Section 6.4
Equations of Change: Linear and Exponential Functions

Definition: An equation of the form $\frac{d f}{d x}=$ Right - hand side is called an equation of change, also known as differential equation.

Equations of Change and Linear Functions

The equation of change $\frac{d f}{d x}=m$, where m is a constant, says that f has a constant rate of change m and hence that f is a linear function with slope m. That is, $f=m x+b$.

An initial condition is needed to determine the value of b.

Equations of Change and Exponential Functions

The equation of change $\frac{d f}{d x}=r f$, where r is a constant, says that f has a constant proportional (and hence percentage) rate of change and is therefore an exponential function. The exponential growth rate for f is r, so the growth (or decay) factor is e^{r}. That is,

$$
\begin{aligned}
& f=P e^{r x} \\
& \text { Or } \\
& f=P \times\left(e^{r}\right)^{x}
\end{aligned}
$$

where P is the initial value of f.
Example 1: On Mars, a falling object satisfies the equation of change $\frac{d V}{d t}=12.16$, where V is downward velocity in feet per second and t is time in seconds.
a) What is the value of acceleration due to gravity on Mars?
b) Suppose an astronaut stands atop a cliff on Mars and throws a rock downward with an initial velocity of 8 feet per second. What is the velocity of the rock 3 seconds after release?

Example 2: You open an account by investing $\$ 250$ with a financial institution that advertises an APR of 5.75%, with continuous compounding.
a) Find an exponential formula for the balance in your account as a function of time. In your answer, give both the standard form and the exponential function.
b) What account balance would you expect 5 years after your initial investment? Answer this question using both of the forms you found in part a). Which do you think gives more accurate answer? Why?

Example 3: What is the common mathematical term for an equation of change?

Example 4: If f satisfies the equation of change $\frac{d f}{d x}=m$, what kind of function is f ?

Example 5: If f satisfies the equation of change $\frac{d f}{d x}=3$, then f is a linear function. What is the slope of f ?

Example 6: If f satisfies the equation of change $\frac{d f}{d x}=c f$, what kind of function is f ?

Example 7: If f satisfies the equation of change $\frac{d f}{d x}=5 f$, then f is an exponential function and hence can be written as $f=A e^{c t}$. What is the value of c ?

Example 8: Solve the equation of change $\frac{d f}{d x}=5$ if the initial value of f is 3 .

Example 8: Solve the equation of change $\frac{d f}{d x}=5 f$ if the initial value of f is 2 . Use the alternative form for exponential function.

