Math 1312 Homework 3

Enter your answers in the EMCF titled "Homework 3" at casa.uh.edu before the due date/time. If a problem comes from the exercises in the textbook then Problem 1.2.6 refers to Chapter 1, Section 2, problem number 6 etc.

- 1. Problem 1.5.6
 - A. Subtraction Property of Equality
 - B. Addition property of Equality
 - C. Multiplication Property of Equality
 - D. Distributive Property
 - E. Substitution Property
- 2. Problem 1.5.8
 - A. Definition of a Supplementary Angle
 - B. Measure of a straight angle equals 180°
 - C. Angle-Addition Postulate
 - D. Substitution Property
 - E. Transitive Property
- 3. Problem 1.5.28 Reason 5
 - A. Addition Property of Equality
 - B. Transitive Property
 - C. Substitution Property
 - D. Segment-Addition Postulate
 - E. Division Property of Equality
- 4. Problem 1.5.36
 - A. 3 > −1
 - B. -3 > 1
 - C. −3 < 1
 - D. 3 > 1
 - E. None of the above
- 5. Problem 1.5.38 Write the last statement of the proof.
 - A. a = b and c = d
 - B. a c = b d
 - C. Proof
 - D. Transitive
 - E. c = d

- 6. Consider a relation from Problem 1.6.14. Which is a property of this relation?
 - A. Reflexive
 - B. Symmetric
 - C. Transitive
 - D. All of the above
 - E. None of the above
- 7. Consider a relation "is congruent" for angles. Which is a property of this relation?
 - A. Reflexive
 - B. Symmetric
 - C. Transitive
 - D. All of the above
 - E. None of the above
- 8. Consider a relation "is supplementary" for angles. Which is a property of this relation?
 - A. Reflexive
 - B. Symmetric
 - C. Transitive
 - D. All of the above
 - E. None of the above

9. Given that 2(x - 4) - 9 = 17, you can prove that:

- A. x = 0
- B. *x* = 2
- C. x = 15
- D. *x* = 16
- E. None of the above

10. The perpendicular bisector of a line is unique.

- A. True
- B. False
- 11. For two intersecting lines, $\angle 1$ and $\angle 2$ are a pair of vertical angles formed. Given that $m \angle 1 = \frac{x}{3} + 7$ and $m \angle 2 = \frac{x}{2} 5$, find the value of x.
 - A. 12
 - B. 24
 - C. 36
 - D. 72
 - E. None of the above

12. If $\angle 1$ and $\angle 2$ are complementary and $\angle 1 \cong \angle 2$, then $\angle 1$ must be a(n):

- A. Obtuse angle
- B. Straight angle
- C. Acute angle
- D. Right angle
- E. None of the above

- 13. If $\angle 1$ and $\angle 2$ are supplementary and $\angle 1$ is an acute angle, then $\angle 2$ must be a(n):
 - A. Obtuse angle
 - B. Straight angle
 - C. Vertical angle
 - D. Right angle
 - E. None of the above

14. $\angle 1$ and $\angle 2$ are vertical. $\angle 1$ is complementary to $\angle 3$. How $\angle 2$ and $\angle 3$ are related?

- A. Congruent
- B. Complementary
- C. Supplementary
- D. Vertical
- E. None of the above

15. If two angles are congruent, then they are right angles.

- A. Always true
- B. Sometimes true
- C. Never true