a finite number of sets Uλ. Hence, since ν is fixed, λ

that satisfies W ”
ν ∩Wλ 6= ∅ is restricted to a finite number of values.

If W ”
ν ∩Wλ 6⊂ Y , there is a point z1 ∈ (W ”

ν ∩Wλ) ∩ (Z − Y ). Then

y1 = j−1(z1) ∈ j−1W ”
ν ∩ j−1Wλ = V ”

ν ∩ Vλ ⊂ St(j−1U”
ν ,G) ∩ St(j−1Uλ,G),

where one can note that j−1U”
ν = ϕ−1U”

ν , j−1Uλ = ϕ−1Uλ. This implies that
St(y1,G)∩j−1U”

ν 6= ∅ and St(y1,G)∩j−1Uλ 6= ∅. But G is an open star refinement
of V ′ ∧ f−1O”

b . Hence,

St(y1,G) ⊂ V
′

µ ∩ f−1O”
b = (ϕ−1U

′

µ ∪ (X −A)) ∩ f−1O”
b

for some µ. We obtain j−1U
′

µ ∩ j−1U”
ν 6= ∅ and j−1U

′

µ ∩ j−1Uλ 6= ∅. Again we see
that, since ν is fixed, λ that satisfies W ”

ν ∩Wλ 6= ∅ is restricted to a finite number
of values. Hence {Wλ} is locally finite in h−1O”

b . This completes the proof of
Lemma 3.5.

We can now prove Proposition 3.4.

Proof. We take a point b ∈ B and any open (in Z) cover R = {Rκ} of h−1b.
Since (X, f) and (Y, g) are in PB , there is a nbd Ob ∈ N(b) such that f−1Ob is
covered by j−1R and f−1Ob ∧ j−1R has an open (in X) locally finite refinement
V1 in f−1Ob, and g−1Ob is covered by k−1R and g−1Ob ∧ k−1R has an open
(in Y ) locally finite refinement U = {Uλ} in g−1Ob. For each Uλ, choose some
Rκλ

∈ R such that Uλ ⊂ Rκλ
. By Lemma 3.5, there are a nbd O

′

b ∈ N(b) and
an open (in Z) locally finite collection {Wλ} in h−1O

′

b such that O
′

b ⊂ Ob and
Uλ ∩ g−1O

′

b = Wλ ∩ g−1O
′

b for each λ. We may assume that Wλ ⊂ Rκλ
otherwise

replacing Wλ by Wλ ∩ Rκλ
. Put W =

⋃

λ Wλ. Then W is an open (in h−1O
′

b)
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set containing Y ∩ h−1O
′

b. Hence j−1W ∩ f−1O
′

b is open in f−1O
′

b and contains
A ∩ f−1O

′

b. Since f is a paracompact map, f1 = f |f−1O
′

b : f−1O
′

b → O
′

b is also
paracompact, so f1 is normal ([2] Proposition 3.2). The disjoint closed (in f−1O

′

b)
sets A∩ f−1O

′

b and f−1O
′

b−W are nbd separated in f−1
1 O”

b for some O”
b ∈ N(b)

satisfying O”
b ⊂ O

′

b. Therefore, there are disjoint open (in f−1
1 O”

b = f−1O”
b ) sets

K and L such that A∩f−1O”
b ⊂ K and f−1O”

b−W ⊂ L. Then it is easily verified
that (V1 ∧ L) ∪ ({Wλ} ∧ h−1O”

b ) is an open (in Z) locally finite refinement of R
in h−1O”

b . This completes the proof of Proposition 3.4.

Proposition 3.6. Let (X, f) and (Y, g) be in LB, A a closed subspace of X and
ϕ : A → Y a fibrewise map. Then the fibrewise adjunction space (X ∪ϕ Y ,f ∪ϕ g)
is in LB.

Proof. Let X∪ϕY = Z and f∪ϕg = h. By [2] Proposition 5.3 and Corollary 5.4,
every Lindelöf map is a paracompact T4-map. So (Z, h) is in PB by Propositions
3.2 and 3.4. Thus h is closed. For any b ∈ B, it is easily verified that h−1b is
finally compact. Thus (Z, h) is Lindelöf.

Proposition 3.7. Let (X, f) and (Y, g) be in CB, A a closed subspace of X and
ϕ : A → Y a fibrewise map. Then the fibrewise adjunction space (X ∪ϕ Y ,f ∪ϕ g)
is in CB.

Proof. Let f∪ϕg = h. Then it is not difficult to see that h is a closed map and
h−1b is compact for each b ∈ B.

Proposition 3.8. Let (X, f) and (Y, g) be in CMB, A a closed subspace of X and
ϕ : A → Y a fibrewise map. Then the fibrewise adjunction space (X ∪ϕ Y ,f ∪ϕ g)
is in CMB.

Proof. Let X∪ϕY = Z and f∪ϕg = h. By Proposition 3.7, h is a compact map.
We shall show that, for each b ∈ B, h−1b has a countable b-base. By [4] Theorem
2.16, f−1b has a countable b-base U in X, and g−1b has a countable b-base V in
Y . For every V ∈ V, ϕ−1[V ]Y ∩ f−1b is compact. For each V ∈ V, let

WV = {IntZ(V ∪ (
n
⋃

i=1

Ui −A))|ϕ−1[V ]Y ∩ f−1b ⊂
n
⋃

i=1

Ui, Ui ∈ U , n ∈ N}

where IntZ is the interior operator in Z. Then it is easy to see that WV is
countable,

⋃

V ∈VWV is countable, and (U ∧(X−A))∪(
⋃

V ∈VWV ) is a countable
b-base of h−1b. Thus, by [4] Theorem 2.18, h is an MT -map.

Finally, we obtain the following Theorem.
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Theorem 3.9. Let QB be one of the fibrewise classes NB , CNB ,PB ,LB , CB and
CMB. Then for any (Y, g) ∈ QB, it is in AEB(QB) (resp. ANEB(QB)) if and
only if it is in ARB(QB) (resp. ANRB(QB)).

Proof. We shall show only the case of AEB(QB) and ARB(QB), since the other
case can be proved by a similar method.

“Only if” part: We assume that (Y, g) ∈ QB is in AEB(QB). For every (Z, h) ∈
QB satisfying (Z, Y ) is a QB-pair, let i : Y → Y be the identity map. Since (Y, g)
is in AEB(QB), i has a fibrewise extension r : Z → Y . Then, it is obvious that r

is a fibrewise retraction of h to g. Thus, (Y, g) is in ARB(QB).
“If” part: Let (Y, g) ∈ QB be in ARB(QB). For any QB-pair ((X, f), (A, f |A))

and for every fibrewise map ϕ : A → Y , we take the fibrewise adjunction space
Z = X∪ϕY, h = f∪ϕg. Then from Propositions 3.2, 3.3, 3.4, 3.6, 3.7 and 3.8,
(Z, h) is also in QB . Since (Z, Y ) is a QB-pair and (Y, g) is in ARB(QB), there
is a fibrewise retraction r : Z → Y . Then, r◦p = X → Y is a fibrewise extension
of ϕ. Thus, (Y, g) is in AEB(QB).

4. Fibrewise contractibility

In this section, we consider fibrewise contractibility. For a fibrewise space
(X, f), by (X × I, q) we mean the fibrewise space (Xf×prB

(I × B), f × prB),
where prB : I × B → B is the (fibrewise) projection. We use the notation
(X × I, q) for the rest of the paper.

Proposition 4.1. Let QB be one of the fibrewise classes PB ,LB , CB ,MB and
CMB. Then for any (X, f) ∈ QB, (X × I, q) ∈ QB.

Proof. PB case: Since it is obvious that prB is a compact map, it is paracompact
[2] Theorem 4.5.
LB case: Since prB is compact, q is Lindelöf by [2] Corollary 5.8.
CB case: Since f and prB are compact maps, it is easy to see that q is compact.
MB case: Since f and prB is paracompact, q is paracompact by PB case. So,

it is a closed T3-map by [2] Proposition 3.2. It is enough to show from Theorem
1.3(also see,[4] Theorem 2.12) that, for each point b ∈ B, q has a b-σ-discrete
b-base. Let U =

⋃∞
n=1 Un be a b-σ-discrete b-base for f , and V = {Vn|n ∈ N} a

countable base of I. Then we put for each Vk ∈ V

Wnk = {(U × (Vk ×B)) ∩X × I|U ∈ Un}
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and

W =
∞
⋃

n,k=1

Wnk.

Then we shall prove that W is a b-σ-discrete b-base for q. First, it is obvious that
each Wnk is b-discrete. Next, for every (x, t, b) ∈ q−1b and any nbd U of (x, t, b),
there are a nbd M of x in X, a nbd Vk ∈ V of t in I and O ∈ N(b) such that
(M × Vk × O) ∩X × I ⊂ U . Since U is a b-σ-discrete b-base for f , there are an
n ∈ N, N ∈ Un and Ob ∈ N(b) such that Ob ⊂ O and x ∈ N ∩ f−1Ob ⊂ M .
Therefore, V = (N × Vk ×B) ∩X × I ∈ Wnk and (x, t, b) ∈ V ∩ q−1Ob ⊂ U .
CMB case: Since f and prB is compact, q is compact. For every point b ∈ B,

since f is a compact MT -map, there is a countable b-base U by Theorem 1.4(also
see, [4] Theorem 2.18). Put W = {(U × V ×B) ∩X × I|U ∈ U , V ∈ V} where V
is a countable base of I. Then it is easy to see that W is a countable b-base for
q. Thus, q is an MT -map by Theorem 1.4.

Definition 4.1. (1)([10]) By a section of a fibrewise space, we mean a continuous
right inverse of the projection. A fibrewise map φ : X → Y is fibrewise constant
where (X, f) and (Y, g) are fibrewise spaces, if φ = t◦f for some section t : B → Y .

(2)([10]) Let θ, φ : X → Y be fibrewise maps. A fibrewise homotopy of θ into φ

is a fibrewise map H : X × I → Y such that H(x, 0) = θ(x) and H(x, 1) = φ(x).
In this case, we say θ is fibrewise homotopic to φ and write θ'Bφ. A fibrewise
homotopy into a fibrewise constant map is called a fibrewise nullhomotopy.

(3)([10]) A fibrewise space X is fibrewise contractible if the identity on X is
fibrewise nullhomotopic.

Proposition 4.2. Let (X, f) be a fibrewise contractible space and A a subspace
of X. If f |A is a retract of f , then (A, f |A) is fibrewise contractible.

Proof. Since (X, f) is fibrewise contractible, there are a section s : B → X and
a fibrewise map H : X × I → X such that s ◦ f is fibrewise constant and H

is a fibrewise homotopy of idX to s ◦ f . Since f |A is a retract of f , there is a
fibrewise retraction r : X → A. We define a function K : A × I → A as follows:
K = r ◦H ◦ i, where i : A× I → X × I is the inclusion map. Then it is easy to
see that K is a fibrewise map and for each x ∈ A

K(x, 0) = r ◦H ◦ i(x, 0) = r ◦H(x, 0) = r ◦ idX(x) = r(x) = x = idA(x),

K(x, 1) = r ◦H ◦ i(x, 1) = r ◦H(x, 1) = r ◦ (s ◦ f)(x) = (r ◦ s) ◦ (f |A)(x).
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Since r ◦ s : B → A is a section, K is a fibrewise homotopy of idA to a fibrewise
constant map (r ◦ s) ◦ (f |A). Thus f |A is fibrewise contractible.

Theorem 4.3. Let QB be one of the fibrewise classes PB ,LB , CB and CMB.
Then any (X, f) ∈ ARB(QB) which has a section is fibrewise contractible.

Proof. Since (X, f) is in QB , (X × I, q) ∈ QB from Proposition 4.1. Let s be
a section of (X, f), i.e. f ◦ s = idB . Since A = X × {0, 1} is closed in X × I,
we can define a map ϕ : A → X by ϕ(x, 0) = x and ϕ(x, 1) = s ◦ f(x). Since
(X, f) ∈ AEB(QB) by Theorem 3.10, there is a fibrewise extension ψ : X×I → X

of ϕ. Thus (X, f) is contractible.

Theorem 4.4. Let QB be one of the fibrewise classes NB and CNB. If (X, f) ∈
PB ∩ARB(QB) and it has a section, then it is fibrewise contractible.

Proof. Since PB ⊂ QB by [2] Proposition 3.2 and Proposition 1.2 of this paper,
(X, f) ∈ ARB(PB) by Proposition 2.9. Since (X, f) has a section, it is fibrewise
contractible by Theorem 4.3.

5. Some special cases of fibrewise contractible spaces

In this section, we consider the case that for every fibrewise space (X, f), X is
paracompact. Let P be the topological class of all paracompact Hausdorff spaces.
For any fibrewise class QB , we use the notation QB ∩ P = {(X, f)|X ∈ P and
(X, f) ∈ QB}. Then it is easy to see that any fibrewise space (X, f) ∈ QB ∩ P is
in FNB .

Theorem 5.1. Let QB = FNB ∩P. Then any fibrewise space (X, f) which is a
fibrewise contractible space of ANEB(QB) is in AEB(QB).

Proof. Since (X, f) is fibrewise contractible, there are a section s : B → X and
a fibrewise homotopy H : X × I → X such that H(x, 0) = x, H(x, 1) = s ◦ f(x).
Let (Y, g) ∈ QB , (Y, A) be a QB-pair and ϕ : A → X a fibrewise map. Since
(X, f) ∈ ANEB(QB), there are an open (in Y ) nbd U of A and a fibrewise map
ψ : U → X such that ψ|A = ϕ. Since Y is paracompact, there is an open nbd
V of Y − U such that A ∩ [V ]Y = ∅. Since (Y, g) ∈ FNB , for each b ∈ B, there
is an open nbd Ob ∈ N(b) such that A and [V ]Y are functionally separated in
g−1Ob. Therefore, for each b ∈ B, there is a map eb : g−1Ob → I such that
A ∩ g−1Ob ⊂ e−1

b (0) and [V ]Y ∩ g−1Ob ⊂ e−1
b (1). Since Y is paracompact and

{g−1Ob|b ∈ B} = U is an open cover of Y , there is a partition {κb|b ∈ B} of unity
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subordinated to U . Now we define a function e : Y → I by

e(y) =
∑

b∈B

eb(y)κb(y).

Then it is easy to see that e is well-defined, continuous and satisfies A ⊂ e−1(0)
and [V ]Y ⊂ e−1(1). Finally, we can define a function φ : Y → X as follows:

φ(y) =
{

H(ψ(y), e(y)) (y ∈ U)
s(g(y)) (y ∈ V ).

Then φ is easily proved to be continuous. Since φ|A = ϕ, we conclude that
(X, f) ∈ AEB(QB).

Theorem 5.2. (1) Let QB be one of the fibrewise classes NB ∩P and CNB ∩P.
Then a fibrewise space (X, f) which is in QB and has a section is in ARB(QB)∩
PB if and only if it is a fibrewise contractible space of ANRB(QB).

(2) Let QB be one of the fibrewise classes PB∩P, LB∩P, CB∩P and CMB∩P.
Then a fibrewise space (X, f) which is in QB and has a section is in ARB(QB)
if and only if it is a fibrewise contractible space of ANRB(QB).

Proof. (1) “Only if” part: This follows easily from Proposition 2.5 and Theorem
4.4.

“If” part: This follows easily from Theorems 3.9 and 5.1 and Proposition 2.9.
(2) “Only if” part: This follows easily from Theorem 4.3 and Propositions 2.5

and 2.9.
“If” part: This follows easily from Theorems 3.9 and 5.1 and Proposition

2.9.

Finally, we shall give an example of a normal compact map which is not func-
tionally Hausdorff. This example was constructed by David Buhagiar.

Example 5.1. We need a space Z which slightly differs from that of Tzannes([13]).
Let [0, Ω] be the closed ordinal space and let [0, Ω]i, i ∈ J, |J | = |[0, Ω]|, be dis-

joint copies of [0, Ω], where Ω is the first uncountable ordinal. To the topological
sum X =

⋃

i∈J [0, Ω]i we add another closed ordinal space [0, Ω] and we consider
the set Y = X ∪ [0, Ω]. We define the bases of neighbourhoods of the points in
[0, Ω] in Y as follows:

(a) If x ∈ [0, Ω[, then let V (x) be a neighbourhood of x in [0, Ω[ and let V (xi)
be the copy of V (x) in [0, Ω]i. Then a base of neighbourhoods of x in Y is the
collection of sets

V (x) ∪ (
⋃

C),
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where C is the set consisting of all but a finite number of V (xi);
(b) If x = Ω, then let V (Ω) be a neighbourhood of Ω in [0, Ω] and let W (x) be

an open set in [0, Ω] satisfying (i) W (x) ⊂ V (Ω) and (ii) there exists an α < Ω
such that [α,Ω] ∩ W (x) = ∅. Then a base of neighbourhoods of Ω in Y is the
collection of sets

V (Ω) ∪ (
⋃

C),

where C is the set consisting of all but a finite number of W (xi).
As in Tzannes’ example, it is easily seen that X is an open dense subspace of

Y . Also, every sequence frequently in Y \ {Ωi : i ∈ J} has an accumulation point
(either in X or in [0, Ω]). Let L = {Ωi : i ∈ J} and D = { isolated points of X}.
Since |L| = |D|, there exists a 1–1 map g from L onto D. Consider the quotient
space

Z = {x, (Ωi, g(Ωi)) : x ∈ (X \ (L ∪D)) ∪ [0, Ω], i ∈ J}

We now define a topology τ on Z weaker than the quotient topology. Let U(Ω)
be a neighbourhood of Ω in [0, Ω] and let U(Ωi) be a copy of U(Ω) in [0, Ω]i. Let
q : Y → Z be the natural projection.

(A) For every xi ∈ X \ (L ∪D) a base of neighbourhoods is the collection of
open sets O(xi) such that

q−1(O(xi)) ∩X = V (xi) ∪
⋃

U(Ωk),

where k varies through all positive integers for which, for some finite sequence
of positive integers n1, . . . , nm, nm = k, g(Ωn1) ∈ V (xi), and for all 1 ≤ j <

m, g(Ωnj+1) ∈ U(Ωnj );
(B) For every x ∈ [0, Ω[ a base of neighbourhoods is the collection of open sets

O(x) such that

q−1(O(x)) = V (x) ∪
⋃

C ∪
⋃

U(Ωk),

where k varies through all positive integers for which, for some finite sequence
of positive integers n1, . . . , nm, nm = k, g(Ωn1) ∈

⋃

C, and for all 1 ≤ j <

m, g(Ωnj+1) ∈ U(Ωnj );
(C) For every point (Ωi, g(Ωi)) a base of neighbourhoods is the collection of

open sets O((Ωi, g(Ωi))) such that

q−1(O((Ωi, g(Ωi)))) ∩X = {g(Ωi)} ∪
⋃

U(Ωk),

where now for k and n1, . . . , nm, nm = k, g(Ωn1) ∈ U(Ωi), and for all 1 ≤ j <

m, g(Ωnj+1) ∈ U(Ωnj );
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(D) Finally, for Ω ∈ [0, Ω] a base of neighbourhoods is the collection of open
sets O(Ω) such that

q−1(O(Ω)) = V (Ω) ∪
⋃

C ∪
⋃

U(Ωk),

where now for k and n1, . . . , nm, nm = k, g(Ωn1) ∈
⋃

C, and for all 1 ≤ j <

m, g(Ωnj+1) ∈ U(Ωnj ). Note that here C is as in item (b) above in the definition
of neighbourhoods of Ω in Y .

As in Tzannes, (Z, τ) is a countably compact Hausdorff space which is not
functionally Hausdorff. Now consider the quotient space Z/[0, Ω]. The map p :
Z → Z/[0, Ω] is a Hausdorff compact (perfect) map which is not functionally
Hausdorff. Indeed, any two points in [0, Ω] cannot be separated by any function
in any neighbourhood of [0, Ω] in Z. Consequently, the map p is a normal compact
map which is not functionally normal.

In connection with this example, we don’t know whether or not a CMT -map
implies functionally Hausdorff. For other examples of normal compact Hausdorff
maps which are not functionally Hausdorff, see [7,4.2] or [5, Example 3.4]. (These
examples were pointed out by the referee. The author wishes to express his
gratitude to the referee for his helpful comments.)
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