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THREE-DIMENSIONAL DIVISION ALGEBRAS. II 

Irving Kaplansky 

1. Introduction. In the preceding paper [7] I reviewed Dickson's results on 

three-dimensional commutative division algebras and then proved them again in an 

"algebraically closed" style, as opposed to Dickson's "rational" style. Since then I 

have pushed the algebraically closed method further, so as to cover algebras in which 

all commutators are scalar. In õ2 I give an appropriate structure theorem over an 

algebraically closed field; then in õ4 the transition to division algebras is made by 

Galois descent. 

Now it happens that in the three-dimensional case the twisted fields introduced 

by Albert in [ 1 ] have the property that commutators are scalar. This property is lost 

in the more general twisted fields of [2]. (The still more general twisted fields of [3] 

do not add additional division algebras in the three-dimensional case.) The main result 

of this paper may be stated as follows: a three-dimensional division algebra over a 

finite field in which all commutators are scalar is a twisted field in the sense of [ 1 ]. 

In the rest of the paper I record the remaining observations that I have been able 

to make concerning three-dimensional division algebras. 

2. Dickson algebras in which commutators are scalar. I repeat two definitions 

from [7], inserting the adjective "right" to take account of possible 

non-commutativity. Let an algebra A have basis u 1,...,u n. The right norm form of A 
(relative to the basis) is the determinant of the right multiplication by the general 

element 2xiu i (the x's being indeterminates). A is a right Dickson algebra if its right 
norm form is a product of linearly independent linear factors; this is independent of 

the choice of basis. The concepts of left and two-sided Dickson algebra are presumably 

self-explanatory. 

In Theorems 1 and 2 below it will turn out that, in the circumstances of those 

theorems, assumption of the Dickson property on one side implies it on the other. But 

this is not always true. Let A have basis 1, u, v with u 2 = u, v 2 = 0, uv = 1 - u + v, vu = 
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1 - u. The right norm form of A is x(x + y)(x - z) and the left norm form is 

(x + y)(x 2 + xy - xz - 2yz), 
with the second factor irreducible for characteristic 4: 2. 

Before stating the first theorem I exhibit the target algebras. In a given field F fix 

an element b satisfying b :/: 0, 1, or V2 and b 2 - b + 1 4: 0. Define an algebra E(b) as 
having a basis 1, u, v with multiplication table u 2 = u, v 2 = v, uv = a + b(u + v), vu = 
p + b(u + v), where 

(1) a=b3/(1-2b), p= (b 3+ b 2-b)/(1-2b). 
Note that the mapping interchanging u and v induces an involution of E(b). 

Some properties of E(b) will now be noted, with verification left to the reader. 

E(b) is non-commutative and simple. Its right norm form is 

(2) (x + y + bz)(x + by)(x + z), 

and its left norm form is 

(3) (x + by + z)(x + y)(x + bz). 

Thus E(b) is a two-sided Dickson algebra. All commutators in E(b) are scalar multiples 

of 1 (it is enough to glance at uv-vu). There are eight idempotents in E(b): 0, 1, u, 

1 - u, v, 1 - v, u + v - b, I + b - u - v. Other choices of basis are easily inspected and one 

concludes that E(b) and E(b •) are isomorphic if and only if b = b' or b' = 1 - b. 

THEOREM 1. Let K be an algebraically closed field. Let A be a 

three-dimensional algebra over K with 1, which is non-commutative, right Dickson, 

and has the property that every commutator is a scalar multiple of 1. Then A is 

isomorphic to E(b) for some b in K. 

REMARK. For the application to division algebras the full force of Theorem 1 is 

not needed. By using the results in õ5 one could restrict the discussion to just Case 

III. But Theorem 1, as presented, is perhaps of independent interest. 

PROOF. We follow the pattern of the proof of Theorem 2 in [7], using a 

provisional basis 1, u, v, with u 2 = eu (e = 0 or 1), v 2 = d + eu + fv. Since uv - vu is a 
scalar multiple of 1 we can write 

uv = a + bu + cv, vu = p + bu + cv. 

As in [7], the condition for inability to change v so as to satisfy v 2 = •v (7 = 0 or 1) is 
(4) e- 2c = 2b- f= O, e4= O. 

We make a division into cases in essentially the same way as in [7], but there are 
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some differences of detail. We use seven cases instead of six; for ease of comparison we 

number the new case as 0. Another difference is the introduction of still another case 

distinction cutting across the others: the distinction between b = c and b 4= c. Our first 

observation is that if b =/= c holds we are entitled to assume in addition that b + c =/= 1. 

Here is the reason. If we examine the result of changing basis by replacing v by 1 - v 

we find that c is unchanged and b is replaced by 1 - b. Suppose then that b + c = 1. 

After this change of basis the new b and c are equal. Thus b + c = 1 can be reverted to 

b = c. The upshot of this is that whenever we encounter b + c = 1 we can pass right on 

to b= c=V2. This will come up twice, and no other use will be made of this 

sub-distinction. 

We proceed to the first four cases, labelled 0 and I-III. In these cases we have v 2 = 
r/v with r/= 0 or 1 (in addition to the permanent normalization u 2 -- eu with e = 0 or 
1). The right norm form of A works out to be 

(5) x 3+ (e+c)x2y+ (r/+b)x2z+ ecxy 2+ r/bxz 2+ (-ac+cp-ep)y2z+ 
(ab - bp - r/a)yz 2 + (er/- a - p)xyz. 
Note that there are no terms in y3 or z 3 in (5). A factorization of (5) into linear 
factors can normally be put in the form 

(6) (x + Py + Qz)(x + Ry)(x + Sz). 

Now comes our first case. 

CASE 0. Assume that the factorization of (5) into linear factors cannot be put in 

the form (6). It will then have to be the case that (5) is divisible by x and that there 

are no terms in y2z or yz2: 
(7) -ac + cp - ep = ab - bp - r/a = 0. 

Furthermore, if either e or r/vanishes then again the factorization will have the desired 

form (6). Hence e =7 = 1 may be assumed. Subtract the two expressions in (7) and 

cancel a - p (which is non-zero by non-commutativity). The result is b + c = 1. This 

implies (as noted above) that we have b = c = V2. Add the equations in (7) to get 

a + p = 0. The expression (5) now reads 

x(x 2 + 3/2xy + 3/2xz + 1/2y 2 + 1/2z 2 + yz) 
and does not factor further. 

With case 0 finished, from now on the factorization (6) is in effect. On equating 

coefficients in (5) and (6) we get seven equations. 
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(8) P+R=e+c, 

(9) PR = ec, 

(10) Q+ S =r/+b, 

(11) QS = •/b, 

(12) PRS = -ac + cp - ep, 

(13) QRS = ab - bp - •/a, 

(14) RS + PS + QR = e•/- a- p. 

We are able to treat the next two cases simultaneously and dispose of them 

quickly. (These are listed as two cases rather than one only to facilitate comparison 

with [7] .) The assumption is that either e or •/vanishes; by symmetry it might as well 

be •/. 

I-II. •/=0. Since (11) vanishes, so does(13). This gives b = 0, since a=/=p by 

non-commutativity. Then (10) and (11) yield Q = S = 0. But this implies that z does 

not appear in (6), contradicting the assumed linear independence of the factors. 

III. e =•/= 1. Equations (8) and (9) tell us that P and R equal 1 and c in some 

order; likewise (10) and (11) identify the pairs Q, S and 1, b. This gives four subcases 

which reduce to three by symmetry. 

(a) P = Q = 1, R = c, S = b. Equations (12)-(14) become 

(15) bc = -ac + cp - p, 

(16) bc=ab-bp-a, 

(17) bc+b+c=l-a-p. 

On subtracting (15) and (16) and cancelling a - p we get b + c -- 1. Again we pass to 

b = c = «. Now (15) yields a + p = -«. This contradicts (17). 

(b) R = S = 1, P = c, Q = b. Equations (12)-(14) become 

(18) c = -ac + cp - p, 

(19) b--ab-bp-a, 

(20) 1 +c+b=l-a-p. 

On subtracting (20) from the sum of (18) and (19) we are led to b = c. Then by 

subtracting (19) from (18) and again cancelling a- p we get b = «. So b = c = «. But 

now the factors in (6) are linearly dependent. 

(c) P = 1, R = c, S = 1, Q = b. Equations (12)-(14) become 

(21) c =-ac + cp-p, 



THREE-DIMENSIONAL DIVISION ALGEBRAS. II 67 

(22) bc = ab - bp - a, 

(23) c+l+bc=l-a-p. 

Again subtraction of (23) from the sum of (21) and (22) leads to b = c. We rule out 

b = « just as in (b). On solving (21) and (22) for a and p we get (1). The possibilities 

b = 0 and b = 1 are ruled out since they imply a = p. We cannot have b 2 - b + 1 = 0, 
since that makes the factors of (6) linearly dependent. We have reached the algebra 

E(b). 

In the rest of the proof of Theorem 1 we have to exclude the possibilities that 

arise on assuming (4). 

IV. Assume (4) and characteristic 2. Then e has to be 0 and we have f = 0. We 

distinguish two subcases. 

(a) c = 0. We can normalize v so that v 2 = u. 

The right norm form is 

(24) x 3 + bx2z + az 3 + (a + p)byz 2 + (a + p)xyz. 
We examine (24) for singularities. The partial derivative with respect to y is 

(25) (a + p)bz 2 + (a + p)xz. 

We have a + p 4:0 by non-commutativity. So the vanishing of (25) entails z = 0 or 

x = bz. From z = 0 we get x = 0 by (24). From x = bz we get az 3 = 0 by (24). Now if 
a = 0 then (24) becomes (x + bz)(x 2 + pyz) and this factors no further since p 4: 0. So 
a 4: 0, and hence x = bz implies z = 0. In sum we find only one singularity (given by 

x = z = 0) instead of the three required if (24) is to factor into linearly independent 

linear factors. 

(b) c 4: 0. Right-multiplication by u has c as a simple characteristic root. A 

corresponding characteristic vector t can serve as a new choice for a third basis vector, 

replacing v. Then tu = ct, and ut has the form h + ct where h is a non-zero scalar. Since 

v 2 is a linear combination of 1 and u, the same is true of t 2. We can therefore 
normalize t 2 to be d + u. The right norm form is then 

x 3 + cx2y + (c + d)xz 2 + hz 3 + hxyz + chy2z + cdyz 2. 
Set the three partial derivatives equal to 0: 

(26) x 2+(c+d)z 2+hyz=0, 
(27) cx 2 + hxz + cdz 2 = 0, 
(28) hz 2 + hxy + chy 2 = 0. 
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If z = 0 we get x = 0 from (27) and then y = 0 from (28). So we can take z = 1. 

Equation (27) has two roots for x. Each leads to a unique y by (26). We lack three 

singularities. 

V. Assume (4), characteristic • 2 and e= 0. The procedure in [7] can be 

repeated nearly verbatim. We have c = 0 and f = 2b. Normalize v so that d = 0, e = 1 

(this can be accomplished by adding an appropriate scalar to v). Take t = v - b as a new 

choice for a third basis element. Then ut = a, tu = p, t 2 = b 2 + u. The right norm form 
is 

(29) x 3 - (a + p)xyz - b2xz 2 + az 3. 
The possibility of factoring (29) can be dismissed at a glance as in [7], because of the 

unique term involving y. 

VI. Assume (4), characteristic • 2, and e = 1. Then c = «. Right-multiplication 

by u has characteristic roots 0, 1, and «. We take tu = «t, and ut = h + «t follows. 

Since b -- 0 and f = 2b, we have f = 0, and the normalization t 2 = d + u is feasible. The 

fight norm form is 

x 3 + 3x2y/2 + «xy 2 - (d + «)xz 2 - «dyz 2 + hz 3 - V•.hy2z - hxyz. 
We assume a factorization 

(x + Py + Qz)(x + Ry + Tz)(x + Sz). 

This leads to eight equations (the last from the missing term x2z). 
(30) P + R = 3/2, 

(31) PR = 

(32) QT + S(T + Q) = -d -«, 

(33) S(PT + QR) = -V•.d, 

(34) QTS -- h, 

(35) PRS-- 

(36) PT + QR + S(P + R) =-h, 

(37) Q+T+S=0. 

From (31) and (35) we get S = -h. From (34), Qt = -1. From (37), Q + T -- h. Putting 

this into (32) yields 

(38) h 2 = d- 

Using (30) we find from (36) that PT + QR = «h. By putting this into (33) we get 

d = h 2, contradicting (38). With this the proof of Theorem 1 is complete. 
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3. Dickson algebras containing elements with square 0. This section presents one 

further theorem on the structure of Dickson algebras. The target algebras are labelled 

D(X), X being a scalar different from 0 or -1. D(X) has basis 1, u, v with u 2 = v 2 = 0, 
uv = -X/(X + 1)+ u + v, vu = Xuv. D(X) is a Dickson algebra, its right and left norm 

forms being x(x + Xy)(x + z) and x(x + y)(x + Xz). It is to be noted that D(1) coincides 

with the algebra D of [7], and Theorem 2 is thus a generalization of case I of Theorem 

4 in [7]. 

THEOREM 2. Let A be a three-dimensional simple right Dickson algebra with 

unit. Assume that A possesses two linearly independent elements with square zero. 

Then A is isomorphic to D(X) for some X. 

PROOF. Let u and v be the given elements. Write uv = a + bu + cv, vu = p + qu + 

rv. The right norm form of A is 

(39) x 3 + rx2y + bx2z + (cp - ar)y2z + (aq - bp)yz 2 + (br - cq - a - p)xyz. 
We claim that 

(40) cp-ar=aq-bp=0. 

Assume that (40) is false. Then a factorization of (39) into linear factors can be put in 

the form (6). Four of the resulting equations read 

PR = 0, QS = 0, PRS = cp - ar, QRS = aq - bp, 

showing that (40) holds after all. So (39) is divisible by x. The other factor is a 

quadratic form which must factor into (x + ry)(x + bz). We must have b and r 

non-zero and we also have 

(41) cq+a+p=0. 

We claim that a 4 = 0. For if a = 0, then p 4= 0 by simplicity, and b = 0 by (40), a 

contradiction. Write p = Xa; then (40) gives us q = Xb and r = Xc. We now know that a, 

b, c, X are all non-zero. From (41) we get 

(42) (1 + X)a + Xbc = 0, 

showing in particular that X 4= -1. Replace u by u/c and v by v/b. Then using (42) we 

get that uv = -X/(X + 1)+ u + v. This completes the proof of Theorem 2. 

4. Galois descent. 

THEOREM 3. Let A be a three-dimensional division algebra over a finite field F. 

Assume that all commutators in A are scalar multiples of the unit element. Then A is a 

twisted field in the sense of/1/. 
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PROOF. We can assume that A is non-commutative (the commutative case was 

in essence known to Dickson seventy years ago and was redone in [7]). Let L be an 

algebraic closure of F and write C = L © A (tensored over F). Then C is a Dickson 

algebra over L (cf. the discussion of this theorem of Dickson's in [7] ). The hypothesis 

that A is non-commutative with all commutators scalar is multilinear and hence is 

maintained in C. Hence Theorem 1 is applicable to show that C is isomorphic to E(b) 

for some b in L. We shall simply transfer the notation from E(b) to C; thus, C has a 

basis 1, u, v with the multiplication table of Theorem 1. 

Let K denote the unique subfield of L which is cubic over F. Let w = x + yu + zv 

be any non-scalar in A (x, y, z C L). We have that the determinant IRwI of R W, the 
right-multiplication by w on A, is irreducible over F and hence factors completely in 

K. Now the characteristic roots of [Rw[ are given by the factors of (2). Hence 
x + y + bz, x + by, and x + z all lie in K. Similarly, use of the left-multiplication by w 

leads to the information that x + by + z, x + y, and x + bz, the factors of (3), lie in K. 

Combining these six elements, we readily deduce that the elements x, y, z, and b must 

themselves lie in K. Write B = K • A. Then u and v lie in B. It follows that the 

isomorphism between C and E(b) can be lowered to an isomorphism between B and 

the version of E(b) defined over K. 

We now invoke the theory of Galois descent, as set forth for example in Chapter 

10 of [6]. Let ½ be a generating automorphism of K over F. There is a natural induced 

automorphism ½* of B, and the elements of B left fixed by ½* are precisely the 

members of A (note that ½* is F-linear but not K-linear). Let us examine what ½* does 

to the idempotents of B. 

Right-multiplication by the idempotents u, v, and 1 + b-u-v yields linear 

transformations having the following characteristic roots: 0, 1, and b. For the 

complementary idempotents I - u, 1 - v, and u,+ v - b the characteristic roots are 0, 1, 

and 1 - b. We assert that ½* cannot send an idempotent of the first set into one of the 

second set. For if it does, we have qO(b) = 1 - b, from which we deduce ½(½(b)) -- b, and 

this is inconsistent with the fact that ½ has order 3. Thus ½* must permute u, v, and 

1 + b - u - v. It cannot leave any of them fixed, for a fixed element must lie in ^, and 

the division algebra A contains no non-trivial idempotents. Hence ½* must act on them 

as a 3-cycle. 
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The K-linear mapping ½ on B that keeps 1 fixed and permutes u, v, and 1 + b - 

u- v cyclically is readily checked to be an automorphism of B. Let us adjust 4' by 

either ½ or ½-1, as appropriate. The result is an F-linear automorphism 0 of B which 
leaves all idempotents of B fixed. Like 4*, 0 is semi-linear relative to 4- The fixed 

subalgebra of B under 0 is a three-dimensional F-algebra containing u and v; it is 

necessarily isomorphic to E(b) over F. We have thus established that b lies in F. 

Now that we have on hand a copy of E(b) defined over F, the rest of the Galois 

descent argument is standard. The automorphism group of E(b) is of order 3 

(generated by ½), as we leave it to the reader to check. Therefore there are three forms 

of E(b) over F; one is E(b) itself, and another is the division algebra A with which we 

started. We could easily argue at this point that the remaining form of E(b) is also a 

division algebra, but this will in any event follow from the argument below. 

We can conclude our business by a crude counting argument. Let us count the 

three-dimensional twisted fields over F (of course, we mean the twisting to be taken in 

the sense of [ 1 ], the parameter 3' being an element of F). The results in [4] show that 

all admissible values of 3' yield non-isomorphic algebras. The restrictive conditions on 

3' are 3' :• 0, 3'3 :• 1, and in addition 3' :• -1 (since 3' = -1 is the commutative case). This 
yields the following enumeration, where q is the order of F: 

q • 1 (mod 3), characteristic :• 2 

q -- 1 (mod 3), characteristic :• 2 

q • 1 (rood 3), characteristic 2 
q -- 1 (mod 3), characteristic 2 

q-3 

q-5 

q-2 

q-4 

Next we count the possible number of division algebras that we encountered 

above. Recall first that E(b) is isomorphic to E(b') if and only if b' = 1 - b. Since b = « 

is excluded, there is no overlapping between b and 1 -b. Therefore the number of 

eligible b's must be cut precisely in half. On the other hand, for each b we found at 

most two division algebras occurring as a form over F of E(b). This calls for doubling 

and thus restoring the full number of b's. The conditions on b are: b :• 0, 1, or «, and 

b 2 - b + 1 :• 0. This gives as our upper bound exactly the same count as listed above. 
Everything we stated is now established and the proof of Theorem 3 is complete. 

5. Galois ascent. In this section we reverse our point of view. We start with a 

three-dimensional division algebra A over a field F and seek to describe what A 
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"splits" into over an algebraic closure of F. Actually, following a trail blazed by 

Dickson in [5], we broaden the study so as to encompass algebras with no quadratic 

elements (other than scalars). These results are being recorded in the hope that they 

will be helpful in future studies of three-dimensional algebras. 

A preliminary glance at quadratic elements is needed. Let a general 

three-dimensional algebra A have basis 1, u, v and write 

u 2 = scalar + au + bv, 
uv + vu = scalar + cu + dv, 

v 2 = scalar + eu + fv. 

Then 

(43) (yu + zv) 2 = scalar + (ay 2 + cyz + ez2)u + (by 2 + dyz + fz2)v. 
For yu + zv to be quadratic it is necessary and sufficient that the coefficients in (43) 

be proportional to y and z. This leads to the cubic 

C = by 3 + (d - a)y2z + (f- c)yz 2 - ez 3, 
which occurs in [5] at the bottom of page 371, where it is also labelled C. 

The condition for A to be quadratic is that C be identically 0. The condition for 

A to have no quadratic elements is that C be irreducible. A change of basis in A 

switches C to an equivalent binary cubic form, equivalence here meaning that 

multiplication of C by a non-zero scalar is permitted in addition to a non-singular 

change of variable. It is thus meaningful to call A separable if C is separable. I have not 

studied the inseparable case, and it will not be treated in this paper. 

We proceed to study a three-dimensional algebra A over a field F, assuming that 

it has a unit element, that it has no quadratic elements other than scalars, and that it is 

separable. A quadratic extension of F keeps C irreducible and can thus be performed 

without changing the project. Let us make a quadratic extension, if necessary, so as to 

arrange that the splitting field K of C is three-dimensional over F. Let ½ generate the 

Galois group of K over F, and write ½* for the induced automorphism of B = K • A. 

Since C factors over K into three distinct factors, B has exactly three two-dimensional 

subalgebras containing 1. We claim that ½* permutes them cyclically. If this is not 

true, each is carried into itself by ½*. Call one of them G; note that G is a 

six-dimensional algebra over F and that the elements of G fixed by ½* are just F. This 

is impossible if G is a field. The alternative is that G is generated over K by an element 
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u satisfying u 2=u or u 2=0. If u 2=u, then ½*(u) must be l-u, and this is 
incompatible with the fact that ½* has order 3. Suppose that u 2 = 0. We must have 
½*(u) = o•u, o• C K. Then ½*(½*(u))= ½(o0o•u. Application of½* one more time returns 

us to u. This implies that o• has norm 1. By Hilbert's Theorem 90, o• = {•/½(/•) for some 

{• in K. But then {•u is fixed under ½*, a contradiction. 

When we enlarge K further to an algebraic closure L of F, the three 

two-dimensional subalgebras of B split. The upshot is that in L © A there is a uniform 

pattern for the three two-dimensional subalgebras: all three are generated by an 

element with square 0 or all three are generated by an idempotent. Let us call the two 

possible cases types D and E respectively. 

For type D there is a structure theorem; we state it in a self-contained elementary 

way. For an algebra A of characteristic 4: 2, we write A + for A made commutative, the 

new multiplication being given by (xy + yx)/2. 

THEOREM 4. Let A be a three-dimensional algebra over a field F. Assume that 

A has a unit element, is not quadratic, and contains three elements with square 0 with 

the property that any two are linearly independent. Then the characteristic off is not 

2 andA • is isomorphic to the algebra D ofl7]. 

PROOF. Let u, v, and w be the given elements. Necessarily 1, u, and v are 

linearly independent and form a basis. Write 

uv + vu = a + bu + cv, w = x + yu + zv. 

From w 2 = 0 we get 
(44) x 2+ ayz =0,2xy+byz=0,2xz +cyz=0. 

If b and c are both 0, then A is quadratic. So at least one is non-zero. Now assume 

x = 0. Then either the second or the third equation in (44) implies that y or z is 0, and 

then we find w to be a scalar multiple of u or v. So x must be non-zero. From the first 

equation in (44) we deduce that y and z are also non-zero. Characteristic 2 can now be 

ruled out quickly, for a further use of the second or third equation in (44) yields a 

contradiction. 

We can now assume A to be corn'mutative. With x, y, and z all known to be 

non-zero, (44) shows that both b and c are non-zero. Cancel y and z from the second 

and third equations in (44) to get x =-bz/2 and x =-cy/2. Hence x 2 =bcyz/4. 
Comparison with the first equation in (44) shows that 4a + bc = 0. Let u •= 2u/c, 
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v'= av/b. Then the elements 1, u', and v' form a new basis for A. We find u'v'= 

-V2 + u' + v •. This identifies A with D. 

For division algebras over a finite field we can carry the type D case to a 

conclusion. 

THEOREM 5. A three-dimensional division algebra of type D over a finite field 

is commutative. 

PROOF. Let F be the given field, L an algebraic closure of F, A the given 

algebra, and B = L © A. We know that B is a Dickson algebra and so Theorem 2 is 

applicable to show that B is isomorphic to some D(X). But it is easily checked that, for 

X 4= 1, D(X) + is not isomorphic to 121 Hence X must equal 1 and A is commutative. 

Theorem 5 does not extend to infinite fields. I shall give just one example. Let 

F = Q(t) where Q is the field of rational numbers and t is an indeterminate over Q. Let 

A have basis 1, u, u 2 with u2u = 2 - t, uu 2 = 2 + t, (u2) 2 = -16u. The right norm form 
is 

(45) x 3+(2-t)y 3-16(2+t)z 3+12xyz. 
Our problem is to show that the cubic form (45) represents 0 only trivially, In an 

alleged representation of 0 we can assume x, y, z to be polynomials in t with no 

common factor. But when t is set equal to 0, (45) becomes the norm form of a 

commutative division algebra of Dickson's type. Hence x, y, z must all be divisible by 

t, a contradiction. 

6. Automorphisms and antiautomorphisms. We begin this section with an easy 

self-contained theorem. 

THEOREM 6. Let A be a three-dimensional algebra with a unit element and no 

quadratic elements other than scalars. Then A cannot admit an automorphism or 

an tiautomorphism of order two. 

PROOF. Let qb be an automorphism or antiautomorphism of A with square equal 

to the identity. Let S be the subspace of A consisting of the elements fixed under qb. S 

cannot be three-dimensional. If S is two-dimensional, take s G S, s a non-scalar. Then 

qb(s 2) = (qb(s)) 2 = s 2, so s 2 G S, s 2 is a linear combination of 1 and s, s is quadratic. 
Thus S must be one-dimensional, spanned by 1. We now make a case distinction. 

Characteristic 4= 2. We have a non-scalar t with qb(t) = -t. Then t 2 C S, t 2 is scalar, 
t is quadratic, a contradiction. 
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Characteristic 2. The null space of (•b-I) 2, where I is the identity, is 
two-dimensional. It can be spanned by 1 and t, where 4•(t) = 1 + t. Then gift 2) = 1 + t 2, 
so that t 2 is a linear combination of 1 and t, again a contradiction. 

Rapid further progress can be made by using Galois ascent. Let A be as in 

Theorem 6 and assume further that A is separable. We leave to the reader the easy 

deduction from the results in õ 5 that the group of automorphisms of A is finite. Now 

assume that A admits an antiautomorphism and is not commutative. Then the group 

of automorphisms and antiautomorphisms of A is a finite group of even order, 

contradicting Theorem 6. We deduce the first conclusion in Theorem 7. 

THEOREM 7. Let A be a three-dimensional algebra with unit. Assume that A 

has no quadratic elements other than scalars and that it is separable (as defined in õ5). 

Then if A is noncommutative it admits no antiautomorphisms. The automorphism 

group of A has order 1 or 3. 

For characteristics other than 2 and 3 the final statement in Theorem 7 was 

proved by Dickson [5, p. 177]. I have reproved it in the algebraically closed style, 

including characteristics 2 and 3. I record in Theorem 8 the essential point of this 

proof; Theorem 8 also serves to identify the split form of the algebras in question. 

We need a further class of target algebras. Define an algebra E(b,a) as having a 

basis 1, u, v with multiplication table 

u 2 = u, v 2 = v, uv = a+ bu + bv, vu =-a- b- b 2 + bu + bv. 
One easily sees that E(b,a) is quadratic if and only if 2b = 1, and that 

u-•v-•l +b-u-v-•u 

induces an automorphism of E(b,a) of order 3. Note that the previous E(b) is E(b, 

(1 - 2b)'lb3), and that for characteristic •: 2, E(b,a) is the general algebra whose + 
algebra is isomorphic to E(b) +. 

THEOREM 8. Let A be a non-quadratic three-dimensional algebra with unit. Let 

u be an idempotent of A, q3 an automorphism of A; write v = q3(u), w = q3(v). Assume 

that neither v nor w is equal to u or 1 - u. Then A is isomorphic to some E(b,a) with 

2b -• 1. Furthermore, c) is of order 3. 

PROOF. The only idempotent linear combinations of 1 and u are 1, 0, u, and 

1 - u. Since v is none of these, we have that the elements 1, u, v form a basis of A. 

Write w = P + Qu + Rv. Here R :/: 0, since w is not a linear combination of 1 and u. It 
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follows further from our hypotheses that w is not equal to v or 1 - v; hence Q 4= 0. 

Write uv = a + bu + cv, vu = p + qu + rv. The traces of R u and R v are 1 + r and 

1 + b, respectively. These must be equal and so r = b. Similarly from L u and L v we get 

q = c. Thus vu -- p + cu + bv. From the hypothesis that A is not quadratic one deduces 

readily 

(46) b+c4=l. 

The fact that w is idempotent yields the following equations when we equate 

coefficients of u and v: 

(47) Q2+2pQ+QR(b+c) =Q, 
(48) R 2+2PR+QR(b+c)--R. 

Since Q and R are non-zero we may cancel them in (47) and (48). Then on subtracting 

and using (46) we get Q = R. The simplified form of (47) is now 

(49) 2P+Q(b+c+l)= 1. 

When we expand the equations ½(uv) = ½(u)½(v) and ½(vu) = ½(v)½(u) and equate the 

coefficients of 1 and v we get four equations. 

(50) a+cP=pQ, 

(51) b+cQ=P+bQ+Q, 

(52) p+bP =aQ, 

(53) c+bQ=P+Q+cQ. 

We now make an indirect argument that b--c. Suppose on the contrary that b 4= c. 

Then on subtracting (51) from (53) we get 2Q = 1. On putting this into (51) and (49) 

and eliminating P we get a contradiction of (46) unless the characteristic is 3. In that 

case we argue further that (50) and (52) combine to give P -- 0, which makes (49) and 

(46) contradictory. Thus b = c from which it follows that 2b 4= 1. 

Equations (49), (50), and (51) now simplify to 

(54) 2P+Q(2b+I)= 1, 

(55) a+bP =pQ, 

(56) P+Q=b. 

On eliminating P between (54) and (56), and recalling that 2b 4= 1, we get Q =-1. 

Insertion of Q---l, P=b+l into (55) yields a+p+b 2+b =0. This identifies A 
with E(b,a). Furthermore ½(w) works out to be u, and so ½ has order 3. The proof of 

Theorem 8 is complete. 
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7. Concluding remarks. I venture the following conjecture: any 

three-dimensional division algebra over a finite field F is associative or a twisted field. 

Here "twisted field" is meant in the extended sense of [2], that is, the twisting 

parameter c is allowed to range over the cubic extension field K of F which is being 

twisted. 

It is easy to count the number of twisted fields. It is proved in [4] that the 

parameters c and d yield isomorphic twisted fields if and only if an automorphism of 

K over F carries c into d. The conditions that need to be imposed on c are: c is not 0 

and the norm of c is not 1. The count works out as follows. Let the order of F be q. 

From the q3_ 1 non-zero elements of K we delete the q2 + q + 1 elements having 
norm 1. If q • 1 (rood 3) we keep the q- 2 elements that are in F and divide the 

number of others by 3, getting 

(q- 2) + [(q3_ 1)- (q2 + q + 1)- (q- 2)]/3 = (q- 2)(q 2 + q + 3)/3. 
If q = 1 (rood 3) we lose two cube roots of 1 in F and the count is 

(q- 4) + [(q3 _ 1) - (q2 + q + 1)- (q- 4)]/3 = (q3 _ q2 + q_ 10)/3. 
Take q = 3. There are 5 twisted fields. On deleting the commutative one (c = -1), 

we have 4 left. This agrees with Dicksoh's count on page 378 of [5]. 

Take q = 5. We have 33 - 1 = 32 noncommutative twisted fields. But Dickson lists 

36 on page 379. The conjecture seems to be defeated. However, there is at least one 

error in Dicksoh's list. The algebra in the second column, second line, with the lower 

choice of signs, has basis 1, i, j satisfying 

ij = 2 + 2i, ji = 2 +i,j 2= 2-i-j. 
We find 

(i + 2j)(-2 + i + j) = 10- 5j, 

which vanishes for characteristic 5. So the algebra has divisors of zero. (The error was 

detected in the middle of an attempt to sort out Dicksoh's list into the 

anti-isomorphic pairs which should exist according to Theorem 7 - there was no 

anti-isomorphic mate for the culprit. At this point the computation was dropped.) 

It seems to me that it is going to be difficult to obtain any results on 

n-dimensional division algebras (n • 3) by Dicksoh's methods or by mine. A new idea 

is needed. In the meantime here are two remarks. 

1. The theory is virtually certain to be sensitive to the number-theoretic 
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properties of n. In particular, n = 4 may well be harder than n = 5. 

2. For n > 3, the pertinent results about rational points on varieties normally 

hold only for large enough finite fields. So one presumes that a hypothesis of this kind 

will be appropriate for theorems on division algebras. This is reinforced by the known 

examples of four-dimensional and five-dimensional division algebras over the field of 

two elements. I am bold enough to make one e.xplicit conjecture: any five-dimensional 

division algebra over a sufficiently large finite field is a twisted field. A particular case 

that might be tried first is this: there exist no commutative non-associative 

five-dimensional division algebras over a sufficiently large finite field of characteristic 

2. 

The literature on non-associative division algebras is sparse enough that I thought 

it worth while to try to compile a complete bibliography. To get this bibliography, 

add the following: the references in [7] and [11], and references [126], [141], 

[173], and [174] in [10]. I should add that I have not included papers dealing 

primarily with topology or with projective planes. 
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