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ON THE DIMENSIONAL CAPACITY OF 

COMPACT SEMILATTICES 
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and Albert Stralka 

The question of topological dimension is settled for compact abelian groups with 

the following classical result [ 7 ] ß 

PROPOSITION 0.1 If G is a compact abelian group with character group G and 

n a natural number, the following statements are equivalent.' 

(1) The (Lebesgue covering or cohomological) dimension of G is n. 

(2) The (torsion free) rank of G is n. 

(3) There is a quotient morphism G->T n (with zero dimensional kernel), 

where T = R/Z. 

(4) There is an injectire morphism Z n -> • (with a torsion cokerneD. 

While in general it is not feasible to assign to a compact space a transfinite 

cardinal as topological dimension, the preceding theorem allows us to do precisely that 

for compact abelian groups, because statements (2), (3) and (4) remain meaningful for 

arbitrary cardinals n. Thus, let us make the following definition, denoting with [XI the 

cardinal of a set X' 

DEFINITION 0.2. For a compact abelian group G we set #G = sup { IX{ ß there 

is a continuous surmorphism G • T X} and we call this cardinal the (generalized) 
dimension of G. 

We then have the following conclusive result' 

PROPOSITION 0.3. For each compact abelian group G we have #G =rank 

• =dimQ Q ©G-, and there is a continuous surmorphism G->T :)pG with zero 
dimensional kernel. 

If we now turn to the much larger class of compact abelian monoids, topological 

dimension becomes much more elusive. This study is a contribution to the question of 
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approaching this concept through algebraic tools in the spirit which we have illustrated 

for the classical case of groups above. Previous work [2] indicates that the problem 

has to be attacked for compact semilattices as a first order of business, and so we will 

proceed. We recall first that in our terminology [ 1-5] a semilattice is a commutative 

idempotent monoid. 

DEFINITION 0.4. For a compact semilattice S we set #S = sup ( IX[ ß there is a 

continuous surmorphism S-• I X} , where I = [0,1] with the minimum multiplication; 

and we call #S the dimensional capacity of S. 

The Cantor semilattice C (i.e. the ordinary Cantor set C C--I under the induced 

minimum multiplication) has dimensional capacity 1 and is itself topologically zero 

dimensional, thus illustrating right in the beginning that the deviations from group 

theory will be considerable. As a further example let us observe that, at variance with 

the group situation, dimensional capactiy may not be "attained", i.e. in the definition 

we may not replace "sup" by "max" ß 
oo 

EXAMPLE 0.5 ConsiderT = II I n and define L n C T by (Xm)m= 1 G L n if n=l -- ,'" 

x m = 0 for m-¾=n. We let D C_T be the diagonal consisting of all (Xm)m=l,.. ' for 
which there is a t GI with Xm=(t .... ,t) (m times) for all m= I,... . Set 

oo 

S=DU[ U Ln]. Then we have projections Prn: S-->I n , n=I .. ' but if we had a n=l " 

surmorphism f'S--> I N, by the Baire category theorem, at least one of the f(L n) 
would have interior points, entailing thereby the existence of some surmorphism 

L n --> I N, L n • I n, which is not possible, for instance for reasons of breadth. Thus 
#S = •qo, but no cube quotient of S is infinite dimensional. 

Lawson has observed that an n-dimensional compact Lawson similattice S has I n 

as a quotient ([6], Corollary 2.3), and it then follows that #S is the sup of the 

dimensions of those Lawson semilattices which are quotients of S. 

The following definition leads to an analog to Proposition 0.3. 

DEFINITION 0.6. Let Q be the semilattice of all rationals in [0,1 ] under rain 

and denote with XQ the coproduct of X copies of Q. If L is any semilattice, we let 
rank L = sup { IXI ß there is an injective morphism XQ __> L} 

and call this cardinal the rank of L. 

(In [2] this number was denoted Br L.) Then we have 

PROPOSITION 0.7. [2] For each compact zero dimensional semilattice $ we 
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have #S = rank •. 

Here S is the character semilattice Horn(S,2), 2 = {0,1} . A more sophisticated 

characterization is called for if one wishes to consider compact semilattices which are 

not zero dimensional (see Proposition 2.1 .i below). 

In the case of groups one knows that the torsion free rank, like vector space 

dimension, Js an additive invariant; i.e. it satisfies rank IIj Aj = Zj rank Aj for any 
family {Aj'j G J} of abelian groups. But then duality and Proposition 0.3 
immediately yield the fact that generalized dimension is logarithmic. 

PROPOSITION 0.8. For any family of compact abelJan groups {Gj ß j GJ } one 
has 

# IIjGj = Zj # Gj. 
We do not know of a direct proof that the rank of semilattices (Definition 0.6) is 

additive, but even if such a proof does exist, duality and Propositio n 0.7 would 

establish the logarithmic property of dimensional capacity only for compact 

zero-dimensional semilattices. However, it is the purpose of this paper to establish the 

following result: 

MAIN THEOREM 0.9 For any family ( Sj.' j G J} of compact semilattices one 
has 

# IIjSj = Zj # Sj. 
REMARK 0.10. If, in the Main Theorem, one of IJi or supj#Sj at least is 

infinite, then 

# IIjSj = max • IJI ,supj # Sj} . 
As a first application, it is now easy to derive that the rank of semilattices is 

additive from the main theorem' 

COROLLARY 0.1 1. For any family (Lp' j G J} of semilattices one has 
rank IIjLj = Zj rank Lj. 

PROOF. Using duality [3] and Proposition 0.7 above we calculate rank IIjLj = 
# IIjLj = Zj # Lj = Zj rank Lj, invoking the Main Theorem. 

As a second application, we prove one of the major results of [2]. We recall that 

a compact monoid S is dimensionally stable if no quotient raises topological 

dimension. Thus, a compact zero dimensional semilattice S is dimensionally stable iff 

•S = 0. As an immediate consequence of the Main Theorem we obtain 
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COROLLARY 0.12. [2] The product of compact zero-dimensional, 

dimensionally stable semilattices is dimensionally stable. 

Our methods will provide a proof of the additivity of the breadth of semilattices 

in the same spirit as we have established the additivity of the rank. We recall [2]' 

DEFINITION 0.13. If L is a semilattice, we let 

br L = sup { IXl ß there is an injective morphism X2 --> L } 
and call this cardinal the breadth of L. 

One notes that X2 is the free semilattice in X generators. 
Duality and Definition 0.4 both motivate the introduction of a dual cardinal 

invariant: 

DEFINITION 0.14. If S is a compact semilattice, we let 

cobr S = sup { IXl ß there is a continuous surmorphism S --> 2 X} 
and call this cardinal the co-breadth of S. 

PROPOSITION 0.15. For any compact semilattice S we have 

cobr S = br S. 

PROOF. Let S I -• S denote the left reflection of the category C of all compact 

semilattices into the subcategory Z of all compact zero-dimensional semilattices, i.e. S 

is the quotient of S modulo the connectivity congruence. Since 2 X G_Z, then every 
surmorphism S--> 2 X factors uniquely through the quotient map S-• with a 
surmorphism •--> 2 X. Thus cobr S = cobra. Further, since 2 C Z_, the front adjunction 
S--> S induces an isomorphism (S)- = Hom(S,2)--> Hom(S,2) = S, whence br 

S = br(S) But Pontryagin duality between Z_ and the category S of semilattices 

yields cobr •= br(•)- The assertion follows. 
We shall prove 

THEOREM 0.16. For any family { Sj.' j G J} of compact semilattices one has 
cobr IIjSj = •;j cobr Sj . 

COROLLARY 0.17. For any family { Lj.' j • J} of semilattices one has 
br njLj = 2j br Lj. 

PROOF. Apply 0.16 to { Lj'j G J }, recalling (IIjLj)- •- njLj and 0.15. 
Finally a word on our methods: In the case of groups, the results 0.1, 0.3 are 

proved by Pontryagin duality. For compact semilattices in general a duality of such a 

simple nature is not available. We therefore resort to techniques which have become 
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recently available through the use of Galois connections for compact semilattices [ 5 ]. 

These methods have already proved successful in [ 1, 2, 4, 5] and turn out to be very 

useful in the present context. We complement the principal results which we outlined 

above by a discussion of some related cardinality invariants which in many cases 

permit concrete calculations of dimensional capacity and co-breadth. 

1. Background information on Galois connections. Much of what follows is 

based on results proved in [5]. The first is fairly elementary: 

LEMMA 1.1. Let S and T be partially ordered sets. Then for any two functions 

d .' S --> T and g .' T --> S the following statements are equivalent.' 

(1) g( O •> s iff t •> d(s) for all t • T, s • S. 

(2) d(s) -- infg'l(]'s) for all s • S, where ]'s = { x • S: s • x }. 
(3) g(t) -- sup d-l($t) for all t • T, where •t -- { x • T: x • t ). 

If these conditions are satisfied, then one component in the pair (g,d) determines 

the other uniquely according to (2,3), and d preserves all existing sups and g all 

existing infs. Also, d is injective [surjective] iff g is surjective [injective]. 

The second, however, is less elementary: 

THEOREM 1.2 Let S and T be compact semilattices and T a Lawson semilattice. 

Then the pairing g • d described in Lemma 1.1 establishes a bi]ection between the set 

of all continuous semilattice morphisms g .' T • S and the set of all functions d .' S --> T 

satisfying these conditions: 

(I) d preserves arbitrary sups. 

(II) d(int ]'s) C int I'd(s) for all s • S. 

NOTATION 1.3. A pair of functions (g,d) as described in 1.1 is called a Galois 

connection between S and T. The function g is called the left ad]oint (gauche) of d, 

and d is called the right adjoint (droit) of g. Any map d: S--> T between compact 

semilattices satisfying (I, II) of 1.2 will be called a co-morphism. 

LEMMA 1.4. Let d: S -• T be a co-morphism between compact semilattices and 

suppose that T is a Lawson semilattice. If e CS, then d(•'e)C--•'d(e), and the 

restriction and corestriction d 1: •'e -• I'd(e) is a co-morphism. 
PROOF. Let g: T• S be the left adjoint of d defined by 1.1.(3). Since d is 

monotone by 1.1.1, e •< s implies d(e) •< d(s), whence d(•'e) C_ •'d(e). Conversely let 

t • td(e), i.e. t •> d(e). Then g(t) •>e by 1.1.1, i.e. g(t) • re. Thus g(•'d(e)) C__te. If 
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gl ' fd(e)--> fe is the restriction and corestriction of g, then (gl,dl) evidently is a 

Galois connection, since it satisfies 1.3.1. Thus gl is a left adjoint, and since fd(e) is a 

Lawson semilattice, 1.2 shows that d 1 is a co-morphism. 

We will now see that various functions occuring naturally in the context of 

products are components of Galois connections. 

PROPOSITION 1.5. Let { Sj: j C J } be a family of compact semilattices, let 
P-- IIjSj and denote with Pk ' P • Sk the projection and with gk ' Sk -> P the map 
given by pjgk(s) = s for j = k and = 1 otherwise. Set d k ß S k --> P, Pldk(S) = s for j = k 
and = 0 otherwise. Then 

(i) gk is the left adjoint of p k, 

(ii) d k is the right adjoint of Pk. 

In particular, any product profection is always a morphism and a co-morphism at the 

same time. 

PROOF. (i) gk(s) •>(sj)j CJ iff s•>s k (by the definition of gk) iff 
s •> pk((Sj)j G J)' 

(ii) pk((Sj)j G J) •> s iff s k •> s iff (sj)j G J •> dk(S) (by the definition of dk). 
In the setting of 1.5 let K C_. J and denote with PK: P --> SK = IIKSj the projection 

and with gK: SK --> P the map given by pjgK((Si) i G K) = sj forj C K and = 1 forj ½ K. 
Set dK: SK-> P, pjdK((Si) i G K ) = sj for j G K and = 0 for j ½ K. The following is then 
an immediate consequence of 1.5' 

COROLLARY 1.6. Under the hypotheses of l.5 we have 

(i) gK is the left adjoint of p K, 

(ii) d K is the right adjoint of p K. 

We now provide some technical information involving products. Let { Sj' j • J} 
be a family of compact semilattices. For K C_ J we abbreviate S K = IIKS j. Let T k C-. S k 
be a sup-closed subset containing O k and 1 k, define T K accordingly and let 

•bk: T k-->S k and •b K=IIK•b k' T K-•S K be the inclusion morphisms. Let 

g[• ß S k --> S K be the left adjoint of the projection S K --> S k and let •k K ß T k --> T K be 
obtained by restricting and corestricting g•. 

Now assume that d' Sj -} S is a sup-preserving map between compact semilattices 

and define ½ = ddK½ K. Since •b K, d K and d all preserve sups, ½ preserves sups. The 
situation is best visualized by the following commutative diagram: 
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LEMMA 1.7. The following statements are equivalent: 

( 1 ) q5 is injectire. 

(2) ckYgk K is injectire for all k C K. 
Moreover, these conditions are implied by 

(3) dg•½ k is injectire for all k • K. 
PROOF. (1) =* (2) is trivial since •,k K is injective. 
(2) =* (1): We assume (2) and suppose •((si) i G K ) = •((si) i G K with s i •< s i in 

T i for i G K; we must show s k = s k for all k G K. Let k G K be arbitrary and define an 
element (ei) i G K • SK (depending on k) by 

ej =0forj=kand=l forj4=k. 
We then use the definition of •g k K and the sup-preservation of ½ to calculate •kK(sk )= 
•((si)i • K ¾ (ei)i • K ) = ½((si)i C K ) ¾ ½((ei)i • K ) = ½((s•)i • K ) ¾ •((ei)i • K) = ½((si9 
i G K¾(ei)i C K ) = •[g kK(sl• )' Invoking (2) we conclude s k = Skt. 

(3)=*(2) ß We assume (3) and suppose s•<s' in T k with ½• kK(s) = ½[g kK(s ') in S; 
we must show s = s t. We now introduce elements (sj)j G j, (s i )j G j, (fj)j G j • Sj as 

1 , sj = 1 , fj= 0 for j4=k,jeK. 
0 0 1 j•K 

Then 

(i) (sj)j G j = dKg•kCk(S) = 
r t 

dKCK • K and = dKg kOk(S ) = k (s), (sj)j G j 

follows: 

r t dKOK• k(S ), by the commutativity of diagram (D). Recalling • = ddK½ K and the 
hypothesis on s and s t we obtain 

(ii) d((sj)j G J)=½•k K(s) =½•k K(st) = d((sj)j GJ )' 
Our definitions also yield 

(iii) gJk•kk(S) = (sj)j C j ¾ (fj)j • j, and gJkCk(S ') = (sj')j • j ¾ (fj)j • j. 
We apply d to both identities in (iii), recall that d preserves sups and obtain from (ii) 
the relation 
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(iv) d4•bk(S) = dg•½k(S'). 
But then condition (3) implies s = s' as desired. 

LEMMA 1.8. Let d: S-• IIjSj be a co-morphism between compact semilattices 
and suppose that s C S is such that int •'s •: 0. Then there is a finite set F C_ J and a 

factorization 

incl 

$s dlFS j 

PROOF. By 1.1.2 we must have d(int •'s) C int •'d(s). In order that •'d(s) have a 
-- 

non-empty interior in IIjSj it is necessary and sufficient that there be a finite set F C_ J 
such that pjd(s) = 0 for j • F and that •'pjd(t) have non-empty interior in Sj for j C F. 
Thus d($s)C dF(IIFSj). Since d is monotone and dF(IIFS j) is an ideal, the assertion 
follows. 

LEMMA 1.9. Let {Tx: xGX) and {Sj.' jGJ) be families of compact 
semilattices and let d ß IIxT x -• IIjS] be a co-morphism. Let y • X and suppose that 
t G Ty is such that int •'t •: •. Then there exists a finite subset F C_ J and a 

factorization St ' • IIFS j 

incl !y 
•IIjSj 

PROOF. Let e be the zero of the filter gy(Ty) in IIxT x, and set d(e) = (sj)j C j. 
Then •'d(e)= IIj tsj, and the restriction and corestriction d 1' •'e•'d(e) is a 
co-morphism by 1.4. We have a factorization 

(i) 

dl 

Ty > Hjtsj 

HxTx d > Hj Sj 

We apply 1.8 to d 1 and obtain with a suitable finite subset F of J a factorization 
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(ii) 

St 

incl 1 
Ty 

Since the composition IIF•'S j - - 
IIjSj, the assertion follows. 

, nF'ts j 

dl 

dl • IIj•'sj 
> IIjtsj 

inl; IIjSj factors through dF: HFS j • 

2. The logarithmic property of dimensional capacity. With the preliminaries 

provided in Section 1 we are ready for the proof of the main results. 

PROPOSITION 2.1. Let $ be a compact semilattice. 

(i) The dimensional capacity is given by #S-- sup ([X[: there is an injectire 

co-morphism I X -* S }. 
(ii) The co-breadth is given by cobr S=sup (IXl: there is an injectire 

co-morphism 2 X -* $ }. 
PROOF. This is immediate from definitions 0.4 and 0.14 and from Theorem 1.2. 

DEFINITION 2.2. Let { Sj: j G J} be a family of compact semilattices and let T 
be either I or 2. Suppose that d:T X-* HjSj is an injective co-morphism. Let gx: 
T-* T X be the left adjoint of the projection Px: TX-• T. For each k G J we define 
X(k) to be the set of all x G X such that Pkdgx: T-•S k is injectire on some 

non-degenerate subinterval of T. We then say that Pkdgk is somewhere injectire. (Note 

that in case T = 2 this property is injectivity itself.) 

LEMMA 2.3. (i) If T -- I, then #S k •> IX(k) l for each k G J. 

(ii) If T = 2, then cobr S k •> IX(k) l for each k G J. 

PROOF. (i) Let T = I. Since Pkdgx is somewhere injective, there are elements 

0 •< u x < v x •< 1 such that, with T x = ( 0 } tJ [Ux,Vx] tJ {1 }, the function Pkdgx•bx: 
Tx-•S k is injective, where •bx: T x-* I is the inclusion map. This inclusion map 

preserves sups. Let •kX(k) = Hx(k)•bx: HX(k)T x -* I X(k) and let dx(k): I X(k) -* I X be 
the right adjoint of the projection PX(k): IX-* IX(k) (see 1.6). Define ½: HX(k)T x 
-* S k by ½ = Pkddx(k)•bX(k). Now pk d is a co-morphism by 1.5; in particular it 
preserves sups, thus Lemma 1.7 applies and shows that ½ is injectire in view of the 

definition of X(k), according to which all Pkdgx•bx are injective for x G X(k). Each 

•bx: Tx-•I is a co-morphism, so •bX(k) is a co-morphism as a product of 
co-morphisms. By 1.6, dx(k) is a co-morphism, by hypothesis d is a co-morphism, and 
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by 1.5 Pk is a co-morphism. Hence the composition ½ is a co-morphism. Then 

eliix(k) ( {0} U[ Ux, Vx]) is a co-morphism into S k whose domain is lattice 
isomorphic to I X(k). By 2.1 .i we then have IX(k)[ •< #S k. 

(ii) Let T = 2. Since Pkdgx is injective, the preceding proof applies with T x = T = 

T, •)k = 1T, •)X(k)- 12(X(k))' 
LEMMA 2.4. Let dj.' I-* S, j G J be a finite family of monotone maps between 

partially ordered sets, and suppose that it separates points. Then there is a k G J and a 

non-degenerate interval T k C_I such that dklT k is injectire. 
PROOF. We proceed by induction with respect to [J[. For IJI-- 1 the Lemma is 

trivial. Suppose IJI = n > 1 and assume that the assertion is true whenever IJI < n. Pick 

an i G J and consider di: I -> S. If d i is injective, we are done. If not, then the kernel 

relation R of d i has at least one non-degenerate coset R(t). Since d i is monotone, R(t) 

is an interval in I, hence contains a non-degenerate closed interval I'. Since { dj II' ß 
j G J ) separates the points and dilI' is constant, then {djlI': j G J\ {i }} separates the 
points. The induction hypothesis applies and shows that for some k G J \ {i ) there is 

a non-degenerate interval T k in I' such that dklT k is injective. 
LEMMA 2.5. Under the conditions of 2.2 we have X = U (X(k) ß k •J }. 

PROOF. Let yGX. We must show that there is a kGJ such that Pkdgy is 
somewhere injective. If T = I we set t = 1/2 GT = I;ifT = 2 we take t = 1 GT = 2. We 

apply Lemma 1.9 and find a finite set F C--J and a factorization 

a 

T' • IIFS j 

gY•x • IIjSj d 

whereT'=[0,1/2] ifT=IandT'=2ifT=2. By Lemma 2.4 applied to {pja:jGF} 
we find a k G F such that Pka: T' --} S k is somewhere injectire. It follows that PkdF a: 

T'-->S k is somewhere injective with the projection Pk: IIjSj->S. "By the 
commutativity of the diagram this means that Pkdgy is somewhere injective. 

We can now finish the proofs of the main theorems 0.9 and 0.16. Under the 

conditions of 2.2, in case (i) T = I we have IXl •< •;jIX(j>l by 2.5, thus [Xl •< •;j#Sj by 
2.3.i. By 2.1.i we conclude 

(1) #IIjSj • •;j#Sj. 
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In case (ii), T -- 2 we obtain in the same fashion 

(2) cobr IIjSj •< Y_,j cobr Sj. 
The following Lemma suffices to prove the easier inverse inequalities in order to 

establish equality in (1) and (2). 

LEMMA 2.6. Let j•.' Sj -• T X(j), j C J be surmorphisms of compact semilattices 
with T = I or T = 2. then 

ZjIX(j)[ •< sup ( IY[: there is a surmorphism HjSj --> T Y }. 
PROOF. Without loss of generality, we may assume that the X(j) are disjoint. 

Then ½ ß IIjT X(j) • T X, ½((tx) x C X[j])j • j = (tx) x • X is an isomorphism and the 
function f' IIjSj-• T X, f((sj)j G j) = ½((fj(sj))j G j) is a surmorphism. From 
IX[ = EjIX(j)[ the assertion follows. 

The proofs of 0.9 and 0.16 are now complete. 

3. Supplementary information on cardinal invariants. It is sometimes useful to 

compare dimensional capacity and cobreadth with other cardinal invariants. We 

consider two such, the first is lattice theoretical, the second topological. 

DEFINITION 3.1. Let L be a complete lattice. For AC__ L we set h(A) = min { [B{: 

BC_A, sup B=supA }and H(L)=sup (h(A) 'AC_L}.ThecardinalH(L) iscalled 

the height of L. 

PROPOSITION 3.2. If S is a compact semilattice, then H(S)•>#S, and 

H(S) •> cobr S. 

PROOF. Let g: S • I X be a surmorphism. If d is its right adjoint, then d is 
injective and preserves sups. From 3.1 it then follows that H(I X) •< H(S). From the 
definition of H in 3.1 we conclude directly IXl •< H(IX). Thus IXl •< H(S), whence 
#S •< H(S). 

The second inequality is similar. 

DEFINITION 3.3. Let X be a topological space. We set d(X) = min { IYI ' Y c_ X 

and Y = X} and call d(X) the density character of X. 

PROPOSITION 3.4. If S is a compact semilattice, then d(S)•> #S and d(S) 

•> cobr S. 

PROOF. Let f' S --> I X be a surmorphism. Then IXI •< d(I X) •< d(S), whence 
#S •< d(S). 

The second inequality is similar. 
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PROPOSITION 3.5. IfS is a compact semilattice, then br S •> #S. 

PROOF. Let f: S -> I X be a surmorphism and p: X2 --> I X the lattice injection 
given by X2 -> 2 X --> I X. Since X2 is free, it is projective in the category of semilattices 
so there is a semilattice morphism q: X2 -> S with fq -- p. Since p is injective, so is q, 
hence br S •> X, whence the assertion. 

COROLLARY 3.6. #I X = IXI for all sets X. 

PROOF. By the Main Theorem, #I X= IXl#I. Trivially, 1 •< #I, but by 3.5 we 
have#I•<trI= 1. 

PROPOSITION 3.7. If S is a compact Lawson semilattice, then dim S •< #S, 

where dim is cohomological dimension. 

PROOF. This follows from a result of Lawson's [6], Corollary 2.3, p.558. 

Thus by 3.5 and 3.7, the dimensional capacity of a compact Lawson semilattice 

is sandwiched between cohomological dimension and breadth. In summing up, we have 

observed 

dim S •< #S •< min { br S, H(S), d(S)} . 

We record the logarithmic properties of the height and density characters, and leave 

their proofs as exercises for the reader. They are parallels to 0.9 and 0.16: 

PROPOSITION 3.8. Let (L]: ] G J ) be a family of complete semilattices. Then 
H(njLj) = ZjH(Lj). 

PROPOSITION 3.9. Let (X]: ] G J } be a family of topological non-singleton 
spaces. Then d(IIjX/) = Zjd(X/). 
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