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Motivation:
Eliminate the fast degrees of freedom in multiscale systems and derive an effective (stochastic) model for the slow variables. The main objective is to

reproduce the statistical properties of the slow variables in full simulations.



Example 1: Deterministic Slow Manifold Approach

Consider:
ẋ = −y3 + sin(2t) + cos(

√
3t)

ẏ = −1

ε
(y − x)

Slow Manifold: y = x Reduced Equation:

ẋ = −x3 + sin(2t) + cos(
√

3t)
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Example 2: Averaging in Stochastic Systems (Avective Time-Scale)

Fluctuations of y are important in this case!

Consider System:
ẋ = −y3 + sin(2t) + cos(

√
3t)

ẏ = −1

ε
(y − x) +

1√
ε
Ẇ

Assume y is much faster; thus we treat x as fixed

Invariant Density for y can be computed explicitly:

p(y|x) =
1√
π
e−(y−x)2

Reduced Equation:

ẋ = −x3 − 3

2
x+ sin(2t) + cos(

√
3t)



Averaging in Stochastic Systems
Simulations for the example on Averaging:

ε = 0.1
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Averaging in Stochastic Systems
Simulations for the example on Averaging:

ε = 0.01
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General Setup for Multi-Scale Systems

Dynamical System : Ż = f(Z)
Decomposition:

Z = (SLOW, FAST )

= (Essential, Non− Essential)

Goal: Eliminate Fast modes; Derive Closed-Form equation for Slow Dynamics
Develop Efficient Numerical Algorithms for Fast Integration of Slow Variables

Warning: Slow-Fast Decomposition can be non-trivial; There are many examples with “hidden” slow or fast variables
Asymptotic Approach:
Introduce ε such that

Limit
T ime Scale{FAST}
T ime Scale{SLOW} → ∞ as ε→ 0



Connection with Heterogeneous Multiscale Methods

Averaging for Stochastic systems is also very closely related to the Heterogeneous Multiscale Methods (W. E, B. Engquist, E. Vanden-Eijnden, etc.)
Stiff Dynamical System (ODE):

ẋ = g(x, y)

ẏ =
1

ε
h(x, y)

Q: How to efficiently compute x(t+ ∆t) given x(t)?

Nested Procedure:
1. Given x(t) ≡ x̄ integrate ẏ = 1

ε
h(x̄, y) with time step δt << ∆t and compute 〈g(x̄, y)〉; x̄ is just a parameter

2. Make “BIG STEP” ∆t by integrating ẋ = 〈g(x, y)〉

Example 3: Homogenization (Longer Diffusive Time-Scale)
Consider System:

ẋ = −5x+ y, ẏ = −10y +
√

10Ẇ

Stationary Distribution for y:

p(y) =
1√
π
e−y2

Reduced Equation (Averaging FAILS!) Fluctuations are not reproduced by the reduced equation

ẋ = −5x
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Homogenization - How to FIX the approach
Consider Modified equation:

ẋ = −ε5x+ y,

ẏ = −1

ε
10y +

1√
ε

√
10Ẇ

Consider Coarse-Grained (Longer) Time
τ = εt

Rescaled System

ẋ = −5x+
1

ε
y, ẏ = − 1

ε2
10y +

1

ε

√
10Ẇ

Reduced Equation is a Diffusion:

ẋ = −5x+ (10)−1/2Ẇ



Homogenization: Compuational Comparison
Comparison of the Original Full Model and the SDE Reduced Model (Diffusion)
Compare Trajectories:
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Note: There is no pathwise convergence, but the fluctuations of x(t) are perfectly reproduced by x(τ) in statistical sense.



Averaging Derivation

Consider Multiscale SDE

ẋ = g(x, y) ẏ =
1

ε
h(x, y) + s(x, y)

1√
ε
Ẇ

Corresponding Backward Equation:

∂tu(x, y, t) = L1u(x, y, t) +
1

ε
L2u(x, y, t)

where u(x, y, t) = E [φ(xt, yt)|(x0, y0) = (x, y)], u(x, y, 0) = φ(x, y). φ(x, y) is arbitrary.

Operator L2 corresponds to the fast sub-system (i.e. equation for y in this case)

L2 = h(x, y)∂y +
1

2
s2(x, y)∂2y



Consider Formal Asymptotics:

u(x, y, t) = u0(x, y, t) + εu1(x, y, t) + o(ε)

Substitute and Collect Powers

L2u0 = 0

∂tu0 = L1u0 + L2u1

First Equation (L2u0 = 0) => u0 = u0(x, t), i.e. u0 is only a function of x and t.
Consider Generator L2: It corresponds to the auxiliary fast sub-system

ẏ = h(x, y) + s(x, y)Ẇ

where x plays the role of a FIXED PARAMETER

Assume: Invariant Measure µ(y|x) Exists, IM Depends on x as a parameter



Introduce Projection Operator:

P· =
∫
·µ(y|x)dy

Apply P to the Second equation

P∂tu0 = PL1u0 + PL2u1

We can use
PL2· = 0

b/c µ(y|x) is the density for the auxiliary system (satisfies the FP equation with adjoint the L∗2)
Also,

P∂tu0 = ∂tu0

b/c u0 is a function of only x and t.



We obtain the Reduced Equation:

∂tu0 = PL1u0

The above equation is a backward equation for u0 ≡ u0(x, t).
This backward equations corresponds to an equation for the variable x:

ẋ =

∫
g(x, y)µ(y|x)dy = 〈g(x, y)〉µ(y|x)



Coarse-Graining Derivation
Consider Rescaled Equations

ẋt = −5xt +
1

ε
yt

ẏt = −
γ

ε2
yt +

σ

ε
Ẇ

We introduced ε in this particular was to emphasize that the y-variables are faster and to make sure that the y-dependent terms in the
equation for x do NOT average out to zero.

Backward Equation for u(x, y, t)

∂tu = L0u+
1

ε
L1u+

1

ε2
L2u

with L0 = L0(x), i.e. L0 includes only self-interactions of slow variables, x
L2 is the backward operator for the fast sub-system (the right-hand side of x in this case)



Formal Asymptotics

u = u0 + εu1 + ε2u2 + o(ε2)

Substitute and Collect Powers

L2u0 = 0

L2u1 = −L1u0

∂tu0 = L0u0 + L1u1 + L2u2

First Equation => u0 = u0(x, t)
b/c L2 involves derivatives w.r. to y and u0 is arbitrary.



Introduce Projection Operator:

P· =
∫
·µ(y)dy

where µ(y) is the Invariant Measure of the fast subsystem (the SDE which corresponds to L2)
Note: The fast sub-system does not have to be identical to the right-hand side of the y-variables; there might be terms in the equation

for y which involve ε−1, not ε−2.
Note: PL2· = 0 b/c µ(y|x) is the density for the auxiliary system, i.e. satisfies the FP equation with adjoint the L∗2
Second Equation Applying P to the second equation we obtain (Remember: PL2 = 0)

0 = PL1u0

Compatibility Condition: PL1 = 0

From the Second Equation: u1 = −L−12 L1u0 (if the compatibility condition holds)



Compatibility Condition pg1
On the previous slide we obtained a compatibility condition

PL1 = 0.

This compatibility condition must hold in order for the homogenization approach to be applicable. The compatibility condition is
sometimes written as

PL1P = 0

to emphasize that PL1 applied to any function of x must be zero.
The operator L1 typically involves first-order derivatives w.r. to x and y, i.e.

L1 = A(x, y)∂x +B(x, y)∂y

B(x, y)∂y does not matter b/c PL1 is applied to a function of only x.



Compatibility Condition pg2
A(x, y)∂x comes from the ε−1 terms of the drift in the equation for x-variables. Therefore, the compatibility condition can be rewritten

as ∫
A(x, y)µ(y)dy = 0

where A(x, y) are the ε−1 terms of the drift in the equation for x-variables and µ(y) is the Invariant Measure of the Fast Sub-System.
This is equivalent to AVERAGING=0 condition and must be verified for each system under consideration



Third Equation Apply P to the third equation

P∂tu0 = PL0u0 + PL1u1 + PL2u2

1. PL0 = L0 b/c L0 only depends on x
2. PL2· = 0
3. Substitute u1 = −L−12 L1u0

Effective Equation:

∂tu0 = L0u0 − PL1L
−1
2 L1u0



Back to out Example:

ẋt = −5xt +
1

ε
yt

ẏt = −
γ

ε2
yt +

σ

ε
Ẇ

In the Example Above
L1 = y∂x

L2 : Generator of the y OU process

µ(y) : Gaussian density

−PL1L
−1
2 L1 = −

∫
µ(y)y∂xL

−1
2 y∂xdy =

−∂2x
∫ [

yL−12 y
]
µ(y)dy = −∂2xEµ

[
yL−12 y

]
where Eµ

[
yL−12 y

]
is the expectation w.r. to the stationary distribution of the y-variables in the fast sub-system

We already see that the correction will be a diffusion, but we need to compute the coefficient. We need to understand the action of
L−12 .



Compatibility Condition
The compaibility condition is clearly satisfied for this equation since

L1 = y∂x

and since µ(y) is a Gaussian density with mean zero ∫
yµ(y)dy = 0

Therefore, we can apply the homogenization derivation to this model.



Action of L−12 :

L−12 f(y) = −
∞∫
0

E [f(Yt)|Y0 = y] dt

where Yt is the solution of the fast sub-system at time t and E [f(Yt)|Y0 = y] is the conditional expectation w.r. to Yt.
The correction becomes

−∂2xEµ
[
yL−12 y

]
= ∂2x

∞∫
0

Eµy [E [Yt|Y0 = y]] dt = ∂2x

∞∫
0

E [yYt] dt

where I switched the order of integrals w.r. to dt and dy, etc. And Yt is the solution of the fast sub-system with the initial condition Y0 = y.
The object E [yYt] is the stationary correlation function of the fast sub-system.



Reduced Model
For our example, the stationary correlation function of the fast sub-system can be computed explicitly

E [yYt]y =
σ2

2γ
e−γt

∂2x

∞∫
0

σ2

2γ
e−γtdt = ∂2x × Area under the correlation of yt = ∂2x

σ2

2γ2

Generator of the Effective Equation:

L = L0 +
1

2

σ2

γ2
∂2x

Effective Equation:

dx = −5xdt+ σ

γ
dW
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More Complicated Triad Example
The following triad model is a nice example to understand the mode-reduction.

dx = A1yzdt

dy = A2xzdt− γydt+ σdW1

dz = A3xydt− γzdt+ σdW2

with A1 +A2 +A3 = 0, so that the energy is conserved by the nonlinear interactions.
Also, we assume that γ and σ are pretty large, so that y, z are much faster than x.
Therefore, we can introduce ε into the equation to accelerate y and z even more



Accelerated Triad

dx = A1yzdt

dy = A2xzdt−
γ

ε
ydt+

σ√
ε
dW1

dz = A3xydt−
γ

ε
zdt+

σ√
ε
dW2

Note: The drift and the diffusion terms are of the same ε−1 order in the Fokker-Planck (and backward) equation
Note: The fast sub-system in this case is

dỹ = −γỹdt+ σdW1

dz̃ = −γz̃dt+ σdW2

which is NOT the same as the right-hand side of y and z
The stationary measure of the FAST SUB-SYSTEM is a product measure

µ(ỹ, z̃) =
2γ2

πσ4
e−

γ

σ2 ỹ
2

e−
γ

σ2 z̃
2



Averaging or Homogenization?
Applying Averaging Gives

ẋ = 0

since E[yz] = 0 w.r. to the measure on the previous slide.

We need to coarse-grain time t = εt

dx =
1

ε
A1yzdt

dy =
1

ε
A2xzdt−

γ

ε2
ydt+

σ

ε
dW1

dz =
1

ε
A3xydt−

γ

ε2
zdt+

σ

ε
dW2

and apply the homogenization formalism to the rescaled equaqtions above.



Backward Equation for the Triad

∂tu =
1

ε
L1u+

1

ε2
L2

Note: L0 = 0 in our previous notation.
Operators L1 and L2 are

L1 = A1yz∂x +A2xz∂y +A3xy∂z

L2 = −γy∂y +
σ2

2
∂2y − γz∂z +

σ2

2
∂2z

And the effective operator is the same as before

L = −PL1L
−1
2 L1

where P is the projection operator w.t. to the invariant mesure of the fast sub-system



Computing the Effective Operator (pg 1)
Assume the expansion

u = u0 + εu1 + ε2u2 + . . .

and, as before, substitute and collect powers of ε. We also obtain that u0 = u0(x, t), i.e. does not depend on y-variables
Since the effective operator L will be applied to u0 = u0(x, t) we can neglect ∂y and ∂z on the right, i.e.

L = −PL1L
−1
2 L1u0 = −PL1L

−1
2 A1yz∂x

We have to be carefull with ∂x since L1 involves x; Cannot pull ∂x through the integral
Therefore, we have to compute

P [A1yz∂x +A2xz∂y +A3xy∂z]L
−1
2 A1yz∂x



Computing the Effective Operator (pg 2)
We have to compute

P [A1yz∂x +A2xz∂y +A3xy∂z]L
−1
2 A1yz∂x =

PA1yz∂xL
−1
2 A1yz∂x + P [A2xz∂y +A3xy∂z]L

−1
2 A1yz∂x =

Part 1 + Part 2

We will compute these two parts separately.



Computing the Effective Operator (pg 3)
First Part: (we can pull ∂x outside b/c L2 does not depend on x)

−PA1yz∂xL
−1
2 A1yz∂x = A2

1∂
2
x

∞∫
0

〈yzytzt〉µdt = A2
1

(
σ2

2γ

)2
1

2γ
∂2x

〈yzytzt〉µ = 〈yyt〉µ × 〈zzt〉µ =

(
σ2

2γ

)2

e−2γt

Second Part: (we need to be careful b/c L1 involves ∂y and ∂z)

−PA2xz∂yL
−1
2 A1yz∂x = A2A1x∂xP

y

v2
zL−12 yz =

A2A1x∂x
1

v2

∞∫
0

〈yzytzt〉µdt = A2A1x∂x
v2

2γ

where v2 = σ2/(2γ) and we we integrated by parts and shifted ∂y onto µ(y, z)
Similarly:

−PA3xy∂zL
−1
2 A1yz∂x = A3A1x∂x

v2

2γ



Computing the Effective Operator (pg 4)
Second Part Together: (use A1 +A2 +A3 = 0)

−P [A2xz∂y +A3xy∂z]L
−1
2 A1yz∂x = −A2

1

1

σ2

(
σ2

2γ

)2

x∂x

Effective Generator:

L = −gx∂x +
s2

2
∂2x

Effective Equation:

dx = −gxdt+ sdW

where

g = A2
1

σ2

4γ2
, s = A1

σ2

2γ
√
γ


