Averaging and Coarse-Graining in Systems with Separation of Time-Scales

I. Timofeyev

University of Houston
A. J. Majda and E. Vanden-Eijnden; NYU

Related Publications:
http://www.math.uh.edu/~ilya

Outline

- Example 1: Slow Manifold Example
- Example 2: Averaing Example for SDEs
- Connection with Heterogeneous Multiscale Methods (W. E, B. Engquist, E. Vanden-Eijnden, etc.)
- Example 3: Homogenization (Coarse-Graining) Example
- Averaging Derivation
- Homogenization (Coarse-Graining) Derivation
- Derivation for the Triad Example
- WILL ADD SHORTLY: Numerics for the Triad Example

Motivation:
Eliminate the fast degrees of freedom in multiscale systems and derive an effective (stochastic) model for the slow variables. The main objective is to reproduce the statistical properties of the slow variables in full simulations.

Example 1: Deterministic Slow Manifold Approach
Consider:

$$
\begin{gathered}
\dot{x}=-y^{3}+\sin (2 t)+\cos (\sqrt{3} t) \\
\dot{y}=-\frac{1}{\varepsilon}(y-x)
\end{gathered}
$$

Slow Manifold: $y=x$ Reduced Equation:

$$
\dot{x}=-x^{3}+\sin (2 t)+\cos (\sqrt{3} t)
$$

Example 2: Averaging in Stochastic Systems (Avective Time-Scale)

Fluctuations of y are important in this case!

Consider System:

$$
\begin{gathered}
\dot{x}=-y^{3}+\sin (2 t)+\cos (\sqrt{3} t) \\
\dot{y}=-\frac{1}{\varepsilon}(y-x)+\frac{1}{\sqrt{\varepsilon}} \dot{W}
\end{gathered}
$$

Assume y is much faster; thus we treat x as fixed

Invariant Density for y can be computed explicitly:

$$
p(y \mid x)=\frac{1}{\sqrt{\pi}} e^{-(y-x)^{2}}
$$

Reduced Equation:

$$
\dot{x}=-x^{3}-\frac{3}{2} x+\sin (2 t)+\cos (\sqrt{3} t)
$$

Averaging in Stochastic Systems Simulations for the example on Averaging:

Averaging in Stochastic Systems Simulations for the example on Averaging:

General Setup for Multi-Scale Systems

Dynamical System: $\quad \dot{Z}=f(Z)$
Decomposition:

$$
Z=(S L O W, F A S T)
$$

$=($ Essential, Non - Essential $)$
Goal: Eliminate Fast modes; Derive Closed-Form equation for Slow Dynamics
Develop Efficient Numerical Algorithms for Fast Integration of Slow Variables
Warning: Slow-Fast Decomposition can be non-trivial; There are many examples with "hidden" slow or fast variables
Asymptotic Approach:
Introduce ε such that

$$
\text { Limit } \frac{\text { Time Scale }\{F A S T\}}{\text { Time Scale }\{S L O W\}} \rightarrow \infty \text { as } \varepsilon \rightarrow 0
$$

Connection with Heterogeneous Multiscale Methods
Averaging for Stochastic systems is also very closely related to the Heterogeneous Multiscale Methods (W. E, B. Engquist, E. Vanden-Eijnden, etc.) Stiff Dynamical System (ODE):

$$
\begin{aligned}
\dot{x} & =g(x, y) \\
\dot{y} & =\frac{1}{\varepsilon} h(x, y)
\end{aligned}
$$

Q: How to efficiently compute $x(t+\Delta t)$ given $x(t)$?
Nested Procedure:
$\overline{1 .}$ Given $x(t) \equiv \bar{x}$ integrate $\dot{y}=\frac{1}{\varepsilon} h(\bar{x}, y)$ with time step $\delta t \ll \Delta t$ and compute $\langle g(\bar{x}, y)\rangle ; \bar{x}$ is just a parameter
2. Make "BIG STEP" Δt by integrating $\dot{x}=\langle g(x, y)\rangle$

Example 3: Homogenization (Longer Diffusive Time-Scale)
Consider System:

$$
\dot{x}=-5 x+y, \quad \dot{y}=-10 y+\sqrt{10} \dot{W}
$$

$$
p(y)=\frac{1}{\sqrt{\pi}} e^{-y^{2}}
$$

Reduced Equation (Averaging FAILS!) Fluctuations are not reproduced by the reduced equation

$$
\dot{x}=-5 x
$$

$x(t)$ with IC $x(0)=4$

Homogenization - How to FIX the approach

$$
\begin{gathered}
\dot{x}=-\varepsilon 5 x+y, \\
\dot{y}=-\frac{1}{\varepsilon} 10 y+\frac{1}{\sqrt{\varepsilon}} \sqrt{10} \dot{W}
\end{gathered}
$$

Consider Coarse-Grained (Longer) Time

$$
\tau=\varepsilon t
$$

Rescaled System

$$
\dot{x}=-5 x+\frac{1}{\varepsilon} y, \quad \dot{y}=-\frac{1}{\varepsilon^{2}} 10 y+\frac{1}{\varepsilon} \sqrt{10} \dot{W}
$$

Reduced Equation is a Diffusion:

$$
\dot{x}=-5 x+(10)^{-1 / 2} \dot{W}
$$

Homogenization: Compuational Comparison
Comparison of the Original Full Model and the SDE Reduced Model (Diffusion)
Compare Trajectories:

Note: There is no pathwise convergence, but the fluctuations of $x(t)$ are perfectly reproduced by $x(\tau)$ in statistical sense.

Averaging Derivation

Consider Multiscale SDE

$$
\dot{x}=g(x, y) \quad \dot{y}=\frac{1}{\varepsilon} h(x, y)+s(x, y) \frac{1}{\sqrt{\varepsilon}} \dot{W}
$$

Corresponding Backward Equation:

$$
\partial_{t} u(x, y, t)=L_{1} u(x, y, t)+\frac{1}{\varepsilon} L_{2} u(x, y, t)
$$

where $u(x, y, t)=\mathbb{E}\left[\phi\left(x_{t}, y_{t}\right) \mid\left(x_{0}, y_{0}\right)=(x, y)\right], u(x, y, 0)=\phi(x, y) . \phi(x, y)$ is arbitrary.

Operator L_{2} corresponds to the fast sub-system (i.e. equation for y in this case)

$$
L_{2}=h(x, y) \partial_{y}+\frac{1}{2} s^{2}(x, y) \partial_{y}^{2}
$$

Consider Formal Asymptotics:

$$
u(x, y, t)=u_{0}(x, y, t)+\varepsilon u_{1}(x, y, t)+o(\varepsilon)
$$

$\underline{\text { Substitute and Collect Powers }}$

$$
\begin{aligned}
L_{2} u_{0} & =0 \\
\partial_{t} u_{0} & =L_{1} u_{0}+L_{2} u_{1}
\end{aligned}
$$

First Equation $\left(L_{2} u_{0}=0\right)=>u_{0}=u_{0}(x, t)$, i.e. u_{0} is only a function of x and t. Consider Generator L_{2} : It corresponds to the auxiliary fast sub-system

$$
\dot{y}=h(x, y)+s(x, y) \dot{W}
$$

where x plays the role of a FIXED PARAMETER
Assume: Invariant Measure $\mu(y \mid x)$ Exists, IM Depends on x as a parameter

Introduce Projection Operator:

$$
\mathbb{P} \cdot=\int \cdot \mu(y \mid x) d y
$$

Apply \mathbb{P} to the Second equation

$$
\mathbb{P} \partial_{t} u_{0}=\mathbb{P} L_{1} u_{0}+\mathbb{P} L_{2} u_{1}
$$

We can use

$$
\mathbb{P} L_{2}=0
$$

$\mathrm{b} / \mathrm{c} \mu(y \mid x)$ is the density for the auxiliary system (satisfies the FP equation with adjoint the L_{2}^{*}) Also,

$$
\mathbb{P} \partial_{t} u_{0}=\partial_{t} u_{0}
$$

$\mathrm{b} / \mathrm{c} u_{0}$ is a function of only x and t.

We obtain the Reduced Equation

$$
\partial_{t} u_{0}=\mathbb{P} L_{1} u_{0}
$$

The above equation is a backward equation for $u_{0} \equiv u_{0}(x, t)$.
This backward equations corresponds to an equation for the variable x :

$$
\dot{x}=\int g(x, y) \mu(y \mid x) d y=\langle g(x, y)\rangle_{\mu(y \mid x)}
$$

Coarse-Graining Derivation
$\overline{\text { Consider Rescaled Equations }}$

$$
\begin{aligned}
\dot{x_{t}} & =-5 x_{t}+\frac{1}{\varepsilon} y_{t} \\
\dot{y_{t}} & =-\frac{\gamma}{\varepsilon^{2}} y_{t}+\frac{\sigma}{\varepsilon} \dot{W}
\end{aligned}
$$

We introduced ε in this particular was to emphasize that the y-variables are faster and to make sure that the y-dependent terms in the equation for x do NOT average out to zero.
$\underline{\text { Backward Equation for } u(x, y, t)}$

$$
\partial_{t} u=L_{0} u+\frac{1}{\varepsilon} L_{1} u+\frac{1}{\varepsilon^{2}} L_{2} u
$$

with $L_{0}=L_{0}(x)$, i.e. L_{0} includes only self-interactions of slow variables, x
L_{2} is the backward operator for the fast sub-system (the right-hand side of x in this case)

Formal Asymptotics

$$
u=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+o\left(\varepsilon^{2}\right)
$$

Substitute and Collect Powers

$$
\begin{aligned}
L_{2} u_{0} & =0 \\
L_{2} u_{1} & =-L_{1} u_{0} \\
\partial_{t} u_{0} & =L_{0} u_{0}+L_{1} u_{1}+L_{2} u_{2}
\end{aligned}
$$

First Equation $=>u_{0}=u_{0}(x, t)$

Introduce Projection Operator:

$$
\mathbb{P} \cdot=\int \cdot \mu(y) d y
$$

where $\mu(y)$ is the Invariant Measure of the fast subsystem (the SDE which corresponds to L_{2})
Note: The fast sub-system does not have to be identical to the right-hand side of the y-variables; there might be terms in the equation for y which involve ε^{-1}, not ε^{-2}.
$\underline{\text { Note: }} \mathbb{P} L_{2} \cdot=0 \mathrm{~b} / \mathrm{c} \mu(y \mid x)$ is the density for the auxiliary system, i.e. satisfies the FP equation with adjoint the L_{2}^{*}
Second Equation Applying \mathbb{P} to the second equation we obtain (Remember: $\mathbb{P} L_{2}=0$)

$$
0=\mathbb{P} L_{1} u_{0}
$$

Compatibility Condition: $\mathbb{P} L_{1}=0$
From the Second Equation: $u_{1}=-L_{2}^{-1} L_{1} u_{0}$ (if the compatibility condition holds)

Compatibility Condition pg1

On the previous slide we obtained a compatibility condition

$$
\mathbb{P} L_{1}=0
$$

This compatibility condition must hold in order for the homogenization approach to be applicable. The compatibility condition is sometimes written as

$$
\mathbb{P} L_{1} \mathbb{P}=0
$$

to emphasize that $\mathbb{P} L_{1}$ applied to any function of x must be zero. The operator L_{1} typically involves first-order derivatives w.r. to x and y, i.e.

$$
L_{1}=A(x, y) \partial_{x}+B(x, y) \partial_{y}
$$

$B(x, y) \partial_{y}$ does not matter $\mathrm{b} / \mathrm{c} \mathbb{P} L_{1}$ is applied to a function of only x.

Compatibility Condition pg2

$A(x, y) \partial_{x}$ comes from the ε^{-1} terms of the drift in the equation for x-variables. Therefore, the compatibility condition can be rewritten as

$$
\int A(x, y) \mu(y) d y=0
$$

where $A(x, y)$ are the ε^{-1} terms of the drift in the equation for x-variables and $\mu(y)$ is the Invariant Measure of the Fast Sub-System.
This is equivalent to AVERAGING=0 condition and must be verified for each system under consideration

Third Equation Apply \mathbb{P} to the third equation

$$
\mathbb{P} \partial_{t} u_{0}=\mathbb{P} L_{0} u_{0}+\mathbb{P} L_{1} u_{1}+\mathbb{P} L_{2} u_{2}
$$

1. $\mathbb{P} L_{0}=L_{0} \mathrm{~b} / \mathrm{c} L_{0}$ only depends on x
2. $\mathbb{P} L_{2}=0$
3. Substitute $u_{1}=-L_{2}^{-1} L_{1} u_{0}$

Effective Equation:

$$
\partial_{t} u_{0}=L_{0} u_{0}-\mathbb{P} L_{1} L_{2}^{-1} L_{1} u_{0}
$$

Back to out Example:

$$
\begin{gathered}
\dot{x_{t}}=-5 x_{t}+\frac{1}{\varepsilon} y_{t} \\
\dot{y_{t}}=-\frac{\gamma}{\varepsilon^{2}} y_{t}+\frac{\sigma}{\varepsilon} \dot{W}
\end{gathered}
$$

In the Example Above

$$
L_{1}=y \partial_{x}
$$

L_{2} : Generator of the y OU process
$\mu(y)$: Gaussian density

$$
\begin{aligned}
& -\mathbb{P} L_{1} L_{2}^{-1} L_{1}=-\int \mu(y) y \partial_{x} L_{2}^{-1} y \partial_{x} d y= \\
& -\partial_{x}^{2} \int\left[y L_{2}^{-1} y\right] \mu(y) d y=-\partial_{x}^{2} \mathbb{E}_{\mu}\left[y L_{2}^{-1} y\right]
\end{aligned}
$$

where $\mathbb{E}_{\mu}\left[y L_{2}^{-1} y\right]$ is the expectation w.r. to the stationary distribution of the y-variables in the fast sub-system
We already see that the correction will be a diffusion, but we need to compute the coefficient. We need to understand the action of L_{2}^{-1}.

Compatibility Condition

The compaibility condition is clearly satisfied for this equation since

$$
L_{1}=y \partial_{x}
$$

and since $\mu(y)$ is a Gaussian density with mean zero

$$
\int y \mu(y) d y=0
$$

Therefore, we can apply the homogenization derivation to this model.

Action of L_{2}^{-1} :

$$
L_{2}^{-1} f(y)=-\int_{0}^{\infty} \mathbb{E}\left[f\left(Y_{t}\right) \mid Y_{0}=y\right] d t
$$

where Y_{t} is the solution of the fast sub-system at time t and $\mathbb{E}\left[f\left(Y_{t}\right) \mid Y_{0}=y\right]$ is the conditional expectation w.r. to Y_{t}. The correction becomes

$$
-\partial_{x}^{2} \mathbb{E}_{\mu}\left[y L_{2}^{-1} y\right]=\partial_{x}^{2} \int_{0}^{\infty} \mathbb{E}_{\mu} y\left[\mathbb{E}\left[Y_{t} \mid Y_{0}=y\right]\right] d t=\partial_{x}^{2} \int_{0}^{\infty} \mathbb{E}\left[y Y_{t}\right] d t
$$

where I switched the order of integrals w.r. to $d t$ and $d y$, etc. And Y_{t} is the solution of the fast sub-system with the initial condition $Y_{0}=y$. The object $\mathbb{E}\left[y Y_{t}\right]$ is the stationary correlation function of the fast sub-system.

Reduced Model

For our example, the stationary correlation function of the fast sub-system can be computed explicitly

$$
\begin{gathered}
\mathbb{E}\left[y Y_{t}\right]_{y}=\frac{\sigma^{2}}{2 \gamma} e^{-\gamma t} \\
\partial_{x}^{2} \int_{0}^{\infty} \frac{\sigma^{2}}{2 \gamma} e^{-\gamma t} d t=\partial_{x}^{2} \times \text { Area under the correlation of } y_{t}=\partial_{x}^{2} \frac{\sigma^{2}}{2 \gamma^{2}}
\end{gathered}
$$

Generator of the Effective Equation:

$$
L=L_{0}+\frac{1}{2} \frac{\sigma^{2}}{\gamma^{2}} \partial_{x}^{2}
$$

Effective Equation:

$$
d x=-5 x d t+\frac{\sigma}{\gamma} d W
$$

References

- Khasminsky, R. Z. 1963, 1966
- Kurtz, T. G. 1973, 1975
- Papanicolaou, G. 1976
- Ellis, R. S.; Pinsky, M. A. 1975

MTV http://www.math.uh.edu/~ilya/papers/

- Physica D 2002
- JAS 2003
- Nonlinearity 2006
- Physica D 2004
- TCFD 2012

More Complicated Triad Example
The following triad model is a nice example to understand the mode-reduction.

$$
\begin{aligned}
d x & =A_{1} y z d t \\
d y & =A_{2} x z d t-\gamma y d t+\sigma d W_{1} \\
d z & =A_{3} x y d t-\gamma z d t+\sigma d W_{2}
\end{aligned}
$$

with $A_{1}+A_{2}+A_{3}=0$, so that the energy is conserved by the nonlinear interactions.
Also, we assume that γ and σ are pretty large, so that y, z are much faster than x.
Therefore, we can introduce ε into the equation to accelerate y and z even more

Accelerated Triad

$$
\begin{aligned}
d x & =A_{1} y z d t \\
d y & =A_{2} x z d t-\frac{\gamma}{\varepsilon} y d t+\frac{\sigma}{\sqrt{\varepsilon}} d W_{1} \\
d z & =A_{3} x y d t-\frac{\gamma}{\varepsilon} z d t+\frac{\sigma}{\sqrt{\varepsilon}} d W_{2}
\end{aligned}
$$

Note: The drift and the diffusion terms are of the same ε^{-1} order in the Fokker-Planck (and backward) equation Note: The fast sub-system in this case is

$$
\begin{aligned}
d \tilde{y} & =-\gamma \tilde{y} d t+\sigma d W_{1} \\
d \tilde{z} & =-\gamma \tilde{z} d t+\sigma d W_{2}
\end{aligned}
$$

which is NOT the same as the right-hand side of y and z
The stationary measure of the FAST SUB-SYSTEM is a product measure

$$
\mu(\tilde{y}, \tilde{z})=\frac{2 \gamma^{2}}{\pi \sigma^{4}} e^{-\frac{\gamma}{\sigma^{2}} \tilde{y}^{2}} e^{-\frac{\gamma}{\sigma^{2}} \tilde{z}^{2}}
$$

$$
\dot{x}=0
$$

since $\mathbb{E}[y z]=0$ w.r. to the measure on the previous slide.
We need to coarse-grain time $t=\varepsilon t$

$$
\begin{aligned}
d x & =\frac{1}{\varepsilon} A_{1} y z d t \\
d y & =\frac{1}{\varepsilon} A_{2} x z d t-\frac{\gamma}{\varepsilon^{2}} y d t+\frac{\sigma}{\varepsilon} d W_{1} \\
d z & =\frac{1}{\varepsilon} A_{3} x y d t-\frac{\gamma}{\varepsilon^{2}} z d t+\frac{\sigma}{\varepsilon} d W_{2}
\end{aligned}
$$

and apply the homogenization formalism to the rescaled equaqtions above.

Backward Equation for the Triad

$$
\partial_{t} u=\frac{1}{\varepsilon} L_{1} u+\frac{1}{\varepsilon^{2}} L_{2}
$$

Note: $L_{0}=0$ in our previous notation.
Operators L_{1} and L_{2} are

$$
\begin{aligned}
L_{1} & =A_{1} y z \partial_{x}+A_{2} x z \partial_{y}+A_{3} x y \partial_{z} \\
L_{2} & =-\gamma y \partial_{y}+\frac{\sigma^{2}}{2} \partial_{y}^{2}-\gamma z \partial_{z}+\frac{\sigma^{2}}{2} \partial_{z}^{2}
\end{aligned}
$$

And the effective operator is the same as before

$$
L=-\mathbb{P} L_{1} L_{2}^{-1} L_{1}
$$

where \mathbb{P} is the projection operator w.t. to the invariant mesure of the fast sub-system

Computing the Effective Operator (pg 1)
Assume the expansion

$$
u=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots
$$

and, as before, substitute and collect powers of ε. We also obtain that $u_{0}=u_{0}(x, t)$, i.e. does not depend on y-variables Since the effective operator L will be applied to $u_{0}=u_{0}(x, t)$ we can neglect ∂_{y} and ∂_{z} on the right, i.e.

$$
L=-\mathbb{P} L_{1} L_{2}^{-1} L_{1} u_{0}=-\mathbb{P} L_{1} L_{2}^{-1} A_{1} y z \partial_{x}
$$

We have to be carefull with ∂_{x} since L_{1} involves x; Cannot pull ∂_{x} through the integral
Therefore, we have to compute

$$
\mathbb{P}\left[A_{1} y z \partial_{x}+A_{2} x z \partial_{y}+A_{3} x y \partial_{z}\right] L_{2}^{-1} A_{1} y z \partial_{x}
$$

Computing the Effective Operator (pg 2)
We have to compute

$$
\begin{gathered}
\mathbb{P}\left[A_{1} y z \partial_{x}+A_{2} x z \partial_{y}+A_{3} x y \partial_{z}\right] L_{2}^{-1} A_{1} y z \partial_{x}= \\
\mathbb{P} A_{1} y z \partial_{x} L_{2}^{-1} A_{1} y z \partial_{x}+\mathbb{P}\left[A_{2} x z \partial_{y}+A_{3} x y \partial_{z}\right] L_{2}^{-1} A_{1} y z \partial_{x}=
\end{gathered}
$$

Part $1+$ Part 2
We will compute these two parts separately.

Computing the Effective Operator (pg 3)
First Part: (we can pull ∂_{x} outside b/c L_{2} does not depend on x)

$$
\begin{gathered}
-\mathbb{P} A_{1} y z \partial_{x} L_{2}^{-1} A_{1} y z \partial_{x}=A_{1}^{2} \partial_{x}^{2} \int_{0}^{\infty}\left\langle y z y_{t} z_{t}\right\rangle_{\mu} d t=A_{1}^{2}\left(\frac{\sigma^{2}}{2 \gamma}\right)^{2} \frac{1}{2 \gamma} \partial_{x}^{2} \\
\left\langle y z y_{t} z_{t}\right\rangle_{\mu}=\left\langle y y_{t}\right\rangle_{\mu} \times\left\langle z z_{t}\right\rangle_{\mu}=\left(\frac{\sigma^{2}}{2 \gamma}\right)^{2} e^{-2 \gamma t}
\end{gathered}
$$

Second Part: (we need to be careful b/c L_{1} involves ∂_{y} and ∂_{z})

$$
\begin{gathered}
-\mathbb{P} A_{2} x z \partial_{y} L_{2}^{-1} A_{1} y z \partial_{x}=A_{2} A_{1} x \partial_{x} \mathbb{P} \frac{y}{v^{2}} z L_{2}^{-1} y z= \\
A_{2} A_{1} x \partial_{x} \frac{1}{v^{2}} \int_{0}^{\infty}\left\langle y z y_{t} z_{t}\right\rangle_{\mu} d t=A_{2} A_{1} x \partial_{x} \frac{v^{2}}{2 \gamma}
\end{gathered}
$$

where $v^{2}=\sigma^{2} /(2 \gamma)$ and we we integrated by parts and shifted ∂_{y} onto $\mu(y, z)$
Similarly:

$$
-\mathbb{P} A_{3} x y \partial_{z} L_{2}^{-1} A_{1} y z \partial_{x}=A_{3} A_{1} x \partial_{x} \frac{v^{2}}{2 \gamma}
$$

Computing the Effective Operator (pg 4)
Second Part Together: (use $A_{1}+A_{2}+A_{3}=0$)

$$
-\mathbb{P}\left[A_{2} x z \partial_{y}+A_{3} x y \partial_{z}\right] L_{2}^{-1} A_{1} y z \partial_{x}=-A_{1}^{2} \frac{1}{\sigma^{2}}\left(\frac{\sigma^{2}}{2 \gamma}\right)^{2} x \partial_{x}
$$

Effective Generator:

$$
L=-g x \partial_{x}+\frac{s^{2}}{2} \partial_{x}^{2}
$$

Effective Equation:

$$
d x=-g x d t+s d W
$$

where

$$
g=A_{1}^{2} \frac{\sigma^{2}}{4 \gamma^{2}}, \quad s=A_{1} \frac{\sigma^{2}}{2 \gamma \sqrt{\gamma}}
$$

